The Use of End-Tidal CO2 and Integrated Pulmonary Index to Predict Postspinal Hypotension in Cesarean Section
Abstract
:1. Introduction
2. Material Methods
Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klöhr, S.; Roth, R.; Hofmann, T.; Rossaint, R.; Heesen, M. Definitions of hypotension after spinal anaesthesia for caesarean section: Literature search and application to parturients. Acta Anaesthesiol. Scand. 2010, 54, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xu, T.; Zhao, P.; Ma, R.; Zhang, M.; Zheng, J. Differential Roles of the Right and Left Toe Perfusion Index in Predicting the Incidence of Postspinal Hypotension During Cesarean Delivery. Anesth. Analg. 2017, 125, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Ronen, M.; Weissbrod, R.; Overdyk, F.J.; Ajizian, S. Smart respiratory monitoring: Clinical development and validation of the IPI™ (Integrated Pulmonary Index) algorithm. J. Clin. Monit. Comput. 2017, 31, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Adıgüzel, Ş.C.; Akyurt, D.; Gullu Arslan, N.; Süren, M. The Effects of Magnesium Sulphate on Integrated Pulmonary Index Scores and Propofol Consumption During Endobronchial Ultrasonography: A Retrospective Study. Cureus 2023, 15, e44880. [Google Scholar] [CrossRef] [PubMed]
- Michael, F.A.; Peveling-Oberhag, J.; Herrmann, E.; Zeuzem, S.; Bojunga, J.; Friedrich-Rust, M. Evaluation of the Integrated Pulmonary Index® during non-anesthesiologist sedation for percutaneous endoscopic gastrostomy. J. Clin. Monit. Comput. 2021, 35, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Broens, S.J.L.; Prins, S.A.; de Kleer, D.; Niesters, M.; Dahan, A.; van Velzen, M. Postoperative respiratory state assessment using the Integrated Pulmonary Index (IPI) and resultant nurse interventions in the post-anesthesia care unit: A randomized controlled trial. J. Clin. Monit. Comput. 2021, 35, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.W.; Reeder, R.W.; Bender, D.; Cooper, K.K.; Friess, S.H.; Graham, K.; Meert, K.L.; Mourani, P.M.; Murray, R.; Nadkarni, V.M.; et al. Associations Between End-Tidal Carbon Dioxide During Pediatric Cardiopulmonary Resuscitation, CPR Quality, and Survival. Circulation 2023. [Google Scholar] [CrossRef]
- Eichlseder, M.; Eichinger, M.; Pichler, A.; Freidorfer, D.; Rief, M.; Zoidl, P.; Zajic, P. Out-of-Hospital Arterial to End-Tidal Carbon Dioxide Gradient in Patients with Return of Spontaneous Circulation After Out-of-Hospital Cardiac Arrest: A Retrospective Study. Ann. Emerg. Med. 2023, 82, 558–563. [Google Scholar] [CrossRef]
- Massoth, C.; Töpel, L.; Wenk, M. Hypotension after spinal anesthesia for cesarean section: How to approach the iatrogenic sympathectomy. Curr. Opin. Anaesthesiol. 2020, 33, 291–298. [Google Scholar] [CrossRef]
- Danelli, G.; Zangrillo, A.; Nucera, D.; Giorgi, E.; Fanelli, G.; Senatore, R.; Casati, A. The minimum effective dose of 0.5% hyperbaric spinal bupivacaine for cesarean section. Minerva Anestesiol. 2001, 67, 573–577. [Google Scholar]
- Kinsella, S.M.; Carvalho, B.; Dyer, R.A.; Fernando, R.; McDonnell, N.; Mercier, F.J.; Palanisamy, A.; Sia, A.T.H.; Van de Velde, M.; Vercueil, A. Consensus Statement Collaborators. International consensus statement on the management of hypotension with vasopressors during caesarean section under spinal anaesthesia. Anaesthesia 2018, 73, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Gu, J.; Liao, Z.; Feng, S. Prediction of spinal anesthesia-induced hypotension during elective cesarean section: A systematic review of prospective observational studies. Int. J. Obs. Anesth. 2021, 47, 103175. [Google Scholar] [CrossRef] [PubMed]
- Duggappa, D.R.; Lokesh, M.; Dixit, A.; Paul, R.; Raghavendra Rao, R.S.; Prabha, P. Perfusion index as a predictor of hypotension following spinal anaesthesia in lower segment caesarean section. Indian. J. Anaesth. 2017, 61, 649–654. [Google Scholar] [PubMed]
- Kim, H.J.; Choi, Y.S.; Kim, S.H.; Lee, W.; Kwon, J.Y.; Kim, D.H. Predictability of preoperative carotid artery-corrected flow time for hypotension after spinal anaesthesia in patients undergoing caesarean section: A prospective observational study. Eur. J. Anaesthesiol. 2021, 38, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Kuwata, S.; Suehiro, K.; Juri, T.; Tsujimoto, S.; Mukai, A.; Tanaka, K.; Yamada, T.; Mori, T.; Nishikawa, K. Pleth variability index can predict spinal anaesthesia-induced hypotension in patients undergoing caesarean delivery. Acta Anaesthesiol. Scand. 2018, 62, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Riffard, C.; Viêt, T.Q.; Desgranges, F.P.; Bouvet, L.; Allaouchiche, B.; Stewart, A.; Chassard, D. The pupillary light reflex for predicting the risk of hypotension after spinal anaesthesia for elective caesarean section. Anaesth. Crit. Care Pain. Med. 2018, 37, 233–238. [Google Scholar] [CrossRef]
- Mourad, M.; Eliet, J.; Zeroual, N.; Saour, M.; Sentenac, P.; Manna, F.; Molinari, N.; Gandet, T.; Colson, P.H.; Gaudard, P. Pulse pressure and end-tidal carbon dioxide for monitoring low native cardiac output during veno-arterial ECLS: A prospective observational study. Crit. Care 2020, 24, 569. [Google Scholar] [CrossRef]
- Shih, T.H.; Huang, C.E.; Chen, C.L.; Wang, C.H.; Huang, C.J.; Cheng, K.W.; Wu, S.C.; Juang, S.E.; Lee, Y.E.; Wong, Z.W.; et al. Correlation Between Changes in End-Tidal Carbon Dioxide Concentration and Cardiac Output During Inferior Vena Cava Clamping and Unclamping in Living-donor Liver Transplantation. Transpl. Proc. 2016, 48, 1077–1079. [Google Scholar] [CrossRef]
- Cully, M.; Treut, M.; Thompson, A.D.; DePiero, A.D. Exhaled end-tidal carbon dioxide as a predictor of lactate and pediatric sepsis. Am. J. Emerg. Med. 2020, 38, 2620–2624. [Google Scholar] [CrossRef]
- Bulger, N.; Harrington, B.; Krieger, J.; Latimer, A.; Arbabi, S.; Counts, C.R.; Sayre, M.; Maynard, C.; Bulger, E.M. Prehospital end-tidal carbon dioxide predicts hemorrhagic shock upon emergency department arrival. J. Trauma. Acute Care Surg. 2021, 91, 457–464. [Google Scholar] [CrossRef]
- Deakin, C.D.; Sado, D.M.; Coats, T.J.; Davies, G. Prehospital end-tidal carbon dioxide concentration and outcome in major trauma. J. Trauma. 2004, 57, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Sandroni, C.; De Santis, P.; D’Arrigo, S. Capnography during cardiac arrest. Resuscitation 2018, 132, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Itoh, H.; Eto, Y.; Kobayashi, T.; Kato, M.; Omata, M.; Watanabe, H.; Kato, K.; Momomura, S. End-tidal CO2 pressure decreases during exercise in cardiac patients: Association with severity of heart failure and cardiac output reserve. J. Am. Coll. Cardiol. 2020, 36, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Toupin, F.; Clairoux, A.; Deschamps, A.; Lebon, J.S.; Lamarche, Y.; Lambert, J.; Fortier, A.; Denault, A.Y. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: A prospective observational study. Can. J. Anaesth. 2016, 63, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Øberg, E.B.; Jørgensen, B.G.; Berthelsen, P.G. End-tidal CO2 in the diagnosis of fluid responsiveness—A systematic review. Dan. Med. J. 2019, 66, A5560. [Google Scholar] [PubMed]
- Akbas, I.; Kocak, A.O.; Celik, B.K.; Menekse, T.S.; Demir, M.; Gur, S.T.A.; Kerget, B.; Cakir, Z. Performance of integrated pulmonary index for pulmonary embolism in dyspneic patients. Bratisl. Lek. Listy 2021, 122, 5–70. [Google Scholar] [CrossRef] [PubMed]
- Tekin, E.; Özlü, İ.; Bayraktar, M.; Can, N.O.; Yilmar, S. Comparison of the integrated pulmonary index with cardiac risk scores in acute coronary syndromes. Ann. Clin. Anal. Med. 2021, 12, 242–247. [Google Scholar] [CrossRef]
- Zieleskiewicz, L.; Noel, A.; Duclos, G.; Haddam, M.; Delmas, A.; Bechis, C.; Loundou, A.; Blanc, J.; Mignon, A.; Bouvet, L.; et al. Can point-of-care ultrasound predict spinal hypotension during caesarean section? A prospective observational study. Anaesthesia 2018, 73, 15–22. [Google Scholar] [CrossRef]
- Chamchad, D.; Arkoosh, V.A.; Horrow, J.C.; Buxbaum, J.L.; Izrailtyan, I.; Nakhamchik, L.; Hoyer, D.; Kresh, J.Y. Using heart rate variability to stratify risk of obstetric patients undergoing spinal anesthesia. Anesth. Analg. 2004, 99, 1818–1821. [Google Scholar] [CrossRef]
- Yeh, P.H.; Chang, Y.J.; Tsai, S.E. Observation of hemodynamic parameters using a non-invasive cardiac output monitor system to identify predictive indicators for post-spinal anesthesia hypotension in parturients undergoing cesarean section. Exp. Ther. Med. 2020, 20, 168. [Google Scholar] [CrossRef]
- Crooks, C.J.; West, J.; Morling, J.; Simmonds, M.; Juurlink, I.; Briggs, S.; Cruickshank, S.; Hammond-Pears, S.; Shaw, D.; Card, T.; et al. Inverse association between blood pressure and pulse oximetry accuracy: An observational study in patients with suspected or confirmed COVID-19 infection. Emerg. Med. J. 2023, 40, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Keera, A.A.; Elnabtity, A.M. Two syringe spinal anesthesia technique for cesarean section: A controlled randomized study of a simple way to achieve more satisfactory block and less hypotension. Anesth. Essays Res. 2016, 10, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Chekol, W.B.; Melesse, D.Y.; Mersha, A.T. Incidence and factors associated with hypotension in emergency patients that underwent cesarean section with spinal anaesthesia: Prospective observational study. Int. J. Surg. Open 2021, 35, 100378. [Google Scholar] [CrossRef]
- Mercier, F.J.; Riley, E.T.; Frederickson, W.L.; Roger-Christoph, S.; Benhamou, D.; Cohen, S.E. Phenylephrine added to prophylactic ephedrine infusion during spinal anesthesia for elective cesarean section. Anesthesiology 2001, 95, 668–674. [Google Scholar] [CrossRef]
Postspinal Hypotension | p | ||
---|---|---|---|
Developed (n = 52) | Non-Developed (n = 30) | ||
Age (year) | 28.4 ± 5.6 (17–42) | 31.3 ± 5.6 (20–41) | 0.025 *a |
Weight (kg) | 79.9 ± 12.9 (56–109) | 80.8 ± 14.1 (60–110) | 0.772 a |
Height (cm) | 160.6 ± 6.6 (150–175) | 162.6 ± 6.0 (150–173) | 0.175 a |
BMI (kg/m2) | 30.9 ± 4.5 (21.5–42.2) | 30.6 ± 5.2 (20.8–39.1) | 0.743 a |
Obesity Class | |||
Normal weight | 3 (5.8) | 3 (10.0) | |
Overweight | 18 (34.6) | 12 (40.0) | 0.628 b |
Obese | 31 (59.6) | 15 (50.0) | |
Co-morbidity | 6 (11.5) | 6 (20.0) | 0.341 c |
Gestational HT | 1 (1.9) | 1 (3.3) | 1.000 c |
Gestational DM | 2 (3.8) | 1 (3.3) | 1.000 c |
EtCO2 (mmHg) | 26.8 ± 2.7 (14–32) | 26.5 ± 2.0 (23–30) | 0.835 b |
RR/min | 22.6 ± 5.8 (10–36) | 23.0 ± 5.6 (14–38) | 0.738 a |
SpO2 (%) | 98.1 ± 1.0 (96–100) | 97.4 ± 1.9 (91–100) | 0.044 *b |
HR/min | 97.9 ± 17.5 (58–139) | 91.7 ± 13.0 (66–128) | 0.097 a |
IPI | 7.4 ± 1.4 (2–10) | 7.5 ± 1.2 (5–10) | 0.773 a |
PSH (n = 52) | Basale | PSH Development Time | p |
---|---|---|---|
Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | ||
EtCO2 (mmHg) | 26.8 ± 2.7 (14–32) | 21.3 ± 3.6 (12–31) | <0.001 *b |
RR/min | 22.6 ± 5.8 (10–36) | 21.0 ± 5.7 (11–36) | 0.104 a |
SpO2 (%) | 98.1 ± 1.0 (96–100) | 98.8 ± 1.3 (94–100) | <0.001 *b |
HR (beats/min) | 97.9 ± 17.5 (58–139) | 95.8 ± 28.6 (51–176) | 0.590 a |
IPI | 7.4 ± 1.4 (2–10) | 6.5 ± 1.9 (2–9) | 0.002 *b |
Postspinal Hypotension | p a | ||
---|---|---|---|
Developed (n = 52) | Non-Developed (n = 52) | ||
Mean ± SD (Min–Max) | Mean ± SD (Min–Max) | ||
SBP (mmHg) | 41.6 ± 17.2 (13–90) | 11.4 ± 8.5 (−8–32) | <0.001 * |
DBP (mmHg) | 34.0 ± 12.8 (1–65) | 10.9 ± 8.2 (−5–26) | <0.001 * |
MAP (mmHg) | 37.3 ± 13.8 (3–72) | 10.4 ± 8.0 (−5–29) | <0.001 * |
EtCO2 (mmHg) | 5.5 ± 3.2 (−1–15) | 0.7 ± 1.6 (−3–4) | <0.001 * |
RR (/dk) | 1.6 ± 7.0 (−18–18) | −0.9 ± 1.6 (−8–1) | 0.097 |
SpO2 (%) | −0.7 ± 1.4 (−3–5) | −0.8 ± 1.6 (−8–1) | 0.441 |
HR (beats/min) | 2.0 ± 27.1 (−71–56) | −3.8 ± 13.4 (−45–19) | 0.164 |
IPI | 0.9 ± 1.9 (−3–7) | 0.1 ± 1.1 (−2–2) | 0.045 * |
OR (%95 CI) | p | |
---|---|---|
Age (year) | 0.70 (0.47–1.05) | 0.083 |
EtCO2 (mmHg) | 3.30 (1.24–8.81) | 0.017 * |
IPI | 0.34 (0.09–1.25) | 0.624 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslanlar, E.; Alharach, C.K.; Kara, İ.; Onal, O.; Aslanlar, D.A. The Use of End-Tidal CO2 and Integrated Pulmonary Index to Predict Postspinal Hypotension in Cesarean Section. J. Clin. Med. 2024, 13, 85. https://doi.org/10.3390/jcm13010085
Aslanlar E, Alharach CK, Kara İ, Onal O, Aslanlar DA. The Use of End-Tidal CO2 and Integrated Pulmonary Index to Predict Postspinal Hypotension in Cesarean Section. Journal of Clinical Medicine. 2024; 13(1):85. https://doi.org/10.3390/jcm13010085
Chicago/Turabian StyleAslanlar, Emine, Camille Kamel Alharach, İnci Kara, Ozkan Onal, and Durmuş Ali Aslanlar. 2024. "The Use of End-Tidal CO2 and Integrated Pulmonary Index to Predict Postspinal Hypotension in Cesarean Section" Journal of Clinical Medicine 13, no. 1: 85. https://doi.org/10.3390/jcm13010085
APA StyleAslanlar, E., Alharach, C. K., Kara, İ., Onal, O., & Aslanlar, D. A. (2024). The Use of End-Tidal CO2 and Integrated Pulmonary Index to Predict Postspinal Hypotension in Cesarean Section. Journal of Clinical Medicine, 13(1), 85. https://doi.org/10.3390/jcm13010085