Prognostic Value of the Area of Lung Involved in Severe and Non-Severe Bronchiolitis: An Observational, Ultrasound-Based Study
Abstract
:1. Introduction
2. Methods
2.1. Population
2.2. Lung Ultrasound
2.3. Statistical Analysis
3. Results
3.1. Lung Ultrasound Scores
3.2. Logistic Regression for the Outcome PICU
3.3. Logistic Regression for the Outcome HFNC
3.4. Logistic Regression for the Outcome CPAP
3.5. Linear Regression for the Outcome Total Score
3.6. Superior and Inferior Lung Areas
3.7. Posterior, Lateral and Anterior Lung Areas
4. Discussion
5. Limitations and Strengths
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; D’Amore, C.; Romani, L.; Tripiciano, C.; Clemente, V.; Mercadante, S.; Perrotta, D.; Nunziata, J.; Cecchetti, C.; Rossetti, E.; et al. Severe viral respiratory infections in the pre-COVID era: A 5-year experience in two pediatric intensive care units in Italy. Influenza Resp. Viruses 2023, 17, e13038. [Google Scholar] [CrossRef] [PubMed]
- Caiulo, V.A.; Gargani, L.; Caiulo, S.; Fisicaro, A.; Moramarco, F.; Latini, G.; Picano, E. Lung ultrasound in bronchiolitis: Comparison with chest X-ray. Eur. J. Pediatr. 2011, 170, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Basile, V.; Di Mauro, A.; Scalini, E.; Comes, P.; Lofù, I.; Mostert, M.; Tafuri, S.; Manzionna, M.M. Lung ultrasound: A useful tool in diagnosis and management of bronchiolitis. BMC Pediatr. 2015, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Abdel Kader, M.; Abou Samra, M.F.; Abdel Aal, S.M.S.; Shehata, N.; Khalifa, A. The utility of lung ultrasound in evaluation of infants with suspected bronchiolitis. Egypt. J. Radiol. Nucl. Med. 2016, 47, 1057–1064. [Google Scholar] [CrossRef]
- Gori, L.; Amendolea, A.; Buonsenso, D.; Salvadori, S.; Supino, M.C.; Musolino, A.M.; Adamoli, P.; Coco, A.D.; Trobia, G.L.; Biagi, C.; et al. Prognostic Role of Lung Ultrasound in Children with Bronchiolitis: Multicentric Prospective Study. JCM 2022, 11, 4233. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Musolino, A.M.; Gatto, A.; Lazzareschi, I.; Curatola, A.; Valentini, P. Lung ultrasound in infants with bronchiolitis. BMC Pulm. Med. 2019, 19, 159. [Google Scholar] [CrossRef]
- Supino, M.C.; Buonsenso, D.; Scateni, S.; Scialanga, B.; Mesturino, M.A.; Bock, C.; Chiaretti, A.; Giglioni, E.; Reale, A.; Musolino, A.M. Point-of-care lung ultrasound in infants with bronchiolitis in the pediatric emergency department: A prospective study. Eur. J. Pediatr. 2019, 178, 623–632. [Google Scholar] [CrossRef]
- Bueno-Campaña, M.; Sainz, T.; Alba, M.; del Rosal, T.; Mendez-Echevarría, A.; Echevarria, R.; Tagarro, A.; Ruperez-Lucas, M.; Herrreros, M.L.; Latorre, L.; et al. Lung ultrasound for prediction of respiratory support in infants with acute bronchiolitis: A cohort study. Pediatr. Pulmonol. 2019, 54, 873–880. [Google Scholar] [CrossRef]
- Zoido Garrote, E.; García Aparicio, C.; Camila Torrez Villarroel, C.; Pedro Vega García, A.; Muñiz Fontán, M.; Oulego Erroz, I. Utilidad de la ecografía pulmonar precoz en bronquiolitis aguda leve-moderada: Estudio piloto. An. Pediatría 2019, 90, 10–18. [Google Scholar] [CrossRef]
- Varshney, T.; Mok, E.; Shapiro, A.J.; Li, P.; Dubrovsky, A.S. Point-of-care lung ultrasound in young children with respiratory tract infections and wheeze. Emerg. Med. J. 2016, 33, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Guitart, C.; Rodríguez-Fanjul, J.; Bobillo-Perez, S.; Carrasco, J.L.; Inarejos Clemente, E.J.; Cambra, F.J.; Balaguer, M.; Jordan, I. An algorithm combining procalcitonin and lung ultrasound improves the diagnosis of bacterial pneumonia in critically ill children: The PROLUSP study, a randomized clinical trial. Pediatr. Pulmonol. 2022, 57, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Poddar, B.; Neyaz, Z.; Patnaik, R.; Baronia, A.K.; Singh, R.K. Incorporating Lung Ultrasound in Clinical Pulmonary Infection Score as an Added Tool for Diagnosing Ventilator-associated Pneumonia: A Prospective Observational Study from a Tertiary Care Center. Indian. J. Crit. Care Med. 2021, 25, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Camporesi, A.; Morello, R.; Guzzardella, A.; Pierucci, U.M.; Izzo, F.; De Rose, C.; Buonsenso, D. A combined rapid clinical and lung ultrasound score for predicting bronchiolitis severity. Intensiv. Care Med. Paediatr. Neonatal 2023, 1, 14. [Google Scholar] [CrossRef]
- de la Oliva, P.; Cambra-Lasaosa, F.J.; Quintana-Díaz, M.; Rey-Galán, C.; Sánchez-Díaz, J.I.; Martín-Delgado, M.C.; de Carlos-Vicente, J.C.; Hernandez-Rastrollo, R.; Holanda-Peña, M.S.; Pilar-Orive, F.J.; et al. Admission, discharge and triage guidelines for paediatric intensive care units in Spain. An. Pediatría 2018, 88, 287-e1. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, D.A.; Mezière, G.A. Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure*: The BLUE Protocol. Chest 2008, 134, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Amendolea, A.; Gori, L.; Adamoli, P.; Limoli, G.; Supino, M.C.; Coco, A.D.; Trobia, G.L.; Tursi, F.; Soldati, G.; Buonsenso, D.; et al. Pleuropulmonary Ultrasound in Pediatrics: Proposal of a Reporting Model from the Academy of Thoracic Ultrasound. J. Ultrasound Med. 2022, 41, 2637–2641. [Google Scholar] [CrossRef] [PubMed]
- Glenny, R.W. Determinants of regional ventilation and blood flow in the lung. Intensive Care Med. 2009, 35, 1833–1842. [Google Scholar] [CrossRef]
- Hubmayr, R.D.; Rodarte, J.R.; Walters, B.J.; Tonelli, F.M. Regional ventilation during spontaneous breathing and mechanical ventilation in dogs. J. Appl. Physiol. 1987, 63, 2467–2475. [Google Scholar] [CrossRef]
- Marcucci, C.; Nyhan, D.; Simon, B.A. Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J. Appl. Physiol. 2001, 90, 421–430. [Google Scholar] [CrossRef]
- Kreck, T.C.; Krueger, M.A.; Altemeier, W.A.; Sinclair, S.E.; Robertson, H.T.; Shade, E.D.; Hildebrandt, J.; Lamm, W.J.; Frazer, D.A.; Polissar, N.L.; et al. Determination of regional ventilation and perfusion in the lung using xenon and computed tomography. J. Appl. Physiol. 2001, 91, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.G.; Kaye, S.R. On the asymmetry of bifurcations in the bronchial tree. Respir. Physiol. 1997, 107, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.A. Design of the Bronchial Tree. Nature 1967, 213, 668–669. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.; Rüegger, C.M.; Perkins, E.J.; Pereira-Fantini, P.M.; Farrell, O.; Owen, L.S.; Tingay, D.G. Regional ventilation characteristics during non-invasive respiratory support in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Tingay, D.G.; Waldmann, A.D.; Frerichs, I.; Ranganathan, S.; Adler, A. Electrical Impedance Tomography Can Identify Ventilation and Perfusion Defects: A Neonatal Case. Am. J. Respir. Crit. Care Med. 2019, 199, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Soldati, G.; Demi, M.; Smargiassi, A.; Inchingolo, R.; Demi, L. The role of ultrasound lung artifacts in the diagnosis of respiratory diseases. Expert. Rev. Respir. Med. 2019, 13, 163–172. [Google Scholar] [CrossRef]
- Demi, M.; Buda, N.; Soldati, G. Vertical Artifacts in Lung Ultrasonography: Some Common Clinician Questions and the Related Engineer Answers. Diagnostics 2022, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Supino, M.C.; Giglioni, E.; Battaglia, M.; Mesturino, A.; Scateni, S.; Scialanga, B.; Reale, A.; Musolino, A.M. Point of care diaphragm ultrasound in infants with bronchiolitis: A prospective study. Pediatr. Pulmonol. 2018, 53, 778–786. [Google Scholar] [CrossRef]
- Cohen, J.S.; Hughes, N.; Tat, S.; Chamberlain, J.M.; Teach, S.J.; Boniface, K. The Utility of Bedside Lung Ultrasound Findings in Bronchiolitis. Pediatr. Emerg. Care 2017, 33, 97–100. [Google Scholar] [CrossRef]
- Hough, J.L.; Johnston, L.; Brauer, S.G.; Woodgate, P.G.; Pham, T.M.T.; Schibler, A. Effect of body position on ventilation distribution in preterm infants on continuous positive airway pressure. Pediatr. Crit. Care Med. 2012, 13, 446–451. [Google Scholar] [CrossRef]
- Greene, R. Acute lobar collapse: Adults and infants differ in important ways. Crit. Care Med. 1999, 27, 1677–1679. [Google Scholar] [CrossRef] [PubMed]
- Moylan, F.M.; Shannon, D.C. Preferential distribution of lobar emphysema and atelectasis in bronchopulmonary dysplasia. Pediatrics 1979, 63, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; Habibi, P.; Britto, J.; Owens, C.M. Distribution and pathophysiology of acute lobar collapse in the pediatric intensive care unit. Crit. Care Med. 1999, 27, 1594–1597. [Google Scholar] [CrossRef] [PubMed]
- Bastir, M.; García Martínez, D.; Recheis, W.; Barash, A.; Coquerelle, M.; Rios, L.; Peña-Melián, A.; Río, F.G.; O’higgins, P. Differential Growth and Development of the Upper and Lower Human Thorax. PLoS ONE 2013, 8, e75128. [Google Scholar] [CrossRef]
- Schinckel, N.F.; Hickey, L.; Perkins, E.J.; Pereira-Fantini, P.M.; Koeppenkastrop, S.; Stafford, I.; Dowse, G.; Tingay, D.G. Skin-to-skin care alters regional ventilation in stable neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 76–80. [Google Scholar] [CrossRef]
- Buonsenso, D.; Soldati, G.; Curatola, A.; Morello, R.; De Rose, C.; Vacca, M.E.; Lazzareschi, I.; Musolino, A.M.; Valentini, P. Lung Ultrasound Pattern in Healthy Infants During the First 6 Months of Life. J. Ultrasound Med. 2020, 39, 2379–2388. [Google Scholar] [CrossRef]
Total | No PICU | PICU | p Value | |
---|---|---|---|---|
N = 173 | N = 118 | N = 55 | ||
Male sex | 90 (52.3%) | 61 (52.1%) | 29 (52.7%) | 0.94 |
Age (mo) | 2.1 (1.0–5.0) | 2.2 (1.0–5.0) | 2.0 (1.0–6.4) | 0.86 |
Prematurity | 23(13.3%) | 12(10.2%) | 11(20.0%) | 0.076 |
Recent COVID | 2 (2%) | 0 (0%) | 2 (7%) | 0.041 |
Symptom duration (Hours) | 72.3 (49.8) | 68.4 (42.6) | 80.9 (62.1) | 0.13 |
First episode | 152 (87.9%) | 109 (92.4%) | 43 (78.2%) | 0.008 |
Rhinorrhea | 161 (93.1%) | 118 (100.0%) | 43 (78.2%) | <0.001 |
Difficulty in feeding | 132 (76.3%) | 80 (67.8%) | 52 (94.5%) | <0.001 |
Home therapy | 36 (23.4%) | 29 (24.6%) | 7 (19.4%) | 0.52 |
Symptoms and signs | ||||
Crackles | 160 (92.5%) | 115 (97.5%) | 45 (81.8%) | <0.001 |
Wheeze | 40 (23.1%) | 15 (12.7%) | 25 (45.5%) | <0.001 |
Retractions | 157 (90.8%) | 102 (86.4%) | 55 (100.0%) | 0.004 |
Fever | 65 (37.6%) | 44 (37.3%) | 21 (38.2%) | 0.91 |
SpO2 | <0.001 | |||
≥96% | 48 (27.7%) | 41 (34.7%) | 7 (12.7%) | |
93–95% | 39 (22.5%) | 30 (25.4%) | 9 (16.4%) | |
<92% | 85 (49.1%) | 47 (39.8%) | 38 (69.1%) | |
Missing | 1 (0.6%) | 0 (0.0%) | 1 (1.8%) | |
RSV | 125 (82.8%) | 82 (84.5%) | 43 (79.6%) | 0.44 |
Multiple Viruses | 41 (35.0%) | 32 (38.6%) | 9 (26.5%) | 0.21 |
Treatments | ||||
Oxygen (low flow) | 138 (80.2%) | 87 (73.7%) | 51 (94.4%) | 0.002 |
Antibiotics | 54 (31.2%) | 22 (18.6%) | 32 (58.2%) | <0.001 |
Hypertonic saline | 8 (4.6%) | 3 (2.5%) | 5 (9.1%) | 0.056 |
Bronchodilators | 50 (28.9%) | 17 (14.4%) | 33 (60.0%) | <0.001 |
Steroids | 52 (30.2%) | 16 (13.6%) | 36 (66.7%) | <0.001 |
Epinephrine, nebulized | 18 (10.4%) | 2 (1.7%) | 16 (29.1%) | <0.001 |
HFNC | 89 (51.4%) | 48 (40.7%) | 41 (74.5%) | <0.001 |
CPAP | 52 (30.1%) | 1 (0.8%) | 51 (92.7%) | <0.001 |
IMV | 3 (1.7%) | 0 (0.0%) | 3 (5.5%) | 0.010 |
CXR | 66 (39.1%) | 19 (16.2%) | 47 (90.4%) | <0.001 |
Total | No PICU | PICU | p-Value | |
---|---|---|---|---|
N = 173 | N = 118 | N = 55 | ||
Right Anterior Inferior | 1.0 (0.0–3.0) | 1.0 (0.0–2.0) | 1.0 (1.0–3.0) | 0.004 |
Right Anterior Superior | 1.0 (0.0–3.0) | 1.0 (0.0–2.0) | 2.0 (1.0–3.0) | <0.001 |
Left Anterior Inferior | 1.0 (0.0–2.0) | 1.0 (0.0–2.0) | 2.0 (1.0–3.0) | 0.002 |
Left Anterior Superior | 1.0 (0.0–2.0) | 0.0 (0.0–1.0) | 1.5 (0.0–2.0) | <0.001 |
Right Lateral Inferior | 1.0 (0.0–2.0) | 0.0 (0.0–1.0) | 1.0 (1.0–2.0) | <0.001 |
Right Lateral Superior | 1.0 (0.0–2.0) | 0.0 (0.0–1.0) | 2.0 (1.0–2.0) | <0.001 |
Left Lateral Inferior | 1.0 (0.0–3.0) | 0.0 (0.0–2.0) | 1.5 (1.0–3.0) | <0.001 |
Left Lateral Superior | 1.0 (0.0–2.0) | 0.0 (0.0–1.0) | 2.0 (1.0–2.5) | <0.001 |
Right Posterior Inferior | 2.0 (1.0–3.0) | 2.0 (0.0–3.0) | 2.0 (1.0–3.0) | 0.17 |
Right Posterior Superior | 3.0 (1.0–3.0) | 2.0 (1.0–3.0) | 3.0 (2.0–3.0) | 0.018 |
Left Posterior Inferior | 2.0 (1.0–3.0) | 1.0 (0.0–3.0) | 2.5 (1.0–3.0) | 0.012 |
Left Posterior Superior | 2.0 (1.0–3.0) | 2.0 (0.0–3.0) | 2.0 (2.0–3.0) | 0.017 |
Total Score | 17.0 (12.0–23.0) | 15.0 (9.0–20.0) | 22.5 (17.0–28.5) | <0.001 |
PICU | OR | p Value | 95% CI |
---|---|---|---|
Difficulty in feeding | 5.49 | 0.017 | 1.36–2.21 |
Wheeze | 12.9 | 0.000 | 4.34–38.35 |
SpO2 | 1.94 | 0.028 | 1.07–3.52 |
Total lung ultrasound score | 1.13 | 0.000 | 1.06–1.19 |
Total Score | Coefficient | p Value | 95% CI |
---|---|---|---|
Age (months) | −0.51 | 0.002 | −0.83–−0.019 |
Prematurity | 3.89 | 0.043 | 0.12–7.66 |
Rhinorrhea | −7.37 | 0.005 | −12.48–−2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camporesi, A.; Vetrugno, L.; Morello, R.; De Rose, C.; Ferrario, S.; Buonsenso, D. Prognostic Value of the Area of Lung Involved in Severe and Non-Severe Bronchiolitis: An Observational, Ultrasound-Based Study. J. Clin. Med. 2024, 13, 84. https://doi.org/10.3390/jcm13010084
Camporesi A, Vetrugno L, Morello R, De Rose C, Ferrario S, Buonsenso D. Prognostic Value of the Area of Lung Involved in Severe and Non-Severe Bronchiolitis: An Observational, Ultrasound-Based Study. Journal of Clinical Medicine. 2024; 13(1):84. https://doi.org/10.3390/jcm13010084
Chicago/Turabian StyleCamporesi, Anna, Luigi Vetrugno, Rosa Morello, Cristina De Rose, Stefania Ferrario, and Danilo Buonsenso. 2024. "Prognostic Value of the Area of Lung Involved in Severe and Non-Severe Bronchiolitis: An Observational, Ultrasound-Based Study" Journal of Clinical Medicine 13, no. 1: 84. https://doi.org/10.3390/jcm13010084
APA StyleCamporesi, A., Vetrugno, L., Morello, R., De Rose, C., Ferrario, S., & Buonsenso, D. (2024). Prognostic Value of the Area of Lung Involved in Severe and Non-Severe Bronchiolitis: An Observational, Ultrasound-Based Study. Journal of Clinical Medicine, 13(1), 84. https://doi.org/10.3390/jcm13010084