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Abstract: The aim of this validation study was to comprehensively evaluate the performance and
generalization capability of a deep learning-based periapical lesion detection algorithm on a clinically
representative cone-beam computed tomography (CBCT) dataset and test for non-inferiority. The
evaluation involved 195 CBCT images of adult upper and lower jaws, where sensitivity and specificity
metrics were calculated for all teeth, stratified by jaw, and stratified by tooth type. Furthermore, each
lesion was assigned a periapical index score based on its size to enable a score-based evaluation.
Non-inferiority tests were conducted with proportions of 90% for sensitivity and 82% for specificity.
The algorithm achieved an overall sensitivity of 86.7% and a specificity of 84.3%. The non-inferiority
test indicated the rejection of the null hypothesis for specificity but not for sensitivity. However, when
excluding lesions with a periapical index score of one (i.e., very small lesions), the sensitivity improved
to 90.4%. Despite the challenges posed by the dataset, the algorithm demonstrated promising results.
Nevertheless, further improvements are needed to enhance the algorithm’s robustness, particularly
in detecting very small lesions and the handling of artifacts and outliers commonly encountered in
real-world clinical scenarios.

Keywords: artificial intelligence; deep learning; digital imaging/radiology; inflammation; oral
diagnosis; periapical lesions; image segmentation; convolutional neural network

1. Introduction

Artificial intelligence (AI) models have made remarkable advancements in various
fields, with deep convolutional neural networks (CNNs) [1] emerging as a powerful subset
of AI, especially for processing and analyzing images. These networks, inspired by the
structure of the visual cortex in the human brain, show superior performance in tasks
such as image classification, object detection, and image segmentation [2]. In the field of
medical imaging, these networks have demonstrated promising capabilities in detecting
and diagnosing various diseases such as breast cancer, heart disease, and brain tumors [3,4].
Their performance is often reported to be comparable to that of experienced professionals,
significantly reducing the time required for diagnosis [5–7].

Recently, dental medicine has also started to benefit from such deep learning tech-
niques [8]. Specifically, these techniques have been applied to panoramic radiographs and
cone-beam computed tomography (CBCT) images with the aim of assisting clinicians in de-
tecting and analyzing dental conditions and diseases in the maxillofacial region [9–11]. Ex-
amples include the detection of maxillary sinus mucosa [12], pharyngeal airway space [13],
calcifications of the cervical carotid artery [14], jaw cysts [15,16], supernumerary mesio-
buccal root canals on maxillary molars [17], vertical root fractures [18], and periapical
lesions (PALs).

J. Clin. Med. 2024, 13, 197. https://doi.org/10.3390/jcm13010197 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm13010197
https://doi.org/10.3390/jcm13010197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0009-0007-1476-3729
https://orcid.org/0000-0001-5792-3971
https://orcid.org/0009-0000-7112-0710
https://orcid.org/0000-0001-8031-7865
https://orcid.org/0000-0003-3449-5497
https://doi.org/10.3390/jcm13010197
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm13010197?type=check_update&version=2


J. Clin. Med. 2024, 13, 197 2 of 13

PALs are one of the most frequent pathological occurrences in dental images. They
resemble usually bacteria-induced osteolytic areas around the tip of the roots within a
few millimeters in diameter [19,20]. PALs are conventionally analyzed in radiographs,
whereas CBCT images often reveal these lesions as incidental findings [20,21]. While widely
used conventional intra- and extra-oral radiographs [22] lead to lower radiation doses but
suffer from superimposition issues due to their projective nature, CBCT allows fully three-
dimensional (3D) imaging of the maxillofacial region at the cost of higher dose requirements.
However, due to its volumetric nature, CBCT has been shown to improve the detection
of PALs when compared with radiographs [23–25]. Manually identifying PALs with high
sensitivity (recall) in both imaging modalities requires a certain amount of experience to
prevent overlooked findings. As a result, automated deep learning-based methods for PAL
detection in radiographs or CBCT imaging data have been proposed [16,26–34]. Serving
as the foundation of this study, the promising CNN-based approach for periapical lesion
detection in CBCT images proposed in [32] achieved a sensitivity of 97.1% and a specificity
of 88.0% when evaluated on 144 CBCT volumes with 206 lesions.

The great success of any deep CNN-based approach is based upon the assumption
that training and testing data come from the same data distribution. However, when the
test data deviates from the training data distribution, the ability of deep neural networks
to generalize and perform well on the new data degrades [35]. This phenomenon is often
observed in clinical datasets due to factors such as anatomical anomalies, image artifacts,
or occlusions, which shift the data distribution. In light of this, our validation study aims
to provide a thorough statistical evaluation regarding the effectiveness and generalization
capability of the CNN-based PAL-detection model proposed in [32] on an entirely new,
previously unseen clinical CBCT dataset with a shifted data distribution compared to the
data used to train the model. The null hypothesis of this validation study is that the method
proposed in [32] delivers an inferior result when applied to our new, challenging evaluation
dataset from clinical practice.

2. Materials and Methods
2.1. Study Design

The research protocol for this retrospective study was performed following the guide-
lines of the Declaration of Helsinki. Ethical approval for retrospective collection of the
evaluation dataset used in this study was provided by the local Ethics Committee of the
Medical University of Graz, Austria (review board number “34-519 ex 21/22”).

2.2. Sample Size Calculation

The sample size for this study is based on assumptions for the lesion detection sen-
sitivity. We assumed observation of a sensitivity of 95%, corresponding to the lower
limit of the 95% confidence interval for the sensitivity observed in the prior study of
Kirnbauer et al. [32]. To show that the sensitivity is non-inferior to 90% (using a margin of
5%), a sample size of 243 lesions is necessary to achieve a power of >80%, using a one-sided
non-inferiority binomial test with an alpha of 2.5%. Assuming that about 10% of the teeth
have lesions, a sample size of 2430 teeth is required. For an assumed specificity of 87%
and to show that the specificity is non-inferior to 82% (margin of 5%), the sample size of
2187 teeth yields a power of >99%.

2.3. Dataset

Dataset collection was performed similarly to Kirnbauer et al. [32], but in a less
selective manner, so that clinical practice was better reflected (see the comparison of
inclusion and exclusion criteria between studies in Table 1). CBCT volumes from routine
clinical operations performed for different diagnostic indications (i.e., implant planning,
radiological assessment of impacted teeth, assessment of odontogenic tumors or other
lesions, and orthodontic reasons) from the year 2018 were retrospectively screened and
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selected according to the criteria listed in Table 1. All scans were performed on a Planmeca
ProMax® 3D Max (Planmeca, Helsinki, Finland) device.

Table 1. Comparison of inclusion and exclusion criteria for dataset collection in this study and the
study conducted by Kirnbauer et al. [32].

Criterion Kirnbauer et al. [32] This Study

Field of view with a representation of the entire
dental arch (upper jaw, lower jaw, or both) Included Included

Device and assessment parameters: Field of view of
10.0 × 5.9 cm or 10.0 × 9.3 cm, covering at least one
completely visible dental arch, with a 200-µm voxel
size (96 kV, 5.6–9.0 mA, 12 s), which is labeled as
“normal” mode by the manufacturer

Included Included

An acceptable degree of scatter and/or artifacts
(exclusion of clinically insufficient interpretable
datasets, i.e., severe metal artifacts inhibiting
individual crown visualization, and ghost
effects/double images due to long-motion artifacts)

Included Included

Completed root development Included Included

No edentulism Included Included
Additional: Additional:
as few missing teeth
as possible

up to 11 missing
teeth per jaw

Tooth gaps Excluded Included

Partially and totally impacted teeth Excluded Included

Dental implants Excluded Included

Augmentations Excluded Included

The collected dataset was pseudonymized, so that patient names were replaced with a
sequential code and no conclusions could be drawn about patient data when they were
used during the investigation. All investigators who received access to encrypted and
non-encrypted data were subject to the General Data Protection Regulation (GDPR) and the
Austrian Data Protection Regulation in the currently valid version (http://www.dsb.gv.at,
accessed on 14 December 2023). An initial dataset screening was performed by one dentist
on an MDNC-2221 monitor (resolution 1600 × 1200; size 432 mm × 324 mm; 59.9 Hz;
Barco Control Rooms GmbH, Karlsruhe, Germany) using the Planmeca Romexis® software
version 6.0 (Planmeca, Helsinki, Finland).

The ground-truth detection of PALs was performed by three investigators (two senior
oral surgeons with >15 years of experience and one junior dentist), who did an initial
round of lesion detection separately from each other on the whole dataset. Within a second
round, lesion results were consensually determined including PAL classification, according
to the periapical index scoring scheme of Estrela et al. [20], thus establishing the expert
ground truth. The collected dataset consisted of a total of 196 CBCT images from unique
patients. One patient image had to be excluded due to the software failing to read the file,
leaving 195 patient images (99.5%) for the comparison of software-based PAL detections
with expert ground truth within this study. Out of these 195 images, 164 showed only one
jaw, and 31 images displayed both jaws. In total, there were 2947 present teeth across the
226 jaws (101 lower jaws, 125 upper jaws) in the dataset. In the images of these jaws, there
were 669 teeth missing due to various possible reasons, such as caries, periodontitis, dental
trauma, periapical disease, or orthodontic reasons [36].

During the investigation, a total of 300 periapical lesions were identified by the expert
consensus, and the remaining 2647 present teeth were determined to be lesion-free. Table 2
provides a summary of the dataset characteristics, including lesion classification according

http://www.dsb.gv.at
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to the lesion diameter-based periapical index scoring scheme proposed by Estrela et al. [20],
while Table 3 gives a detailed distribution of tooth groups per lesion class.

Table 2. Overview of dataset characteristics used for the evaluation in this study.

Number Additional Information

Images 195 One jaw: 164
Both jaws: 31

Jaws 226 Upper: 125
Lower: 101

Teeth present 2947 With lesion: 300 (10.2%)
Without lesion: 2647 (89.8%)

Lesion classification 1

Score 1: 28 ( 9.3%) Diameter > 0.5–1 mm
Score 2: 59 (19.7%) Diameter > 1–2 mm
Score 3: 67 (22.3%) Diameter > 2–4 mm
Score 4: 85 (28.3%) Diameter > 4–8 mm
Score 5: 61 (20.3%) Diameter > 8 mm

1 Lesion classification performed according to Estrela et al. [20] .

Table 3. Distribution of lesions over periapical index scores for each tooth group.

Periapical 1 2 3 4 5 TotalIndex Score

Third molars 3 (27.3%) 4 0 2 2 11
Second molars 4 ( 6.0%) 12 9 20 22 67
First molars 3 ( 3.5%) 17 19 25 21 85
Second premolars 6 (14.0%) 9 10 14 4 43
First premolars 2 ( 5.7%) 9 11 8 5 35
Canines 1 ( 7.7%) 3 4 2 3 13
Lateral incisors 3 (21.4%) 1 4 4 2 14
Central incisors 6 (18.8%) 4 10 10 2 32
Total 28 (9.3%) 59 67 85 61 300

2.4. Automatic PAL Detection

To facilitate the evaluation of the CNNs’ performances on the newly collected dataset,
we have developed a user-friendly Windows software program. The program incorporates
the PAL-detection method proposed in [32] and includes a graphical user interface built
using the tkinter library in Python. This interface eliminates the need for any programming
operations, thus simplifying the evaluation process and hiding the details of the software
for the purpose of this independent evaluation. The user can select the CBCT image to
be processed and choose the specific jaw they want to investigate. The software then
creates a segmentation map of the detected lesions in the CBCT input image and saves it
automatically. The time required to generate a segmentation map depends on the GPU used.
Here, we utilized the Asus GeForce® GTX 1660 Ti 6GB TUF Gaming EVO OC graphics
card, and the generation of a segmentation map took at most 3 min.

The PAL-detection method [32] integrated into the software consists of three main
steps, as illustrated in Figure 1. First, the SpatialConfiguration-Net (SCN) [37] is trained
to predict the 3D coordinates of teeth in the original images at a lower resolution. The
original image is resized to a fixed aspect ratio of [64, 64, 32] before being input into the
SCN. The resulting teeth locations are then utilized to crop the input image for each present
tooth, where the center coordinates of the cropped images correspond to the predicted
coordinates of teeth. Each cropped image is resampled using trilinear interpolation and
an isotropic voxel size of 0.4 mm and has a size of [64, 64, 64]. Finally, these cropped
images are fed into a modified U-Net, trained to generate binary segmentation maps that
visualize the detected periapical lesions for individual teeth. The SCN and the U-Net were
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trained and tested on a dataset consisting of 144 CBCT images, with 2128 present teeth
and 206 manually annotated periapical lesions. Within that dataset, there were 54 images
of the lower jaw, 74 images of the upper jaw, and 16 images of both jaws. The method
underwent a four-fold cross-validation, where the dataset was divided into four subsets
of equal sizes, and the teeth with lesions were uniformly distributed over the folds. Each
fold involved training on the three subsets and testing on the single remaining subset. As
a result, four different trained models were obtained, with each model being trained on
108 images and tested on 36 different images. The models were trained in such a manner
that the imbalance between positive and negative samples, i.e., cases with and without
lesions, did not affect their performances. The training and testing procedures were
performed using an Intel(R) CPU 920 with an NVIDIA GeForce GTX TITAN X on the
Ubuntu 20.04 operating system with Python 3.7 and TensorFlow 1.15.0. The SCN required
approximately 20 h for training per cross-validation fold, while the modified U-Net took
approximately 17 h. For additional details on the network’s architecture, training/testing
procedure, and prediction performance, we refer to [32,38].
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Figure 1. Method overview: First, the SpatialConfiguration-Net (SCN) is utilized to generate the
locations of teeth in a given CBCT image. These locations are then used to crop the input image
for each tooth, ensuring that the center coordinate of each cropped image matches the predicted
coordinate of the corresponding tooth. In the second stage, the cropped images are fed into a modified
U-Net, which generates binary segmentation maps that visualize detected lesions in these cropped
images. Lastly, the binary segmentation maps are resampled and merged to create a full segmentation
map that visualizes all detected lesions in the input CBCT image.

The software used in this study utilizes one of the four pre-trained models from [32] 150

to evaluate lesion detection performance of the model on a new, independent dataset 151

consisting of 195 CBCT images. The dataset used in this study is a pure test dataset that the 152
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detection method or to tune its hyperparameters. Before generating the final output image, 154

the software applies an additional post-processing step, as illustrated in the bottom row 155

of Figure 1. After the PAL detection method generates binary segmentation maps for the 156

cropped teeth images, we implement a resampling and merging procedure to create a full 157
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achieve this, first a blank segmentation map of the identical size and spacing as the original 159

image is generated. Subsequently, the original input image and the blank segmentation 160
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coordinates obtained from the SCN, which were used for cropping the images, are also 162

transformed using the spacing of the cropped images. These transformed coordinates 163

determine the regions where the predicted binary segmentation maps are copied. Finally, 164

the full segmentation map containing the detected lesions is resampled back to match the 165

size and spacing of the original image. 166

2.5. Expert Assessment of Software PAL Detections 167

After applying the automatic PAL detection software (based on the pre-trained model 168

from [32]) to the new dataset, lesion segmentation results were assessed in consensus by 169

Figure 1. Method overview: First, the SpatialConfiguration-Net (SCN) is utilized to generate the
locations of teeth in a given CBCT image. These locations are then used to crop the input image
for each tooth, ensuring that the center coordinate of each cropped image matches the predicted
coordinate of the corresponding tooth. In the second stage, the cropped images are fed into a modified
U-Net, which generates binary segmentation maps that visualize detected lesions in these cropped
images. Lastly, the binary segmentation maps are resampled and merged to create a full segmentation
map that visualizes all detected lesions in the input CBCT image.

The software used in this study utilizes one of the four pre-trained models from [32]
to evaluate the lesion detection performance of the model on a new, independent dataset
consisting of 195 CBCT images. The dataset used in this study is a pure test dataset that the
model has not seen before, i.e., its images have not been used during training of the PAL-
detection method or to tune its hyperparameters. Before generating the final output image,
the software applies an additional post-processing step, as illustrated in the bottom row
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of Figure 1. After the PAL-detection method generates binary segmentation maps for the
cropped teeth images, we implement a resampling and merging procedure to create a full
segmentation map that includes detected lesions for all teeth within the original image. To
achieve this, first, a blank segmentation map of the identical size and spacing as the original
image is generated. Subsequently, the original input image and the blank segmentation
map are resampled to match the spacing of the cropped images. The predicted teeth
coordinates obtained from the SCN, which were used for cropping the images, are also
transformed using the spacing of the cropped images. These transformed coordinates
determine the regions where the predicted binary segmentation maps are copied. Finally,
the full segmentation map containing the detected lesions is resampled back to match the
size and spacing of the original image.

2.5. Expert Assessment of Software PAL Detections

After applying the automatic PAL-detection software (based on the pre-trained model
from [32]) to the new dataset, lesion segmentation results were assessed in consensus
by two of the three dental investigators (one senior, one junior), who first did the expert
ground-truth annotation. For assessment, they used the ITK-SNAP software [39] and
loaded the CBCT volume as well as the corresponding resampled lesion segmentation
for visualization. Investigators marked the segmentation results, which were defined as
regions of at least one voxel in size, as true or false positives on the level of individual
teeth. As soon as the segmentation affected two or more neighboring teeth, all of those
teeth were noted to have a CNN-detected PAL. Furthermore, segmentations that were lying
in areas far away from the periapical regions, within nerve channels, pulp chambers of
impacted teeth, or even outside the alveolar crest were also documented and detected as
false positives.

2.6. Statistical Analysis

To evaluate the algorithm’s performance in identifying PALs, sensitivity and specificity
metrics are used, comparing positive and negative detections with the expert ground truth.
Sensitivity (recall) measures the method’s accuracy in identifying the presence of lesions,
while specificity measures its ability to correctly identify the absence of lesions. Sensitivity
and specificity with their corresponding exact 95% confidence intervals (CIs) are presented
for all teeth and stratified by upper/lower jaw and tooth type. Non-inferiority tests were
performed using one-sided binomial tests with an alpha of 2.5%. Differences in sensitivity
and specificity between lower and upper jaws were assessed by Fisher’s exact tests. For
statistical analysis, SAS version 9.4 was used.

3. Results

From Table 4, it can be seen that the overall sensitivity of the deep learning-based
lesion detection approach evaluated on all present teeth was 86.7% (95% CI: 82.3–90.3%)
when compared with the expert-derived ground truth. The specificity of the software was
84.3% (95% CI: 82.8–85.6%). The null hypothesis of inferiority of the software with respect
to sensitivity could not be rejected (p = 0.975), while the null hypothesis of inferiority with
respect to specificity could be rejected (p = 0.001). In our dataset consisting of images,
where either one or both jaws were available, any of the jaws could have missing teeth. Out
of a total of 669 missing teeth, the software found 42 false positive (6.3%) lesion predictions,
while 627 missing teeth were correctly identified as negatives (93.7%). The confusion
matrices of the overall results for present teeth, as well as for present and missing teeth
combined, are given in Tables 5 and 6.
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Table 4. Lesion detection results. We show sensitivities and specificities including confidence intervals
(CIs) for all present teeth in three result categories: overall for all teeth, stratified by jaws, and stratified
by tooth type (combining jaws).

Category Lesion count Sensitivity
(%) 95% CI Exact Specificity

(%) 95% CI Exact

Overall 300 86.67 82.29–90.30% 84.25 82.80–85.61%

Upper jaw 196 87.76 82.33–91.99% 82.31 80.21–84.27%
Lower jaw 104 84.62 76.22–90.94% 86.43 84.40–88.28%

Third molars 11 63.64 30.79–89.07% 81.61 75.04–87.07%
Second molars 67 91.04 81.52–96.64% 70.59 64.97–75.78%
First molars 85 91.76 83.77–96.62% 70.51 64.22–76.28%
Second premolars 43 88.37 74.92–96.11% 81.63 77.03–85.64%
First premolars 35 82.86 66.35–93.44% 87.37 83.60–90.54%
Canines 13 69.23 38.57–90.91% 89.70 86.41–92.41%
Lateral incisors 14 64.29 35.14–87.24% 92.68 89.72–95.01%
Central incisors 32 90.63 74.98–98.02% 88.03 84.44–91.04%

Table 5. Confusion matrix of lesion detection for present teeth.

Predicted condition

Lesion Non-lesion Total

A
ct

ua
lc

on
di

ti
on

Lesion 260 40 300

Non-lesion 417 2230 2647

Total 677 2270 2947

Table 6. Confusion matrix of lesion detection for present and missing teeth combined.

Predicted condition

Lesion Non-lesion Total

A
ct

ua
lc

on
di

ti
on

Lesion 260 40 300

Non-lesion 459 2857 3316

Total 719 2897 3616

Table 4 also illustrates individual lesion detection results stratified per jaw. For the
upper jaw (N = 125 patients with a total of 1598 present teeth), the sensitivity is 87.8%
(95% CI: 82.3–92.0%), and the specificity is 82.3% (95% CI: 80.2–84.3%). For the lower
jaw (N = 101 patients with a total of 1349 present teeth), the sensitivity is 84.6% (95% CI:
76.2–90.9%), and the specificity is 86.4% (95% CI: 84.4–88.3%). The difference in sensitivity
between the upper jaw and lower jaw is 3.2% (95% CI: −5.2–11.5%). This difference is not
significant according to Fisher’s exact test when comparing the two jaws (p = 0.478). The
difference in specificity between the upper jaw and lower jaw is −4.1% (95% CI: −6.9–1.4%),
which is significant (p = 0.004) according to Fisher’s exact test.

Moreover, we illustrate lesion detection results stratified per tooth type (combined for
both jaws) in Table 4. Sensitivities are below 70% for the three categories where also the
total number of lesions was comparatively lower (third molars, canines, lateral incisors).
On the other hand, for the remaining five tooth categories, the average sensitivity is 88.9%.

Finally, we analyze the lesion detection results with respect to lesion classifications
(periapical index scores according to Estrela et al. [20]). In Figure 2, we plot a histogram of
true positives and false negatives per lesion type, illustrating that for the smallest lesion
type (class 1, with a diameter of periapical radiolucency between 0.5 and 1 mm), the
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sensitivity is low, while for classes 2 through 5 (diameters of periapical radiolucency larger
than 1 mm, see also Table 2), the sensitivities are much higher.

Exemplary qualitative results of the software are shown in Figure 3.
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Figure 2. Distribution of predicted lesions across different periapical index scores according to
Estrela et al. [20]. Blue bins represent true positive (TP) predictions, while red bins represent false
negative (FN) predictions for a specific periapical index score.

Input Prediction Input Prediction

(a)

(b)

(d)

(e)

(f)(c)

Figure 3. Qualitative results: (a) Two true positive (TP) lesions are detected at the second premolar
and the first molar, and one false positive (FP) lesion is identified at the second molar in the upper jaw.
(b) One TP lesion is found at the second molar in the upper jaw at a challenging location close to the
sinus. (c) One TP lesion is detected at the first molar in the lower jaw. (d) One TP lesion is identified
at the second premolar, along with one FP lesion at the mental nerve in the lower jaw. (e) One FP
lesion is observed at the anterior tooth position in the upper jaw due to artifacts at an implant site.
(f) One FP lesion is detected at the first premolar in the upper jaw (close to the sinus). The qualitative
results are best visualized in PDF format.
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4. Discussion

Recent machine learning methods, especially deep neural networks for assisting
experts in the detection and segmentation of lesions in medical imaging data, have shown
tremendous success, but they struggle with issues due to a lack of generalization to datasets
from clinical practice [35]. We have performed a thorough evaluation and non-inferiority
testing of a recently published algorithm for automated periapical lesion segmentation
from dental CBCT images [32]. This algorithm was hidden behind a graphical user interface
that solely produced a lesion segmentation given an input image from the new, single-
use testing dataset used in this study. The dataset comprises 196 subjects with images
of adult upper and lower jaws, including tooth gaps, dental restorations, implants, and
impacted third molars (see Table 1). Additionally, the new dataset was obtained with a
specific criterion that allowed the inclusion of up to 11 missing teeth per jaw. This led to a
significantly higher number of missing teeth compared to the dataset in [32], where the aim
was to include jaws with a minimal number of missing teeth. Thus, our new evaluation
dataset reflects the presence of challenging circumstances in clinical practice. Moreover,
our evaluation protocol was very strict in defining false positive findings, since one false
positive (FP) voxel in the segmentation had already led to an FP prediction (see Figure 3a),
thus imposing a hard but realistic scenario for the algorithm.

The algorithm could be successfully applied to present and missing teeth from
195 subjects, i.e., 99.5% of subjects in the total dataset. Our main result is a sensitivity
of 86.7% and a specificity of 84.3% in detecting PALs at present teeth. The non-inferiority
tests, which were designed upon sensitivity and specificity estimates derived from the
proof of concept evaluation in [32], provided enough evidence to reject the null hypothesis
for specificity but did not do so for sensitivity. Despite this drop in sensitivity, we still
consider our absolute performance on this challenging dataset as very promising (see
also our qualitative results in Figure 3a–c), since both the sensitivity and specificity are
better than the threshold of 80%, which, according to the systematic review in [24], can
be interpreted as the threshold indicating excellent results. One of the reasons for false
positives occurring might be that some lesions are located close to the incisive, the inferior
alveolar, and the mental nerve, as illustrated in Figure 3d. Furthermore, artifacts in general,
caused by root canal fillings or dental implants potentially pose problems for the deep
CNN (see Figure 3e). We also studied the algorithm’s performance at missing teeth and
found that the overall specificity for present and missing teeth combined increases from
84.3% to 86.2% (see confusion matrix in Table 6).

Regarding the related work for automated detection of PALs in CBCT images, only a
limited number of studies have been published. Zheng et al. [28] proposed an anatomically
constrained Dense U-Net model, which they evaluated on 20 CBCT images, obtaining
a sensitivity of 84.0% and a precision of 90.0% in a root-based evaluation. In addition,
Orhan et al. [29] used a U-Net-based model to evaluate PAL detection in CBCT images and
achieved a sensitivity of 92.8%. Setzer et al. [27] evaluated a U-Net-based model on 2D
slices from 20 CBCT images and achieved a sensitivity of 93.0% and a specificity of 88.0% in
PAL detection. Recently, Calazans et al. [34] proposed a classification model based on a 2D
Siamese Network combined with a DenseNet-121 CNN [40]. Their model was evaluated
on 1000 coronal and sagittal slices extracted from CBCT images and achieved a sensitivity
of 64.5% and a specificity of 75.8% in classifying PALs.

Comparing our study with those conducted by Zheng et al. [28] and Orhan et al. [29]
is difficult due to the lack of reported specificities and details regarding negative class
examples in their research. Relying on the precision metric for comparison may be mislead-
ing since our dataset is highly imbalanced, whereas their datasets have a well-balanced
distribution that does not reflect real-world clinical scenarios. The precision metric is sensi-
tive to class distribution, making it less suitable in this context. In terms of sensitivity and
specificity, our study outperforms the results of Calazans et al. [34], as they report a higher
number of false negatives and false positives. While our sensitivity and specificity results
are lower than those of the closely related and best-performing work by Setzer et al. [27],



J. Clin. Med. 2024, 13, 197 10 of 13

it is important to note that their evaluation solely consisted of 20 CBCT test images with
61 roots. Therefore, we claim that our evaluation protocol is more strict than theirs, due to
our extensive single-use testing dataset collected from clinical practice. Furthermore, many
of these works use models trained on 2D slices, thus neglecting valuable 3D information.

In CBCT imaging, PALs are often not the primary clinical question, however, secondary
PAL findings occur frequently, and, furthermore, they have to be documented by dentists
who are often not radiological experts or may not have sufficient time to assess the CBCT
images in great detail. In such cases, the help of an algorithm is invaluable to prevent
findings from being overlooked, even at the cost of a larger number of false positives,
which, however, can be ruled out comparatively straightforwardly, either visually or via
additional clinical assessment of the respective tooth.

To study our evaluation results in more detail, we also analyze different stratifications
of the testing dataset. While collecting the expert ground truth of the lesions, a lesion
classification of lesion diameters into five different periapical index score categories [20]
was used. We see from Figure 2 that for lesion classes 2 through 5 (lesions with diameters
larger than 1 mm), the algorithm leads to few false negatives, i.e., high recall, while for
lesion class 1 (lesions between 0.5 and 1 mm of diameter), 50% of the lesions in our dataset
were missed. From a radiological point of view, such small lesions are generally challenging
to detect, which was previously reported by Tsai et al. [41] when studying simulated lesions
in vitro on radiographs and CBCTs. If we use the lesion class stratification to compute
the sensitivity solely for lesion classes 2 through 5, it reaches 90.4% (95% CI: 86.3–93.7%),
which we consider to be a meaningful recall in clinical practice, such that the use of the
algorithm can be suggested for lesions of sizes larger than 1 mm.

Another stratification that we investigated was from the anatomical point of view. Our
results indicate that the algorithm provides a significantly higher specificity for teeth in
the lower jaw, while the sensitivity difference between the lower and upper jaw was not
statistically significant. We assume that this decrease in false positive findings for the lower
jaw is due to its better radiological assessability compared with the upper jaw since the
contrast between radiolucent lesions and alveolar bone or teeth is higher in the lower jaw
(see Figure 3a (at the second molar), c and d). Moreover, teeth in the upper jaw are located
close to the maxillary sinus, such that the thin bony maxillary sinus floor or potential sinus
membrane alterations might lead to confusion for the algorithm (see Figure 3b,f).

When looking at different tooth categories in Table 4, where teeth are assessed for
both jaws combined, we notice that there are three tooth groups for which sensitivity is
lower (below 70%), i.e., wisdom teeth (3rd molars), canines, and lateral incisors. Wisdom
teeth are rarer in the population in general since many of them are removed when reaching
adulthood or never show up. This is also reflected in our dataset, thus leading to a low
number of lesions as well (see Table 4). Moreover, different from lateral incisors and canines,
molars are the teeth most affected by PALs, according to [42]. Due to the lower number
of lesions in the abovementioned three tooth groups (see Table 4 for numbers of lesions),
false negatives have a larger relative influence. Additionally, class 1 lesions of a smaller
diameter are more strongly represented in two out of these three tooth categories in our
dataset (third molars, lateral incisors, see Table 3). We assume that the combination of these
aspects leads to the lower sensitivity, while the average sensitivity of the remaining five
tooth categories, where a larger number of lesions is present in each category, is 88.9%.

One limitation of our study is that the dataset collection for this evaluation was
performed at the same hospital as in [32]. While the focus was on the evaluation of
generalizability via the inclusion of challenging data representative for clinical practice,
we can therefore not draw any conclusions regarding generalizing to data from different
sites. Moreover, the impact of anatomic variability due to differences in ethnicities, as, e.g.,
demonstrated in [43], regarding the occurrence of radix entomolaris in an Asian population,
has not been taken into account. Another limitation was that our testing dataset only
contained a low number of lesions of periapical lesion index score 1. We conclude that in
order to improve the algorithm and to draw stronger conclusions for small lesions as well,
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a re-training of the machine learning method on more data with the class 1 lesion diameter
is required, which we see as potential future work.

In summary, we see our results as a very promising indication that machine learning
can play an important role in assisting experts in dental practice, where high recall is
needed to prevent overlooked findings.

5. Conclusions

In this validation study, we performed a thorough evaluation and non-inferiority test
of the periapical lesion (PAL)-detection algorithm proposed in [32] using a new, real-world
clinical CBCT dataset. Despite the presence of challenging scenarios in the dataset, such
as dental restorations, implants, and impacted third molars, the algorithm demonstrated
promising results in accurately detecting PALs. Our evaluation covered all present teeth in
the dataset and yielded a sensitivity of 86.7% and a specificity of 84.3% when compared with
expert ground truth. The non-inferiority test rejected the null hypothesis for specificity for
the non-inferiority threshold of 82%, but it did not reject the null hypothesis for sensitivity
for the non-inferiority threshold of 90%. We also found that for lesions smaller than 1 mm,
the sensitivity was low. However, when evaluating solely on lesions with periapical index
scores 2 through 5, the sensitivity increased to 90.4%, thus indicating that the algorithm
has the potential to assist clinicians to prevent overlooked lesions with a diameter above
1 mm. Overall, we conclude that the algorithm is promising but not yet fully robust to all
the artifacts and outliers that were present in this clinically representative dataset.
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