Predictive Factors of Anxiety and Depression in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Patients Medical Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
- the first that appears is DENIAL—they cannot believe that it is happening to them and do not want to accept, hear, or have contact with what the disease means;
- the next stage is ANGER—the patient becomes angry at the whole situation and the people around them;
- then comes the DEPRESSION phase, in which the patient becomes sad, it seems unfair that this is happening to them, and they ask themselves questions like “Why me?”;
- feelings of sadness and inner emptiness, irritability, and guilt;
- sleep problems (patients cannot sleep or, on the contrary, sleep too much);
- overeating or not eating at all;
- fatigue, difficulty concentrating and making decisions;
- lack of hope; and
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of medical care in diabetes—2020. Diabetes Care 2020, 43, S152–S162. [Google Scholar] [CrossRef] [PubMed]
- Charlson, F.; van Ommeren, M.; Flaxman, A.; Cornett, J.; Whiteford, H.; Saxena, S. New WHO prevalence estimates of mental disorders in conflict settings: A systematic review and meta-analysis. Lancet 2019, 394, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Moitra, M.; Santomauro, D.; Collins, P.Y.; Vos, T.; Whiteford, H.; Saxena, S.; Ferrari, A.J. The global gap in treatment coverage for major depressive disorder in 84 countries from 2000–2019: A systematic review and Bayesian meta-regression analysis. PLoS Med. 2022, 19, e1003901. [Google Scholar] [CrossRef] [PubMed]
- Mental Health Atlas 2020; World Health Organization: Geneva, Switzerland, 2021.
- Woody, C.A.; Ferrari, A.J.; Siskind, D.J.; Whiteford, H.A.; Harris, M.G. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J. Affect Disord. 2017, 219, 86–92. [Google Scholar] [CrossRef]
- Evans-Lacko, S.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Benjet, C.; Bruffaerts, R.; Chiu, W.T.; Florescu, S.; de Girolamo, G.; Gureje, O.; et al. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: Results from the WHO World Mental Health (WMH) surveys. Psychol. Med. 2018, 48, 1560–1571. [Google Scholar] [CrossRef]
- Iasiello, M.; van Agteren, J.; Keyes, C.L.M.; Cochrane, E.M. Positive mental health as a predictor of recovery from mental illness. J. Affect. Disord. 2019, 251, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Brătucu, G.; Tudor, A.I.M.; Litră, A.V.; Nichifor, E.; Chițu, O.B.; Brătucu, T.O. Designing the Well-Being of Romanians by Achieving Mental Health with Digital Methods and Public Health Promotion. Int. J. Environ. Res. Public Health 2022, 19, 7868. [Google Scholar] [CrossRef]
- Golden, S.H.; Lazo, M.; Carnethon, M.; Bertoni, A.G.; Schreiner, P.J.; Roux, A.V.; Lee, H.B.; Lyketsos, C. Examining a bidirectional association between depressive symptoms and diabetes. JAMA 2008, 299, 2751–2759. [Google Scholar] [CrossRef]
- Doherty, A.M. Psychiatric aspects of diabetes mellitus. BJPsych Adv. 2015, 21, 407–416. [Google Scholar] [CrossRef]
- Lin, E.H.; Rutter, C.M.; Katon, W.; Heckbert, S.R.; Ciechanowski, P.; Oliver, M.M.; Ludman, E.J.; Young, B.A.; Williams, L.H.; McCulloch, D.K.; et al. Depression and Advanced Complications of Diabetes. Diabetes Care 2010, 30, 264–265. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.E.; Hermanns, N.; Nouwen, A.; Pouwer, F.; Underwood, L.; Winkley, K. The epidemiology of depression and diabetes. In Depression and Diabetes; Katon, W., Maj, M., Sartorius, N., Eds.; Wiley: Chichester, UK, 2010. [Google Scholar]
- Vancampfort, D.; Mitchell, A.J.; De Hert, M.; Sienaert, P.; Probst, M.; Buys, R.; Stubbs, B. Type 2 diabetes in patients with major depressive disorder: A meta-analysis of prevalence estimates and predictors. Depress. Anxiety 2015, 32, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Snoek, F.J.; Skinner, T.C. (Eds.) Psychology in Diabetes Care; John Wiley & Sons Ltd.: West Sussex, UK, 2005. [Google Scholar]
- Ismail, K.; Winkley, K.; Rabe-Hesketh, S. Systematic review and meta-analysis of randomized controlled trials of psychological interventions to improve glycemic control in patients with type 2 diabetes. Lancet 2004, 363, 1589–1597. [Google Scholar] [CrossRef] [PubMed]
- Balhara, Y.P.S. Diabetes and psychiatric disorders. Indian J. Endocrinol. Metab. 2011, 15, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Braha, A.; Timar, T.; Golu, I.; Timar, T. Vitamin D-A New Therapeutic Target in the Management of Type 2 Diabetes Patients. J. Clin. Med. 2024, 13, 1390. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Timar, B.; Paun, D.L.; Sima, A.; Roman, D.; Timar, R. Metformin Treatment: A Potential Cause of Megaloblastic Anemia in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes. 2021, 13, 3873–3878. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Frandes, M.; Sima, A.; Timar, B.; Vlad, A.; Timar, R. Practical applicability of the ISARIC-4C score on severity and mortality due to SARS-CoV-2 infection in patients with type 2 diabetes. Medicina 2022, 58, 848. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Frandes, M.; Timar, B.; Paun, D.L.; Roman, D.; Timar, R. Long-term Risk of Malignant Neoplastic Disorders in Type 2 Diabetes Mellitus Patients with Metabolic Syndrome. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1317–1326. [Google Scholar] [CrossRef]
- Albai, O.; Frandes, M.; Timar, R.; Timar, B.; Anghel, T.; Avram, V.F.; Sima, A. The Mental Status in Patients with Diabetes Mellitus Admitted to a Diabetes Clinic After Presenting in the Emergency Room: The Application of the SCL-90 Scale. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 1833–1840. [Google Scholar] [CrossRef]
- Albai, O.; Braha, A.; Timar, B.; Sima, A.; Deaconu, L.; Timar, R. Assessment of the Negative Factors for the Clinical Outcome in Patients with SARS-CoV-2 Infection and Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2024, 17, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the hospital anxiety and depression scale. An updated literature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- EuroQol Group. EuroQol—A new facility for the measurement of health-related quality of life. Health Policy 1990, 16, 199–208. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; Roqué-Figuls, M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2021, 2021, CD010783. [Google Scholar]
- Pangman, V.C.; Sloan, J.; Guse, L. An Examination of Psychometric Properties of the Mini-Mental Status Examination and the Standardized Mini-Mental Status Examination: Implications for Clinical Practice. Appl. Nurs. Res. 2000, 13, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.M.; Woo, J.M.; Jung, S.Y.; Shin, S.; Song, H.J.; Park, J.; Ahn, J. Positive association between serious psychiatric outcomes and complications of diabetes mellitus in patients with depressive disorders. Int. J. Psychiatry Med. 2015, 50, 131–146. [Google Scholar] [CrossRef]
- Meurs, M.; Roest, A.M.; Wolffenbuttel, B.H.; Stolk, R.P.; de Jonge, P.; Rosmalen, J.G. Association of Depressive and Anxiety Disorders With Diagnosed Versus Undiagnosed Diabetes: An Epidemiological Study of 90,686 Participants. Psychosom Med. 2016, 78, 233–241. [Google Scholar] [CrossRef]
- Hutter, N.; Schnurr, A.; Baumeister, H. Healthcare costs in patients with diabetes mellitus and comorbid mental disorders--a systematic review. Diabetologia 2010, 53, 2470–2479. [Google Scholar] [CrossRef]
- Das-Munshi, J.; Stewart, R.; Ismail, K.; Bebbington, P.E.; Jenkins, R.; Prince, M.J. Diabetes, common mental disorders, and disability: Findings from the UK National Psychiatric Morbidity Survey. Psychosom Med. 2007, 69, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Centorrino, F.; Mark, T.L.; Talamo, A.; Oh, K.; Chang, J. Health and economic burden of metabolic comorbidity among individuals with bipolar disorder. J. Clin. Psychopharmacol. 2009, 29, 595–600. [Google Scholar] [CrossRef]
- Joseph, W. The Stage Theory of Grief. JAMA J. Am. Med. Assoc. 2007, 297, 2692–2693. [Google Scholar]
- Corr, C.A. The ‘five stages’ in coping with dying and bereavement: Strengths, weaknesses and some alternatives. Mortality 2018, 24, 405–417. [Google Scholar] [CrossRef]
- Feldman, D.B. Why the Five Stages of Grief Are Wrong. Psychology Today. Available online: https://www.psychologytoday.com/us/blog/supersurvivors/201707/why-the-five-stages-grief-are-wrong (accessed on 15 May 2018).
- Folb, N.; Lund, C.; Fairall, L.R.; Timmerman, V.; Levitt, N.S.; Steyn, K.; Bachmann, M.O. Socio-economic predictors and consequences of depression among primary care attenders with non-communicable diseases in the Western Cape, South Africa: Cohort study within a randomised trial. BMC Public Health 2015, 15, 1194. [Google Scholar] [CrossRef] [PubMed]
- Kyrou, I.; Tsigos, C. Stress hormones: Physiological stress and regulation of metabolism. Curr. Opin. Pharmacol. 2009, 9, 787–793. [Google Scholar] [CrossRef]
- Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends Immunol. 2006, 27, 24–31. [Google Scholar] [CrossRef]
- Berge, L.I.; Riise, T. Comorbidity between Type 2 Diabetes and Depression in the Adult Population: Directions of the Association and Its Possible Pathophysiological Mechanisms. Int. J. Endocrinol. 2015, 2015, 164760. [Google Scholar] [CrossRef]
- Moulton, C.D.; Pickup, J.C.; Ismail, K. The link between depression and diabetes: The search for shared mechanisms. Lancet Diabetes Endocrinol. 2015, 3, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Everaert, J.; Vrijsen, J.N.; Martin-Willett, R.; van de Kraats, L.; Joormann, J. A meta-analytic review of the relationship between explicit memory bias and depression: Depression features an explicit memory bias that persists beyond a depressive episode. Psychol. Bull. 2022, 148, 435–463. [Google Scholar] [CrossRef]
- Murray, G. Diurnal mood variation in depression: A signal of disturbed circadian function? J. Affect. Disord. 2007, 102, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.C.; Bickford, D.; Delucchi, K.; Fiedorowicz, J.G.; Coryell, W.H. Risk of Psychosis in Recurrent Episodes of Psychotic and Nonpsychotic Major Depressive Disorder: A Systematic Review and Meta-Analysis. Am. J. Psychiatry 2018, 175, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Marcantonio, E.R. Delirium in hospitalized older adults. N. Engl. J. Med. 2017, 377, 1456–1466. [Google Scholar] [CrossRef]
- Maharajh, H.D.; Konings, M. Fire setting in a patient with hyperglycaemic delirium. J. Forensic. Sci. 2006, 51, 940. [Google Scholar] [CrossRef] [PubMed]
- Morandi, A.; Davis, D.; Bellelli, G.; Arora, R.C.; Caplan, G.A.; Kamholz, B.; Kolanowski, A.; Fick, D.M.; Kreisel, S.; MacLullich, A.; et al. The diagnosis of delirium superimposed on dementia: An emerging challenge. J. Am. Med. Dir. Assoc. 2017, 18, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.M.; Corcoran, P.; Perry, I.J. Anxiety and depression symptoms in patients with diabetes. Diabet. Med. 2009, 26, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Grigsby, A.B.; Anderson, R.J.; Freedland, K.E.; Clouse, R.E.; Lustman, P.J. Prevalence of anxiety in adults with diabetes: A systematic review. J. Psychosom. Res. 2002, 53, 1053–1060. [Google Scholar] [CrossRef]
- Khuwaja, A.K.; Lalani, S.; Dhanani, R.; Azam, I.S.; Rafique, G.; White, F. Anxiety and depression among outpatients with type 2 diabetes: A multi-centre study of prevalence and associated factors. Diabetol. Metabol. Syndr. 2010, 2, 72. [Google Scholar] [CrossRef]
- Smith, K.J.; Beland, M.; Clyde, M.; Gariepy, G.; Page, V.; Badawi, G.; Rabasa-Lhoret, R.; Schmitz, N. Association of diabetes with anxiety: A systematic review and meta-analysis. J. Psychosom. Res. 2013, 74, 89–99. [Google Scholar] [CrossRef]
- Hermanns, N.; Kulzer, B.; Krichbaum, M.; Kubiak, T.; Haak, T. Affective and anxiety disorders in a German sample of diabetic patients: Prevalence, comorbidity and risk factors. Diabet. Med. 2005, 22, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Sernyak, M.J.; Leslie, D.L.; Alarcon, R.D.; Losonczy, M.F.; Rosenheck, R. Association of diabetes mellitus with use of atypical neuroleptics in the treatment of schizophrenia. Am. J. Psychiatry 2002, 159, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, Y.; Coupland, C.; Hippisley-Cox, J.; Whyte, S.; Penny, C. Effects of severe mental illness on survival of people with diabetes. Br. J. Psychiatry 2010, 197, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.; Alghamdi, A.; Alqarni, T.; Alshareef, R.; Alzahrani, A. Prevalence and predictors of depression, anxiety, and stress symptoms among patients with type II diabetes attending primary healthcare centers in the western region of Saudi Arabia: A cross-sectional study. Int. J. Ment. Health Syst. 2019, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Khullar, S.; Dhillon, H.; Kaur, G.; Sharma, R.; Mehta, K.; Aggarwal, R.; Singh, M.; Singh, P. The prevalence and predictors of depression in type 2 diabetic population of Punjab. Community Ment Health J. 2016, 52, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Steinsbekk, A.; Rygg, L.; Lisulo, M.; Rise, M.B.; Fretheim, A. Group based diabetes selfmanagement education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv. Res. 2012, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Funnell, M.; Brown, M.; Kurlander, J. Self-management support in “real-world” settings: An empowerment-based intervention. Patient EducCouns 2010, 79, 178–184. [Google Scholar] [CrossRef]
- Williams, J.B.W.; Kobak, K.A. Development and reliability of a structured interview guide for the Montgomery-Asberg Depression Rating Scale. Br. J. Psychiatry 2008, 192, 52–58. [Google Scholar] [CrossRef]
- Cunningham, J.L.; Wernroth, L.; von Knorring, L.; Berglund, L.; Ekselius, L. Agreement between physicians’ and patients’ ratings on the Montgomery Åsberg Depression Rating Scale. J. Affect. Disord. 2011, 135, 148–153. [Google Scholar] [CrossRef]
- Svanborg, P.; Åsberg, M. A comparison between the Beck Depression Inventory (BDI) and the self-rating version of the Montgomery Åsberg Depression Rating Scale (MADRS). J. Affect. Disord. 2001, 64, 203–216. [Google Scholar] [CrossRef]
- Kivimäki, M.; Hamer, M.; Batty, G.D.; Geddes, J.R.; Tabak, A.G.; Pentti, J. Antidepressant medication use, weight gain and risk of type 2 diabetes mellitus: A population-based study. Diabetes Care 2010, 33, 2611–2616. [Google Scholar] [CrossRef]
- Rubin, R.R.; Ma, Y.; Marrero, D.G.; Peyrot, M.; Barrett-Connor, E.L.; Kahn, S.E. Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the diabetes prevention program. Diabetes Care 2008, 31, 420–426. [Google Scholar] [CrossRef]
- Ciechanowski, P.S.; Katon, W.J.; Russo, J.E. Depression and diabetes: Impact of depressive symptoms on adherence, function, and costs. Arch. Intern. Med. 2000, 160, 3278–3285. [Google Scholar] [CrossRef]
- Chen, F.; Wei, G.; Wang, Y.; Liu, T.; Huang, T.; Wei, Q.; Ma, G.; Wang, D. Risk factors for depression in elderly diabetic patients and the effect of metformin on the condition. BMC Public Health 2019, 19, 1063. [Google Scholar] [CrossRef]
- Tol, A.; Baghbanian, A.; Mohebbi, B.; Shojaeizadeh, D.; Azam, K.; Shahmirzadi, S.E.; Asfia, A. Empowerment assessment and influential factors among patients with type 2 diabetes. J. Diabetes Metab. Disord. 2013, 12, 6. [Google Scholar] [CrossRef]
Variable | Overall | Men | Women | p |
---|---|---|---|---|
Age (years) a | 66.0 (58; 70) | 65 (101.2) | 66 (106.9) | 0.51 |
DM duration (years) a | 9.0 (6; 15) | 9 (99.9) | 9.5 (107.7) | 0.37 |
Weight (kg) b | 82.7 ± 14.1 | 88.1 ± 12.5 | 79 ± 14 | <0.0001 |
BMI (kg/m2) a | 29 (26; 33) | 29 (99.5) | 29 (107.9) | 0.34 |
FG (mg/dL) a | 135 (122.7; 150) | 138 (113.2) | 132.5 (100.5) | 0.14 |
PPG (mg/dL) a | 155 (140; 178) | 154 (109.4) | 156 (102.6) | 0.43 |
HbA1c (%) a | 7.8 (7; 9.2) | 7.9 (107.4) | 7.8 (103.6) | 0.66 |
TC (mg/dL) a | 181 (49; 342) | 182 (108.5) | 178.5 (103) | 0.5 |
TG (mg/dL) a | 148 (47; 469) | 141 (101.6) | 155 (106.8) | 0.5 |
LDLc (mg/dL) a | 94 (31; 204) | 95 (106.8) | 93.5 (103.9) | 0.7 |
HDLc (mg/dL) a | 43 (23.5; 87) | 44 (110.4) | 43 (102) | 0.3 |
eGFR (mL/min) b | 81.8 ± 26.4 | 89.4 ± 26.2 | 77.8 ± 25.7 | 0.002 |
UACr (mg/g) a | 35 (3; 756) | 35 (105.8) | 34.1 (104.5) | 0.8 |
ESR (mm at 1 h) a | 18 (12; 33) | 16 (96.56) | 20 (109.5) | 0.13 |
CRP (mg/L) a | 11 (6; 26) | 8.9 (97.8) | 12 (108.8) | 0.20 |
Fibrinogen (mg/dL) a | 334 (278; 426) | 312 (94.3) | 354 (110.6) | 0.06 |
Anxiety Score (HADS) a | 7 (5; 9) | 8 (109.3) | 7 (102.6) | 0.44 |
Depression Score (HADS) a | 8 (4; 11) | 8 (112.5) | 8 (100.9) | 0.18 |
Cognitive Status (MMSE) a | 24 (22; 25) | 23 (99.3) | 24 (108) | 0.32 |
Quality of Life (EQ-5D-5L) a | 60 (45; 70) | 55 (104.6) | 60 (105.1) | 0.95 |
Psychiatric Disorder | Age (Years) | DM Duration (Years) | HbA1c (%) | FG (mg/dL) | PPG (mg/dL) |
---|---|---|---|---|---|
No anxiety | 65 (54.7; 68) | 8 (5; 14) | 7.3 (6.8; 8.3) | 131 (118; 143) | 147 (133.7; 162) |
Mild Anxiety | 67 (60; 70) | 9 (7; 12.7) | 8.3 (7.3; 9.6) | 142 (128; 151.7) | 162 (148.2; 186) |
Moderate Anxiety | 67 (62.5; 71.5) | 14 (7.2; 16.7) | 8.4 (7.1; 9.3) | 141 (125; 161.7) | 175 (148.2; 200.2) |
Severe Anxiety | 72.5 (71; 74) | 16.5 (13; 20) | 7.4 (6.4; 8.4) | 118.5 (86; 151) | 169.5 (140; 199) |
p * | 0.0001 | 0.01 | 0.001 | 0.0006 | <0.0001 |
No Depression | 63 (52.7; 69) | 8 (4.7; 12) | 7.3 (6.9; 8.2) | 132 (121; 144) | 147 (134.7; 158.5) |
Mild Depression | 66 (58.2; 68) | 9 (6; 13) | 8.4 (7.1; 9.5) | 129 (121.2; 144) | 153 (141; 178.2) |
Moderate Depression | 69 (65; 73.5) | 14.5 (10.5; 20) | 9.6 (8.9; 10.2) | 151 (134; 162) | 186 (162; 202) |
Severe Depression | 70 (65.7; 75.2) | 14 (11.2; 21.2) | 9.4 (8.2; 10.5) | 148 (139; 161.7) | 210 (177.7; 221.7) |
p * | 0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Parameter | Correlation Coefficient r | 95% Confidence Interval for r | p |
---|---|---|---|
Age (years) | 0.2461 | 0.1142–0.3695 | 0.0003 |
DM duration (years) | 0.1756 | 0.04088–0.3041 | 0.0110 |
HbA1c (%) | 0.1336 | −0.002119–0.2646 | 0.05 |
FG (mg/dL) | 0.2747 | 0.1443–0.3956 | 0.0001 |
PPG (mg/dL) | 0.2975 | 0.1686–0.4164 | <0.0001 |
Depression Score (HADS) | 0.5359 | 0.4316–0.6261 | <0.0001 |
Cognitive status (MMSE) | −0.4336 | −0.5377–−0.3165 | <0.0001 |
Quality of life (EQ-5D-5L) | −0.5511 | −0.6390–−0.4489 | <0.0001 |
Parameter | Correlation Coefficient r | 95% Confidence Interval for r | p |
---|---|---|---|
Age (years) | 0.4127 | 0.2934–0.5193 | <0.0001 |
DM duration (years) | 0.1756 | 0.04088–0.3041 | 0.0110 |
HbA1c (%) | 0.3091 | 0.1810–0.4270 | <0.0001 |
FG (mg/dL) | 0.3835 | 0.2614–0.4936 | <0.0001 |
PPG (mg/dL) | 0.4927 | 0.3826–0.5891 | <0.0001 |
Anxiety Score (HADS) | 0.5359 | 0.4316–0.6261 | <0.0001 |
Cognitive status (MMSE) | −0.5768 | −0.6608–−0.4785 | <0.0001 |
Quality of life (EQ-5D-5L) | −0.7521 | −0.8056–−0.6864 | <0.0001 |
Independent Variables | Coefficient | Std. Error | t | p | rpartial | rsemipartial |
---|---|---|---|---|---|---|
Anxiety score (HADS) p = 0.004 for model, multiple correlation coefficient = 0.34 | ||||||
Age (years) | 0.05512 | 0.02048 | 2.691 | 0.0077 | 0.1843 | 0.1759 |
PPG (mg/dL) | 0.02437 | 0.006567 | 3.711 | 0.0003 | 0.2503 | 0.2426 |
Anxiety score (HADS) p < 0.0001, for model, multiple correlation coefficient = 0.58 | ||||||
Depression score (HADS) | 0.2372 | 0.07295 | 3.251 | 0.0013 | 0.2209 | 0.1843 |
Quality of life (EQ-5D-5L) | −0.06278 | 0.01585 | −3.961 | 0.0001 | −0.2660 | 0.2246 |
Depression score (HADS), p < 0.0001, for model, multiple correlation coefficient = 0.57 | ||||||
Age (years) | 0.1096 | 0.02106 | 5.203 | <0.0001 | 0.3408 | 0.2966 |
PPG (mg/dL) | 0.04745 | 0.006752 | 7.027 | <0.0001 | 0.4397 | 0.4005 |
Depression score (HADS), p < 0.0001, for model, multiple correlation coefficient = 0.76 | ||||||
Anxiety score (HADS) | 0.2058 | 0.06329 | 3.251 | 0.0013 | 0.2209 | 0.1456 |
Quality of life (EQ-5D-5L) | −0.1425 | 0.01166 | −12.22 | <0.0001 | −0.6483 | 0.5473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albai, O.; Timar, B.; Braha, A.; Timar, R. Predictive Factors of Anxiety and Depression in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2024, 13, 3006. https://doi.org/10.3390/jcm13103006
Albai O, Timar B, Braha A, Timar R. Predictive Factors of Anxiety and Depression in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine. 2024; 13(10):3006. https://doi.org/10.3390/jcm13103006
Chicago/Turabian StyleAlbai, Oana, Bogdan Timar, Adina Braha, and Romulus Timar. 2024. "Predictive Factors of Anxiety and Depression in Patients with Type 2 Diabetes Mellitus" Journal of Clinical Medicine 13, no. 10: 3006. https://doi.org/10.3390/jcm13103006
APA StyleAlbai, O., Timar, B., Braha, A., & Timar, R. (2024). Predictive Factors of Anxiety and Depression in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 13(10), 3006. https://doi.org/10.3390/jcm13103006