Anti-Th/To Antibodies in Scleroderma: Good Prognosis or Serious Concern?
Abstract
:1. Background
2. Molecular Characteristics of Th/To Antigens
3. Clinical Features
4. Raynaud’s Phenomenon
5. Anti-Th/To Antibodies in Diagnosis of Scleroderma
6. Inducing Profibrotic and Proinflammatory Response
Mediators in Scleroderma | Fibroblasts after Incubation with anti-Th/To-ICs (Raschi et al., 2018) [33] | Endothelial Cells after Incubation with Anti-Th/To-ICs (Raschi et al., 2020) [34] | Role in SSc | Autor |
---|---|---|---|---|
IL-6 | + | + | Induces expression of pro-collagen mRNA. Promotes fibroblast differentiation to myofibroblasts. In SSc it is associated with increased risk of PAH, ILD, cardiac and gastrointestinal involvement. | Kawaguchi et al., 2017 [65] Lin et al., 2022 [66] Zheng et al., 2023 [67] |
IL-8 | ++ | X | Chemoattractant for neutrophils, which are involved in the process of ILD. Elevated IL-8 levels are observed in patients with lcSSc, dSSc and with Raynaud’s syndrome. In SSc it is associated with Sjögren’s syndrome. | Crestani et al., 1994 [68] Reitamo, 1993 [69] Gourh et al., 2009 [70] |
MMP-2 | ++ | no data | Facilitates migration and invasion of endothelial cells into the surrounding tissue by degradation of basement membranes and extracellular matrix remodeling. Responsible for proteolytic processing of pro-inflammatory cytokines before their activation. | Waszczykowska et al., 2020 [71] Wen-jia Peng et al., 2012 [72] |
MCP-1 | ++ | no data | Role in infiltration of the skin by mononuclear cells and formation of inflammatory factors. Serum levels of MCP-1 were found to be increased in SSc patients with pulmonary fibrosis. | Distler et al., 2009 [73] Yamamoto, 2008 [74] |
Pro-collagen type I alpha 1 | ++ | no data | Activation of fibroblasts, resulting in excessive deposition of extracellular matrix, which mainly includes collagen I. | Manetti et al., 2017 [75] |
TGF-β1 | ++ | ++ | Responsible for vascular remodeling, indicating that TGF-β1 plays a role in the pathogenesis of PAH in SSc. Mediator of both fibrosis and vasculopathy. | Ayers et al., 2018 [76] Korman, 2019 [77] |
α-SMA protein | no data | ++ | In SScα-SMA protein provides contractile force in stress fibers necessary for tissue remodeling, increasing connective tissue stiffness. | Manetti et al., 2017 [75] |
ICAM-1 | ++ | ++ | Proadhesive phenotype in SSc skin; induces myeloid cell adhesion to dermal fibroblasts. Leads to accumulation of leukocytes. Accumulation of lymphocytes T may contribute to fibrosis induction through the release of cytokines, which subsequently triggers excessive synthesis of the extracellular matrix. Increased serum levels of soluble ICAM-1 correlate with early stages of the disease and diffuse cutaneous SSc. | Rabquer BJ et al., 2009 [78] Abraham et al., 1991 [79] Sato et al., 1999 [80] |
Et-1 mRNA | ++ | ++ | An endogenous vasoconstrictor, stimulates vascular wall cells’ proliferation, fibrosis and inflammation. A substantial correlation was observed between plasma levels of ET-1 and the quantity of digital ulcers and scars. | Cozzani E et al., 2013 [81] Aghaei et al., 2012 [82] |
MMP-1 mRNA | X | X | Decreased level in SSc patients, in healthy individuals MMP-1 is responsible for the degradation of collagen. | Frost et al., 2012 [83] |
TLRS | ||||
TLR-2 | ++ | X | Activates NFκB and stimulating the secretion of IL-6, which results in inflammation. | O‘Reilly et al., 2014 [84] |
TLR-3 | ++ | X | The function in the pathophysiology of SSc remains controversial: 1. This activation has been demonstrated to enhance the expression of TGF-β by fibroblasts, thereby playing a role in the overall fibrotic processes. 2. On the contrary, TLR-3 activation induces fibroblasts to produce IFN-I, which diminishes their capacity to produce extracellular matrix components. | Farina et al., 2010 [85] Fang et al., 2013 [86] |
TLR-9 | X | ++ | TLR-9 elicits fibrotic responses mediated by TGF-β1. | Fang et al., 2016 [87] |
7. Risk of Carcinogenesis
8. Presence in Other Diseases
9. Treatment
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACA | anti-centromere |
anti-RNA pol III | anti-RNA polymerase III antibody |
Et-1 | endothelin-1 |
hPOP-1 | homolog of processing of precursor 1 |
ICAM-1 | intercellular adhesion molecule 1 |
ILD | interstitial lung disease |
ITS1 | internal transcribed spacer |
lSSc | limited SSc |
MCP-1 | monocyte chemoattractant protein-1 |
MMP-1 | matrix metalloproteinase 1 |
MMP-2 | matrix metalloproteinase-2/collagenase type IV |
NPV | negative predictive value |
NFκB | anti-human nuclear factor kappa B |
PAH | pulmonary arterial hypertension |
PH | pulmonary hypertension |
PPV | positive predictive value |
RPP25 | ribonuclease P/MRP subunit p25 |
RPP30 | ribonuclease P/MRP subunit p30 |
RPP40 | ribonuclease P/MRP subunit p40 |
RNP | ribonucleoprotein |
SCR | scleroderma renal crisis |
SSc | scleroderma |
ssSSc | systemic scleroderma sine sclerosis |
TGF-β1 | transforming growth factor beta 1 |
anti-topo 1 | the anti-topoisomerase I |
SCTC-DI | the damage index |
α-SMA protein | alpha-smooth muscle actin |
References
- van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A.; Carreira, P.E., Jr.; et al. 2013 Classification Criteria for Systemic Sclerosis: An American College of Rheumatology/European League against Rheumatism Collaborative Initiative. Arthritis Rheum 2013, 65, 2737–2747. [Google Scholar] [CrossRef] [PubMed]
- Truchetet, M.E.; Brembilla, N.C.; Chizzolini, C. Current Concepts on the Pathogenesis of Systemic Sclerosis. Clin. Rev. Allergy Immunol. 2021, 64, 262–283. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Herrick, A.L. Systemic sclerosis. Br. J. Hosp. Med. 2019, 80, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Falls, A.C.; Wrigley, C.; Khanna, S.A. Progressive Systemic Sclerosis With Negative Antinuclear Antibodies and Absence of Raynaud’s Phenomenon: A Case Report and Literature Review. Cureus 2023, 15, e35663. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.; Benyamine, A.; Bertin, D.; Harlé, J.R.; Kaplanski, G.; Mazodier, K.; Reynaud-Gaubert, M.; Granel, B.; Bardin, N. Characteristics of Systemic Sclerosis patients with positive anti-Th/To antibodies: About 6 patients and literature review. Rev. Med. Interne 2020, 41, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Stochmal, A.; Czuwara, J.; Trojanowska, M.; Rudnicka, L. Antinuclear Antibodies in Systemic Sclerosis: An Update. Clin. Rev. Allergy Immunol. 2020, 58, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Andraos, R.; Ahmad, A.; Eriksson, P.; Dahlström, Ö.; Wirestam, L.; Dahle, C.; Hesselstrand, R.; Bengtsson, A.A.; Jönsen, A.; Andréasson, K.; et al. Autoantibodies associated with systemic sclerosis in three autoimmune diseases imprinted by type I interferon gene dysregulation: A comparison across SLE, primary Sjögren’s syndrome and systemic sclerosis. Lupus Sci. Med. 2022, 9, e000732. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, M.; Kimura, K.; Hirakata, M.; Kawakami, Y.; Ikeda, Y. Differences in autoantibody response to Th/To between systemic sclerosis and other autoimmune diseases. Ann. Rheum. Dis. 2002, 61, 842–846. [Google Scholar] [CrossRef]
- Ceribelli, A.; Cavazzana, I.; Franceschini, F.; Airò, P.; Tincani, A.; Cattaneo, R.; Pauley, B.A.; Chan, E.K.; Satoh, M. Anti-Th/To are common antinucleolar autoantibodies in Italian patients with scleroderma. J. Rheumatol. 2010, 37, 2071–2075. [Google Scholar] [CrossRef] [PubMed]
- Graf, S.W.; Hakendorf, P.; Lester, S.; Patterson, K.; Walker, J.G.; Smith, M.D.; Ahern, M.J.; Roberts-Thomson, P.J. South Australian Scleroderma Register: Autoantibodies as predictive biomarkers of phenotype and outcome. Int. J. Rheum. Dis. 2012, 15, 102–109. [Google Scholar] [CrossRef]
- Żebryk, P.; Przymuszała, P.; Nowak, J.K.; Piorunek, T.; Mularek-Kubzdela, T.; Puszczewicz, M. Autoantibodies and Clinical Correlations in Polish Systemic Sclerosis Patients: A Cross-Sectional Study. J. Clin. Med. 2023, 12, 657. [Google Scholar] [CrossRef]
- Hashimoto, C.; Steitz, J.A. Sequential association of nucleolar 7-2 RNA with two different autoantigens. J. Biol. Chem. 1983, 258, 1379–1382. [Google Scholar] [CrossRef] [PubMed]
- Van Eenennaam, H.; Jarrous, N.; van Venrooij, W.J.; Pruijn, G.J.M. Architecture and Function of the Human Endonucleases RNase P and RNase MRP. IUBMB Life 2000, 49, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Welting, T.J.M. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Res. 2004, 32, 2138–2146. [Google Scholar] [CrossRef]
- Walker, S.C.; Engelke, D.R. Ribonuclease P: The Evolution of an Ancient RNA Enzyme. Crit. Rev. Biochem. Mol. Biol. 2006, 41, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Esakova, O.; Krasilnikov, A.S. Of proteins and RNA: The RNase P/MRP family. RNA 2010, 16, 1725–1747. [Google Scholar] [CrossRef]
- Goldfarb, K.C.; Cech, T.R. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes Dev. 2017, 31, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.; Cai, T.; Aulds, J.; Wierzbicki, S.; Schmitt, M.E. RNase MRP Cleaves the CLB2 mRNA To Promote Cell Cycle Progression: Novel Method of mRNA Degradation. Mol. Cell. Biol. 2004, 24, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.N.; Li, Y. RNase MRP RNA and human genetic diseases. Cell Res. 2007, 17, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.; Thomas, G.; Volarević, S. Ribosome biogenesis in cancer: New players and therapeutic avenues. Nat. Rev. Cancer 2018, 18, 51–63. [Google Scholar] [CrossRef]
- Seo, J.-Y.; Yaneva, R.; Cresswell, P. Viperin: A Multifunctional, Interferon-Inducible Protein that Regulates Virus Replication. Cell Host Microbe 2011, 10, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Mattijssen, S.; Hinson, E.R.; Onnekink, C.; Hermanns, P.; Zabel, B.; Cresswell, P.; Pruijn, G.J.M. Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease. Cell. Mol. Life Sci. 2011, 68, 2469–2480. [Google Scholar] [CrossRef]
- Frank, D.N.; Pace, N.R. RIBONUCLEASE P: Unity and Diversity in a tRNA Processing Ribozyme. Annu. Rev. Biochem. 1998, 67, 153–180. [Google Scholar] [CrossRef] [PubMed]
- Reiner, R.; Krasnov-Yoeli, N.; Dehtiar, Y.; Jarrous, N. Function and Assembly of a Chromatin-Associated RNase P that Is Required for Efficient Transcription by RNA Polymerase I. PLoS ONE 2008, 3, e4072. [Google Scholar] [CrossRef]
- Jarrous, N.; Rouvinski, A. RNA polymerase III and antiviral innate immune response. Transcription 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Perederina, A.; Krasilnikov, A.S. The P3 domain of eukaryotic RNases P/MRP. RNA Biol. 2010, 7, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Lygerou, Z.; Pluk, H.; van Venrooij, W.J.; Séraphin, B. hPop1: An autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins. EMBO J. 1996, 15, 5936–5948. [Google Scholar] [CrossRef] [PubMed]
- Eder, P.S.; Kekuda, R.; Stolc, V.; Altman, S. Characterization of two scleroderma autoimmune antigens that copurify with human ribonuclease P. Proc. Natl. Acad. Sci. USA 1997, 94, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Guerrier-Takada, C.; Eder, P.S.; Gopalan, V.; Altman, S. Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P. RNA 2002, 8, S1355838202027954. [Google Scholar] [CrossRef]
- Mahler, M.; Fritzler, M.J.; Satoh, M. Autoantibodies to the mitochondrial RNA processing (MRP) complex also known as Th/To autoantigen. Autoimmun. Rev. 2015, 14, 254–257. [Google Scholar] [CrossRef]
- Mahler, M.; Satoh, M.; Hudson, M.; Baron, M.; Chan, J.Y.F.; Chan, E.K.L.; Wick, J.; Fritzler, M.J.; Canadian Scleroderma Research Group. Autoantibodies to the Rpp25 component of the Th/To complex are the most common antibodies in patients with systemic sclerosis without antibodies detectable by widely available commercial tests. J. Rheumatol. 2014, 41, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Mattijssen, S.; Welting, T.J.M.; Pruijn, G.J.M. RNase MRP and disease. WIREs RNA 2010, 1, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Raschi, E.; Chighizola, C.B.; Cesana, L.; Privitera, D.; Ingegnoli, F.; Mastaglio, C.; Meroni, P.L.; Borghi, M.O. Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts. Arthritis Res. Ther. 2018, 20, 187. [Google Scholar] [CrossRef] [PubMed]
- Raschi, E.; Privitera, D.; Bodio, C.; Lonati, P.A.; Borghi, M.O.; Ingegnoli, F.; Meroni, P.L.; Chighizola, C.B. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: An early event in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 2020, 22, 265. [Google Scholar] [CrossRef]
- Charlton, D.; Laffoon, M.; Medsger, T.A., Jr.; Domsic, R.T. Long-Term Survival and Follow-up of Anti-Th/to Antibody Positive Systemic Sclerosis Patients. Arthritis Rheumatol. 2017, 69 (Suppl. S10). [Google Scholar]
- Suresh, S.; Charlton, D.; Snell, E.K.; Laffoon, M.; Medsger, T.A.; Zhu, L., Jr.; Domsic, R.T. Development of Pulmonary Hypertension in Over One-Third of Patients With Th/To Antibody–Positive Scleroderma in Long-Term Follow-Up. Arthritis Rheumatol. 2022, 74, 1580–1587. [Google Scholar] [CrossRef]
- Kucharz, E.; Kopeć-Mędrek, M. Systemic sclerosis sine scleroderma. Adv. Clin. Exp. Med. 2017, 26, 875–880. [Google Scholar] [CrossRef]
- Fischer, A.; Pfalzgraf, F.J.; Feghali-Bostwick, C.A.; Wright, T.M.; Curran-Everett, D.; West, S.G.; Brown, K.K. Anti-th/to-positivity in a cohort of patients with idiopathic pulmonary fibrosis. J. Rheumatol. 2006, 33, 1600–1605. [Google Scholar]
- Mitri, G.M.; Lucas, M.; Fertig, N.; Steen, V.D.; Medsger, T.A. A comparison between anti-Th/To– and anticentromere antibody–positive systemic sclerosis patients with limited cutaneous involvement. Arthritis Rheum. 2003, 48, 203–209. [Google Scholar] [CrossRef]
- Moschetti, L.; Lazzaroni, M.G.; Cavazzana, I.; Franceschini, F.; Airò, P. Anti-Th/To antibodies in systemic sclerosis: Analysis of long-term follow-up of pulmonary involvement, organ damage accrual and mortality in an Italian cohort with a case-control study. Clin. Exp. Rheumatol. 2022, 41, 1589–1598. [Google Scholar] [CrossRef]
- Logito, V.; Tjandrawati, A.; Sugianli, A.K.; Tristina, N.; Dewi, S. Diagnostic Performance of Anti-Topoisomerase-I, Anti-Th/To Antibody and Anti-Fibrillarin Using Immunoblot Method in Systemic Sclerosis Related Interstitial Lung Disease Patients. Open Access Rheumatol. 2023, 15, 43–49. [Google Scholar] [CrossRef]
- Elhai, M.; Meune, C.; Boubaya, M.; Avouac, J.; Hachulla, E.; Balbir-Gurman, A.; Riemekasten, G.; Airò, P.; Joven, B.; Vettori, S.; et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1897–1905. [Google Scholar] [CrossRef]
- Domsic, R.T.; Medsger, T.A. Autoantibodies and Their Role in Scleroderma Clinical Care. Curr. Treat. Opt. Rheumatol. 2016, 2, 239–251. [Google Scholar] [CrossRef]
- Hoffmann-Vold, A.M.; Allanore, Y.; Alves, M.; Brunborg, C.; Airó, P.; Ananieva, L.P.; Czirják, L.; Guiducci, S.; Hachulla, E.; Li, M.; et al. Progressive interstitial lung disease in patients with systemic sclerosis-associated interstitial lung disease in the EUSTAR database. Ann. Rheum. Dis. 2021, 80, 219–227. [Google Scholar] [CrossRef]
- Kuwana, M.; Shirai, Y.; Takeuchi, T. Elevated Serum Krebs von den Lungen-6 in Early Disease Predicts Subsequent Deterioration of Pulmonary Function in Patients with Systemic Sclerosis and Interstitial Lung Disease. J. Rheumatol. 2016, 43, 1825–1831. [Google Scholar] [CrossRef]
- Steen, V. Advancements in diagnosis of pulmonary arterial hypertension in scleroderma. Arthritis Rheum. 2005, 52, 3698–3700. [Google Scholar] [CrossRef]
- Nunes, J.P.L.; Cunha, A.C.; Meirinhos, T.; Nunes, A.; Araújo, P.M.; Godinho, A.R.; Vilela, E.M.; Vaz, C. Prevalence of auto-antibodies associated to pulmonary arterial hypertension in scleroderma—A review. Autoimmun. Rev. 2018, 17, 1186–1201. [Google Scholar] [CrossRef]
- Okano, Y.; Medsger, T.A. Autoantibody to th ribonucleoprotein (nucleolar 7–2 rna protein particle) in patients with systemic sclerosis. Arthritis Rheum. 1990, 33, 1822–1828. [Google Scholar] [CrossRef]
- Gündüz, O.H.; Fertig, N.; Lucas, M.; Medsger, T.A. Systemic sclerosis with renal crisis and pulmonary hypertension: A report of eleven cases. Arthritis Rheum. 2001, 44, 1663–1666. [Google Scholar] [CrossRef]
- Steen, V.D. Autoantibodies in Systemic Sclerosis. Semin. Arthritis Rheum. 2005, 35, 35–42. [Google Scholar] [CrossRef]
- Hamaguchi, Y.; Hasegawa, M.; Fujimoto, M.; Matsushita, T.; Komura, K.; Kaji, K.; Kondo, M.; Nishijima, C.; Hayakawa, I.; Ogawa, F.; et al. The clinical relevance of serum antinuclear antibodies in Japanese patients with systemic sclerosis. Br. J. Dermatol. 2008, 158, 487–495. [Google Scholar] [CrossRef]
- Kuwana, M.; Kaburaki, J.; Okano, Y.; Tojo, T.; Homma, M. Clinical and Prognostic Associations Based on Serum Antinuclear Antibodies in Japanese Patients with Systemic Sclerosis. Arthritis Rheum. 1994, 37, 75–83. [Google Scholar] [CrossRef]
- Woodworth, T.G.; Suliman, Y.A.; Li, W.; Furst, D.E.; Clements, P. Scleroderma renal crisis and renal involvement in systemic sclerosis. Nat. Rev. Nephrol. 2016, 12, 678–691. [Google Scholar] [CrossRef]
- Teixeira, L.; Mouthon, L.; Mahr, A.; Berezné, A.; Agard, C.; Mehrenberger, M.; Noël, L.H.; Trolliet, P.; Frances, C.; Cabane, J.; et al. Mortality and risk factors of scleroderma renal crisis: A French retrospective study of 50 patients. Ann. Rheum. Dis. 2008, 67, 110–116. [Google Scholar] [CrossRef]
- Walker, U.A.; Tyndall, A.; Czirják, L.; Denton, C.; Farge-Bancel, D.; Kowal-Bielecka, O.; Müller-Ladner, U.; Bocelli-Tyndall, C.; Matucci-Cerinic, M. Clinical risk assessment of organ manifestations in systemic sclerosis: A report from the EULAR Scleroderma Trials And Research group database. Ann. Rheum. Dis. 2007, 66, 754–763. [Google Scholar] [CrossRef]
- Penn, H.; Howie, A.J.; Kingdon, E.J.; Bunn, C.C.; Stratton, R.J.; Black, C.M.; Burns, A.; Denton, C.P. Scleroderma renal crisis: Patient characteristics and long-term outcomes. QJM 2007, 100, 485–494. [Google Scholar] [CrossRef]
- Bhavsar, S.V.; Carmona, R. Anti-RNA Polymerase III Antibodies in the Diagnosis of Scleroderma Renal Crisis in the Absence of Skin Disease. JCR J. Clin. Rheumatol. 2014, 20, 379–382. [Google Scholar] [CrossRef]
- Doré, A.; Lucas, M.; Ivanco, D.; Medsger, T.A.; Domsic, R.T. Significance of Palpable Tendon Friction Rubs in Early Diffuse Cutaneous Systemic Sclerosis. Arthritis Care Res. 2013, 65, 1385–1389. [Google Scholar] [CrossRef]
- Mecoli, C.A.; Adler, B.L.; Yang, Q.; Hummers, L.K.; Rosen, A.; Casciola-Rosen, L.; Shah, A.A. Cancer in Systemic Sclerosis: Analysis of Antibodies against Components of the Th/To Complex. Arthritis Rheumatol. 2021, 73, 315–323. [Google Scholar] [CrossRef]
- Hoa, S.; Lazizi, S.; Baron, M.; Wang, M.; Fritzler, M.J.; Hudson, M. Association between autoantibodies in systemic sclerosis and cancer in a national registry. Rheumatology 2022, 61, 2905–2914. [Google Scholar] [CrossRef]
- Höppner, J.; Tabeling, C.; Casteleyn, V.; Kedor, C.; Windisch, W.; Burmester, G.R.; Huscher, D.; Siegert, E. Comprehensive autoantibody profiles in systemic sclerosis: Clinical cluster analysis. Front. Immunol 2023, 13, 1045523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koenig, M.; Joyal, F.; Fritzler, M.J.; Roussin, A.; Abrahamowicz, M.; Boire, G.; Goulet, J.R.; Rich, E.; Grodzicky, T.; Raymond, Y.; et al. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud’s phenomenon to systemic sclerosis: A twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosi. Arthritis Rheum. 2008, 58, 3902–3912. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Shegogue, D.; Gore, E.A.; Smith, E.A.; Trojanowska, M.; Mcdermott, P.J. Role of p38 MAPK in Transforming Growth Factor β Stimulation of Collagen Production by Scleroderma and Healthy Dermal Fibroblasts. J. Investig. Dermatol. 2002, 118, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zohar, R.; McCulloch, C.A. Multiple roles of α-smooth muscle actin in mechanotransduction. Exp. Cell Res. 2006, 312, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y. Contribution of Interleukin-6 to the Pathogenesis of Systemic Sclerosis. J. Scleroderma Relat. Disord. 2017, 2, S6–S12. [Google Scholar] [CrossRef]
- Lin, X.; Ding, M.; Chen, T.; Min, S.; Wang, D.; Jiang, G. Peripheral blood IL-6 levels in systemic sclerosis patients: Correlation between IL-6 levels and clinical phenotypes. J. Cosmet. Dermatol. 2022, 21, 6086–6091. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Keen, K.J.; Fritzler, M.J.; Ryerson, C.J.; Wilcox, P.; Whalen, B.A.; Sahin, B.; Yao, I.; Dunne, J.V. Circulating cytokine levels in systemic sclerosis related interstitial lung disease and idiopathic pulmonary fibrosis. Sci. Rep. 2023, 13, 6647. [Google Scholar] [CrossRef] [PubMed]
- Crestani, B.; Seta, N.; Palazzo, E.; Rolland, C.; Venembre, P.; Dehoux, M.; Boutten, A.; Soler, P.; Dombret, M.C.; Kahn, M.F. Interleukin-8 and neutrophils in systemic sclerosis with lung involvement. Am. J. Respir. Crit. Care Med. 1994, 150 Pt 1, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Reitamo, S.; Remitz, A.; Varga, J.; Ceska, M.; Effenberger, F.; Jimenez, S.; Uitto, J. Demonstration of interleukin 8 and autoantibodies to interleukin 8 in the serum of patients with systemic sclerosis and related disorders. Arch. Dermatol. 1993, 129, 189–193. [Google Scholar] [CrossRef]
- Gourh, P.; Arnett, F.C.; Assassi, S.; Tan, F.K.; Huang, M.; Diekman, L.; Mayes, M.D.; Reveille, J.D.; Agarwal, S.K. Plasma cytokine profiles in systemic sclerosis: Associations with autoantibody subsets and clinical manifestations. Arthritis Res. Ther. 2009, 11, R147. [Google Scholar] [CrossRef]
- Waszczykowska, A.; Podgórski, M.; Waszczykowski, M.; Gerlicz-Kowalczuk, Z.; Jurowski, P. Matrix Metalloproteinases MMP-2 and MMP-9, Their Inhibitors TIMP-1 and TIMP-2, Vascular Endothelial Growth Factor and sVEGFR-2 as Predictive Markers of Ischemic Retinopathy in Patients with Systemic Sclerosis-Case Series Report. Int. J. Mol. Sci. 2020, 21, 8703. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.J.; Yan, J.W.; Wan, Y.N.; Wang, B.X.; Tao, J.H.; Yang, G.J.; Pan, H.F.; Wang, J. Matrix metalloproteinases: A review of their structure and role in systemic sclerosis. J. Clin. Immunol. 2012, 32, 1409–1414. [Google Scholar] [CrossRef]
- Distler, J.H.; Akhmetshina, A.; Schett, G.; Distler, O. Monocyte chemoattractant proteins in the pathogenesis of systemic sclerosis. Rheumatology 2009, 48, 98–103. [Google Scholar] [CrossRef]
- Yamamoto, T. Pathogenic role of CCL2/MCP-1 in scleroderma. Front. Biosci. A J. Virtual Libr. 2008, 13, 2686–2695. [Google Scholar] [CrossRef] [PubMed]
- Manetti, M.; Romano, E.; Rosa, I.; Guiducci, S.; Bellando-Randone, S.; De Paulis, A.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Ayers, N.B.; Sun, C.M.; Chen, S.Y. Transforming growth factor-β signaling in systemic sclerosis. J. Biomed. Res. 2018, 32, 3–12. [Google Scholar] [CrossRef]
- Korman, B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl. Res. J. Lab. Clin. Med. 2019, 209, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Rabquer, B.J.; Hou, Y.; Del Galdo, F.; Kenneth Haines, G.; Gerber, M.L., 3rd; Jimenez, S.A.; Seibold, J.R.; Koch, A.E. The proadhesive phenotype of systemic sclerosis skin promotes myeloid cell adhesion via ICAM-1 and VCAM-1. Rheumatology 2009, 48, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Abraham, D.; Lupoli, S.; McWhirter, A.; Plater-Zyberk, C.; Piela, T.H.; Korn, J.H.; Olsen, I.; Black, C. Expression and function of surface antigens on scleroderma fibroblasts. Arthritis Rheum. 1991, 34, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Sato, S. Abnormalities of adhesion molecules and chemokines in scleroderma. Curr. Opin. Rheumatol. 1999, 11, 503–507. [Google Scholar] [CrossRef]
- Cozzani, E.; Javor, S.; Laborai, E.; Drosera, M.; Parodi, A. Endothelin-1 levels in scleroderma patients: A pilot study. ISRN Dermatol. 2013, 2013, 125632. [Google Scholar] [CrossRef]
- Aghaei, M.; Gharibdost, F.; Zayeni, H.; Akhlaghi, M.; Sedighi, S.; Rostamian, A.R.; Aghdami, N.; Shojaa, M. Endothelin-1 in systemic sclerosis. Indian Dermatol. Online J. 2012, 3, 14–16. [Google Scholar] [CrossRef]
- Frost, J.; Ramsay, M.; Mia, R.; Moosa, L.; Musenge, E.; Tikly, M. Differential gene expression of MMP-1, TIMP-1 and HGF in clinically involved and uninvolved skin in South Africans with SSc. Rheumatology 2012, 51, 1049–1052. [Google Scholar] [CrossRef]
- O’Reilly, S.; Cant, R.; Ciechomska, M.; Finnigan, J.; Oakley, F.; Hambleton, S.; van Laar, J.M. Serum amyloid A induces interleukin-6 in dermal fibroblasts via Toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κB. Immunology 2014, 143, 331–340. [Google Scholar] [CrossRef]
- Farina, G.A.; York, M.R.; Di Marzio, M.; Collins, C.A.; Meller, S.; Homey, B.; Rifkin, I.R.; Marshak-Rothstein, A.; Radstake, T.R.; Lafyatis, R. Poly(I:C) drives type I IFN- and TGFβ-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J. Investig. Dermatol. 2010, 130, 2583–2593. [Google Scholar] [CrossRef]
- Fang, F.; Ooka, K.; Sun, X.; Shah, R.; Bhattacharyya, S.; Wei, J.; Varga, J. A synthetic TLR3 ligand mitigates profibrotic fibroblast responses by inducing autocrine IFN signaling. J. Immunol. 2013, 191, 2956–2966. [Google Scholar] [CrossRef]
- Fang, F.; Marangoni, R.G.; Zhou, X.; Yang, Y.; Ye, B.; Shangguang, A.; Qin, W.; Wang, W.; Bhattacharyya, S.; Wei, J.; et al. Toll-like Receptor 9 Signaling Is Augmented in Systemic Sclerosis and Elicits Transforming Growth Factor β-Dependent Fibroblast Activation. Arthritis Rheumatol. 2016, 68, 1989–2002. [Google Scholar] [CrossRef]
- Mostmans, Y.; Cutolo, M.; Giddelo, C.; Decuman, S.; Melsens, K.; Declercq, H.; Vandecasteele, E.; De Keyser, F.; Distler, O.; Gutermuth, J.; et al. The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun. Rev. 2017, 16, 774–786. [Google Scholar] [CrossRef]
- Gheita, T.A.; Sayed, S.; Azkalany, G.S.; Abaza, N.; Hammam, N.; Eissa, A. Toll-like receptor 9 in systemic sclerosis patients: Relation to modified Rodnan skin score, disease severity, and functional status. Clin. Rheumatol. 2018, 37, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.K.; Wu, M.; Livingston, C.K.; Parks, D.H.; Mayes, M.D.; Arnett, F.C.; Tan, F.K. Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Res. Ther. 2011, 13, R3. [Google Scholar] [CrossRef] [PubMed]
- Onishi, A.; Sugiyama, D.; Kumagai, S.; Morinobu, A. Cancer Incidence in Systemic Sclerosis: Meta-Analysis of Population-Based Cohort Studies. Arthritis Rheum. 2013, 65, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.A.; Casciola-Rosen, L. Mechanistic and clinical insights at the scleroderma-cancer interface. J. Scleroderma Relat. Disord. 2017, 2, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Partouche, L.; Goulabchand, R.; Maria AT, J.; Rivière, S.; Jorgensen, C.; Rigau, V.; Bourgier, C.; Bessis, D.; Le Quellec, A. Biphasic Temporal Relationship between Cancers and Systemic Sclerosis: A Clinical Series from Montpellier University Hospital and Review of the Literature. J. Clin. Med. 2020, 9, 853. [Google Scholar] [CrossRef] [PubMed]
- Olesen, A.B.; Svaerke, C.; Farkas, D.K.; Sørensen, H.T. Systemic sclerosis and the risk of cancer: A nationwide population-based cohort study. Br. J. Dermatol. 2010, 163, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Moinzadeh, P.; Fonseca, C.; Hellmich, M.; Shah, A.A.; Chighizola, C.; Denton, C.P.; Ong, V.H. Association of anti-RNA polymerase III autoantibodies and cancer in scleroderma. Arthritis Res. Ther. 2014, 16, R53. [Google Scholar] [CrossRef] [PubMed]
- Igusa, T.; Hummers, L.K.; Visvanathan, K.; Richardson, C.; Wigley, F.M.; Casciola-Rosen, L.; Rosen, A.; Shah, A.A. Autoantibodies and scleroderma phenotype define subgroups at high-risk and low-risk for cancer. Ann. Rheum. Dis. 2018, 77, 179–1186. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Zhou, X. The emerging role of long noncoding RNA RMRP in cancer development and targeted therapy. Cancer Biol. Med. 2022, 19, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Vakkilainen, S.; Taskinen, M.; Mäkitie, O. Immunodeficiency in cartilage-hair hypoplasia: Pathogenesis, clinical course and management. Scand. J. Immunol. 2020, 92, e12913. [Google Scholar] [CrossRef] [PubMed]
- Elalaoui, S.C.; Laarabi, F.Z.; Mansouri, M.; Mrani, N.A.; Nishimura, G.; Sefiani, A. Further evidence of POP1 mutations as the cause of anauxetic dysplasia. Am. J. Med. Genet. A 2016, 170, 2462–2465. [Google Scholar] [CrossRef]
- Fan, X.; Liu, L.; Shi, Y.; Guo, F.; Wang, H.; Zhao, X.; Zhong, D.; Li, G. Integrated analysis of RNA-binding proteins in human colorectal cancer. World J. Surg. Oncol. 2020, 18, 222. [Google Scholar] [CrossRef]
- Romanuik, T.L.; Ueda, T.; Le, N.; Haile, S.; Yong, T.M.; Thomson, T.; Vessella, R.L.; Sadar, M.D. Novel Biomarkers for Prostate Cancer Including Noncoding Transcripts. Am. J. Pathol. 2009, 175, 2264–2276. [Google Scholar] [CrossRef]
- Jarrous, N. Human ribonuclease P: Subunits, function, and intranuclear localization. RNA 2002, 8, S1355838202011184. [Google Scholar] [CrossRef]
- Xiao, D.; Wu, J.; Zhao, H.; Jiang, X.; Nie, C. RPP25 as a Prognostic-Related Biomarker That Correlates With Tumor Metabolism in Glioblastoma. Front. Oncol. 2022, 11, 714904. [Google Scholar] [CrossRef]
- Hemminki, K.; Liu, X.; Forsti, A.; Ji, J.; Sundquist, J.; Sundquist, K. Subsequent brain tumors in patients with autoimmune disease. Neuro Oncol. 2013, 15, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Oscorbin, I.; Kechin, A.; Boyarskikh, U.; Filipenko, M. Multiplex ddPCR assay for screening copy number variations in BRCA1 gene. Breast Cancer Res. Treat. 2019, 178, 545–555. [Google Scholar] [CrossRef]
- Wang, J.; Ramakrishnan, R.; Tang, Z.; Fan, W.; Kluge, A.; Dowlati, A.; Jones, R.C.; Ma, P.C. Quantifying EGFR Alterations in the Lung Cancer Genome with Nanofluidic Digital PCR Arrays. Clin. Chem. 2010, 56, 623–632. [Google Scholar] [CrossRef]
- Tang, J.; Tian, X.; Min, J.; Hu, M.; Hong, L. RPP40 is a prognostic biomarker and correlated with tumor microenvironment in uterine corpus endometrial carcinoma. Front. Oncol. 2022, 12, 957472. [Google Scholar] [CrossRef]
- Aasebø, E.; Berven, F.S.; Hovland, R.; Døskeland, S.O.; Bruserud, Ø.; Selheim, F.; Hernandez-Valladares, M. The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles. Cancers 2020, 12, 1466. [Google Scholar] [CrossRef]
- Yang, Y.S.; Ren, Y.X.; Liu, C.L.; Hao, S.; Xu, X.E.; Jin, X.; Jiang, Y.Z.; Shao, Z.M. The early-stage triple-negative breast cancer landscape derives a novel prognostic signature and therapeutic target. Breast Cancer Res. Treat. 2022, 193, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Lepri, G.; Catalano, M.; Bellando-Randone, S.; Pillozzi, S.; Giommoni, E.; Giorgione, R.; Botteri, C.; Matucci-Cerinic, M.; Antonuzzo, L.; Guiducci, S. Systemic Sclerosis Association with Malignancy. Clin. Rev. Allergy Immunol. 2022, 63, 398–416. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.; Fritzler, M.J.; Targoff, I.N.; Troyanov, Y.; Senécal, J.L. Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: Insights into clinical features and outcomes. Arthritis Res. Ther. 2007, 9, R78. [Google Scholar] [CrossRef]
- Kowal-Bielecka, O.; Fransen, J.; Avouac, J.; Becker, M.; Kulak, A.; Allanore, Y.; Distler, O.; Clements, P.; Cutolo, M.; Czirjak, L.; et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1327–1339. [Google Scholar] [CrossRef]
- Graßhoff, H.; Fourlakis, K.; Comdühr, S.; Riemekasten, G. Autoantibodies as Biomarker and Therapeutic Target in Systemic Sclerosis. Biomedicines 2022, 10, 2150. [Google Scholar] [CrossRef]
- Henderson, J.; Bhattacharyya, S.; Varga, J.; O’Reilly, S. Targeting TLRs and the inflammasome in systemic sclerosis. Pharmacol. Ther. 2018, 192, 163–169. [Google Scholar] [CrossRef]
- Nagy, A.; Palmer, E.; Polivka, L.; Eszes, N.; Vincze, K.; Barczi, E.; Bohacs, A.; Tarnoki, A.D.; Tarnoki, D.L.; Nagy, G.; et al. Treatment and Systemic Sclerosis Interstitial Lung Disease Outcome: The Overweight Paradox. Biomedicines 2022, 10, 434. [Google Scholar] [CrossRef]
- Roofeh, D.; Khanna, D. Management of systemic sclerosis: The first five years. Curr. Opin. Rheumatol. 2020, 32, 228–237. [Google Scholar] [CrossRef]
Study | Moschetti et al., 2022 [40] | Suresh et al., 2023 [36] | Mitri et al., 2003 [39] | Charlton et al., 2017 [35] | Ceribelli et al., 2010 [9] | Mahler et al., 2014 [31] | Fischer et al., 2006 [38] | Hamaguchi et al., 2008 [51] | Hoa et al., 2021 [60] | Okano and Medsger, 1990 [48] | Graf et al., 2012 [10] | Höppner et al., 2023 [61] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
number of all patients * | 608 | 612 | 472 | 597 | 216 | 873 | 285 | 203 | 1698 | 371 | 129 | 372 |
th/to+ patients | 13 | 204 | 87 | 199 | 8 | 19 | 13 | 7 | 29 | 14 | 8 | 14 |
mean age [years] | 52.6 | 51.6 | 54.5 | 52.4 | 55 | |||||||
women [%] | 76.9 | 79 | 80 | 78 | 62.5 | 89.5 | 61.5 | 71 | 86 | 100 | ||
mean age at ssc onset [years] | 50 | 41.5 | 52.4 | 46 | 41 | 53 | 45.9 | 45.5 | ||||
smoking habit | 7 [54%] | 130 [64%] | 17 [63%] | |||||||||
Raynaud’s phenomenon | 13 [100%] | 202 [99%] | 86 [99%] | 19 [100%] | 9 [69%] | 12 [86%] | ||||||
duration of Raynaud’s phenomenon before SSc onset [years] | 1 | 7.2 | 6 | |||||||||
limited cutaneous subtype | 13 [100%] | 198 [97%] | 87 [100%] | 197 [99%] | 8 [100%] | 17 [89%] | 6 [86%] | 22 [76%] | 14 [100%] | 6 [75%] | 7 [50%] | |
mean mrss | 3 | 4.1 | 2 | 5.7 | 7 | 8.3 | 6.4 | |||||
digital ulcers | 6 [46%] | 21 [24%] | 4 [50%] | 8 [42%] | 17 [59%] | 4 [29%] | ||||||
pitting scars | 6 [46%] | 28 [32%] | 8 [42%] | 2 [29%] | ||||||||
teleangiectasis | 5 [38%] | 70 [80%] | 1 [12.5%] | 14 [74%] | 5 [38%] | 20 [69%] | 12 [86%] | |||||
calcinosis | [8%] | 13 [15%] | 1 [12.5%] | 6 [32%] | 2 [15%] | 7 [24%] | 8 [57%] | |||||
myositis | 2 [15%] | 5 [6%] | 0 | 1 [14%] | 4 [14%] | 7 [50%] | 1 [13%] | |||||
articular involvement | 0 | 109 [53%] | 50 [57%] | 62 [31%] | 2 [11%] | 8 [62%] | 1 [14%] | 9 [31%] | 7 [50%] | |||
esophageal symptoms | 10 [77%] | 23/45 [51%] | 11 [58%] | 7 [54%] | 2 [29%] | 6 [43%] | ||||||
gastro-intestinalinvolvement | 2 [15%] | 109 [53%] | 35/56 [62%] | 26 [13%] | 8 [57%] | |||||||
interstitial lung disease (HRCT) | 4 [31%] | 103 [50%] | 33/68 [48%] | 36 [18%] | 3 [38%] | 6 [32%] | 2 [29%] | 11 [38%] | 6 [43%] | 2 [25%] | 6 [43%] | |
cardiac involvement | 5 [38%] | 12/57 [21%] | 24 [12%] | 2 [25%] | 0 | 1 [14%] | 0 | |||||
pulmonary arterial hypertension (group 1) | 0 | 47 [23%] | 24 [28%] | 35 [18%] | 0 | 0 | 5 [38%] | 1 [14%] | 3 [10%] | 3 [21%] | 3 [38%] | 3 [21%] |
renal crisis | 0 | 6 [3%] | 4 [5%] | 3 [2%] | 1 [5%] | 0 | 1 [3%] | 0 | 0 | 0 | ||
tendon friction rubs | 6 [3%] | 1 [1%] | 0 | |||||||||
sclerodactyly | 15/19 [79%] | 0 | 3 [43%] ** | 3 [21%] ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Możdżan, M.; Węgiel, A.; Biskup, L.; Brzezińska, O.; Makowska, J. Anti-Th/To Antibodies in Scleroderma: Good Prognosis or Serious Concern? J. Clin. Med. 2024, 13, 3022. https://doi.org/10.3390/jcm13113022
Możdżan M, Węgiel A, Biskup L, Brzezińska O, Makowska J. Anti-Th/To Antibodies in Scleroderma: Good Prognosis or Serious Concern? Journal of Clinical Medicine. 2024; 13(11):3022. https://doi.org/10.3390/jcm13113022
Chicago/Turabian StyleMożdżan, Maria, Andrzej Węgiel, Laura Biskup, Olga Brzezińska, and Joanna Makowska. 2024. "Anti-Th/To Antibodies in Scleroderma: Good Prognosis or Serious Concern?" Journal of Clinical Medicine 13, no. 11: 3022. https://doi.org/10.3390/jcm13113022
APA StyleMożdżan, M., Węgiel, A., Biskup, L., Brzezińska, O., & Makowska, J. (2024). Anti-Th/To Antibodies in Scleroderma: Good Prognosis or Serious Concern? Journal of Clinical Medicine, 13(11), 3022. https://doi.org/10.3390/jcm13113022