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Abstract: Background: Cardiorespiratory fitness positively correlates with longevity and immune
health. Regular exercise may provide health benefits by reducing systemic inflammation. In chronic
disease conditions, such as chronic heart failure and chronic fatigue syndrome, mechanistic links
have been postulated between inflammation, muscle weakness, frailty, catabolic/anabolic imbalance,
and aberrant chronic activation of immunity with monocyte upregulation. We hypothesize that
(1) temporal changes in transcriptome profiles of peripheral blood mononuclear cells during strenuous
acute bouts of exercise using cardiopulmonary exercise testing are present in adult subjects, (2) these
temporal dynamic changes are different between healthy persons and heart failure patients and
correlate with clinical exercise-parameters and (3) they portend prognostic information. Methods: In
total, 16 Heart Failure (HF) patients and 4 healthy volunteers (HV) were included in our proof-of-
concept study. All participants underwent upright bicycle cardiopulmonary exercise testing. Blood
samples were collected at three time points (TP) (TP1: 30 min before, TP2: peak exercise, TP3: 1 h
after peak exercise). We divided 20 participants into 3 clinically relevant groups of cardiorespiratory
fitness, defined by peak VO2: HV (n = 4, VO2 ≥ 22 mL/kg/min), mild HF (HF1) (n = 7, 14 < VO2

< 22 mL/kg/min), and severe HF (HF2) (n = 9, VO2 ≤ 14 mL/kg/min). Results: Based on the
statistical analysis with 20–100% restriction, FDR correction (p-value 0.05) and 2.0-fold change across
the three time points (TP1, TP2, TP3) criteria, we obtained 11 differentially expressed genes (DEG).
Out of these 11 genes, the median Gene Expression Profile value decreased from TP1 to TP2 in 10
genes. The only gene that did not follow this pattern was CCDC181. By performing 1-way ANOVA,
we identified 8/11 genes in each of the two groups (HV versus HF) while 5 of the genes (TTC34,
TMEM119, C19orf33, ID1, TKTL2) overlapped between the two groups. We found 265 genes which
are differentially expressed between those who survived and those who died. Conclusions: From our
proof-of-concept heart failure study, we conclude that gene expression correlates with VO2 peak in
both healthy individuals and HF patients, potentially by regulating various physiological processes
involved in oxygen uptake and utilization during exercise. Multi-omics profiling may help identify
novel biomarkers for assessing exercise capacity and prognosis in HF patients, as well as potential
targets for therapeutic intervention to improve VO2 peak and quality of life. We anticipate that our
results will provide a novel metric for classifying immune health.
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1. Introduction

All living organisms have developed highly conserved and regulated stress response
mechanisms. Strenuous activity leads to the acute activation of the hypothalamic–pituitary–
adrenal axis including the adrenergic system [1]. Cardiorespiratory fitness positively
correlates with longevity and inversely with all-cause mortality [2–10]. The World Health
Organization and the American Heart Association are working towards the implementation
of cardiorespiratory fitness measurements to improve risk classification and optimize
disease prevention [11–16].

Cardiorespiratory fitness, defined as the ability of the circulatory and respiratory
systems to supply oxygen to skeletal muscles during sustained physical activity correlates
with immune health. Maintaining cardiorespiratory fitness exerts beneficial immunological
effects [17,18]. It has the potential to delay, halt, or even reverse the age-associated decline
in immune function [19,20]. Fitness is hypothesized to be linked to leukocyte gene expres-
sion in both healthy individuals and Heart Failure (HF) patients by regulating various
physiological processes involved in oxygen uptake and utilization during exercise.

Various data suggest that regular exercise may provide health benefits by reducing
systemic inflammation [21]. In chronic disease conditions, such as chronic HF and chronic
fatigue syndrome, mechanistic links have been postulated between inflammation, muscle
weakness, frailty, catabolic/anabolic imbalance, and aberrant chronic activation of immu-
nity with monocyte upregulation [22–28]. In these conditions, in which the adrenergic
system is permanently activated, levels of circulating cell-free mitochondrial DNA are
chronically increased and correlate with secondary organ dysfunction and cell injury. This
altered pattern is associated with a pro-inflammatory equilibrium [29–32].

Cardiorespiratory fitness is measured by peak oxygen uptake (VO2) in mL per kilo-
gram body weight per minute during exercise by standardized cardiopulmonary exercise
testing (CPX) [33]. CPX has become an important clinical tool to evaluate exercise capacity
and predict outcomes in patients with HF and other cardiac conditions. It provides an
assessment of the integrative exercise responses involving the pulmonary, cardiovascular,
and skeletal muscle systems, which are not adequately reflected through the measurement
of individual organ system function.

Our study aims to identify the gap in the detailed molecular signals induced by
exercise that might benefit health and prevent disease. While the Molecular Transducers
of Physical Activity Consortium is studying healthy individuals with no prior disease
condition, there is a gap in focusing on subjects with specific diseases such as HF which
this study addresses.

Based on our overall hypothesis that leukocyte gene expression in both healthy vol-
unteers (HV) and Heart Failure (HF) is linked to cardiorespiratory fitness, this paper
presents a proof-of-concept data analysis to characterize the relationship between exer-
cise physiology as reflected in the capacity for functional exercise testing by CPX and the
whole-transcriptome dynamics of mixed populations of peripheral blood mononuclear
cells (PBMC) to characterize the phenotype of healthy persons and HF patients. We specif-
ically hypothesize that (1) temporal changes in transcriptome profiles of PBMC during
strenuous acute bouts of exercise using CPX are present in adult subjects, (2) these temporal
dynamic changes are different between HV and HF patients and correlate with clinical
CPX parameters and (3) they portend prognostic information. We believe that our results
may be also applicable to various chronic disease conditions, such as other forms of organ
failure, including immune system failure such as Post-Acute Sequelae of COVID (PASC),
also called long-Covid, ref. [34] and chronic fatigue syndrome.

2. Methods and Design
2.1. Subject Population

Twenty persons were included in our proof-of-concept study (4 HV and 16 HF patients)
who were evaluated for advanced cardiac care options and consented to UCLA IRB 12-
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000351. All participants underwent CPX. Blood samples were collected at three Time Points
(TP) (Figure 1).
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Subject Recruitment Inclusion criteria: On the basis of NIH-screening criteria (https:
//clinicalcenter.nih.gov/recruit/index.html accessed on 16 October 2019), we defined for
the purpose of our proof-of-concept study HV as persons with no known significant health
problems, specifically without any known cardiac, respiratory, or metabolic disease, not
taking any chronic prescribed medication. An HF subject was defined as a subject with HF
referred to our Advanced Heart Failure and Heart Transplant Program for evaluation of
advanced cardiac therapies including heart transplantation.

Multivariate CPX panel All participants underwent CPX testing using a standardized
bicycle ergometer Ramp protocol until each study participant achieved their individual
maximum oxygen consumption or peak oxygen uptake (peak VO2). The multivariate
CPX panel is a validated measure of cardiorespiratory fitness. Peak VO2 is reached when
oxygen consumption remains at a steady state despite an increase in workload, measured
as Respiratory Exchange Ratio (RER) > 1.0.

Clinical data were collected from questionnaires for HV and from medical records of
HF on the day of CPX testing. We divided 20 participants into 3 clinically relevant groups of
cardiorespiratory fitness, defined by peak VO2: HV (n = 4, VO2 ≥ 22 mL/kg/min), mild HF
(HF1) (n = 7, 14 < VO2 < 22 mL/kg/min), and severe HF (HF2) (n = 9, VO2 ≤ 14 mL/kg/min).

2.2. Blood Processing

Samples were collected at 3 time points (TP): within 30 min before exercise (TP1),
within 60 s of peak exercise (TP2), and within 1 h post-exercise (TP3) into 1 CPT (Becton
Dickinson, Franklin Lakes, NJ, USA) tube for RNA-seq analyses.

RNA analyses Total RNA was isolated from PBMC for each blood sample. Purified
RNA quality was verified on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA). RNA concentrations were determined using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop Technologies, Wilmington, DE, USA). The mRNA library was
prepared with Illumina TruSeq RNA kit (Illumina, San Diego, CA, USA). The cDNA li-
braries were quantified using Qubit and sequenced on Illumina HiSeq 2500 (Illumina,
San Diego, CA, USA). Total mRNA was amplified and sequenced on the whole-genome
Illumina HiSeq 3000.

PBMC sample processing and Gene Expression Profile protocol. Eight mLl of blood
was drawn into a CPT tube. Peripheral Blood Mononuclear cells (PBMC) from each sample
were purified within 2 h of phlebotomy. The collected blood was mixed and centrifuged at
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room temperature (22 ◦C) for 20 min at 2000× g RCF. Two mLl of plasma was separated
without disturbing the cell layer into an Eppendorf tube (Sigma-Aldrich, St. Louis, MO,
USA) and stored at −80 ◦C for future experiments. The cell layer was collected, transferred
to 15 mL conical tubes, and re-suspended in cold Phosphate Buffer Saline (PBS) (Sigma-
Aldrich, St. Louis, MO, USA) and centrifuged for 20 min at 300× g RCF at 4 ◦C. The
supernatant was aspirated and discharged. The cell pellet was re-suspended in cold PBS,
transferred into an Eppendorf tube, and centrifuged for 20 min at 300× g RCF at 4 ◦C. The
supernatant was discharged. The pellet was re-suspended in 0.5 mL RNA Protect Cell
Reagent (Qiagen, Valencia, CA, USA) and frozen at −80◦ C.

PBMC transcriptome RNA sequencing. All samples were processed using next-
generation RNA sequencing transcriptome analysis at the UCLA Technology Center for
Genomics and Bioinformatics. Briefly, the RNA was isolated from the PBMC using RNeasy
Mini Kit (Qiagen, Valencia, CA, USA). The quality of the total RNA was assessed us-
ing NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE,
USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) concen-
tration above 50 ng/µL, purity—260/280~2.0, integrity—RIN > 9.0 and average > 9.5.
Then, mRNA library was prepared with Illumina TruSeq RNA kit according to the man-
ufacturer’s instructions (Illumina, San Diego, CA, USA). Library construction consists of
random fragmentation of the polyA mRNA, followed by cDNA production using random
polymers. The cDNA libraries were quantified using Qubit and size distribution was
checked on Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA, USA). The library was
sequenced on HiSeq 2500. Clusters were generated to yield approximately 725 K–825 K
clusters/mm2. Cluster density and quality were determined during the run after the first
base addition parameters were assessed. We performed single-end sequencing runs to align
the cDNA sequences to the reference genome. Generated FASTQ files were transferred to
the Advanced HF Research Data Center where Avadis NGS 1.5 (Agilent, Palo Alto, CA,
USA and Strand Scientific, San Francisco, CA, USA) was used to align the raw RNA-Seq
FASTQ reads to the reference genome. After RNA extraction, quantification and quality
assessment, total mRNA was amplified and sequenced on the whole-genome Illumina
HiSeq 2500. Data were then subjected to DeSeq normalization using NGS Strand/Avadis
(v2.1 10 October 2014).

2.3. Statistical Analysis

The 60 single-end samples were aligned with Human Genome (hg38 build) and RNA
Seq analysis was performed on the Strand NGS software V4.0. Reads were normalized using
DESeq normalization method. We performed filter by expression (20th–100th percentile)
on the samples to remove the genes that had very low normalized signal values in all
the samples and retained 42,610 entities out of 57,923 entities. We performed fold change
analysis with fold change cut off 2.0 and analyzed for all three TP based on all against the
single condition. We identified 156 genes expressed in the conditions that satisfied the
fold change cut-off. One-way ANOVA was performed on these entities with all TP and
the 60 samples. Based on our extensive molecular prediction test development experience,
we used the corrected p-value cut-off of 0.05, fold change cut-off of 2.0 and Benjamini–
Hochberg as multiple testing corrections, retaining 11 genes expressed across all TPs.
Subsequently, covariate regression analysis was performed using Pearson similarity metric.
In addition, we performed ANOVA for all TP and oxygen uptake in HV, mild HF, and
severe HF subjects separately. We were able to identify 5 out of these 11 genes expressed in
both healthy and HF subjects.

3. Results
3.1. Differentially Expressed Genes (DEGs) before/at Max/1 h Post Max Exercise in the
Combined Cohort

1.1: First, we were interested in the effect of CPX-based strenuous exercise on the
temporal dynamics of PBMC-Gene Expression Profile in the combined cohort (n = 20).
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Based on the statistical analysis with 20–100% restriction, FDR-correction (p-value 0.05) and
2.0-fold change across the three time points (TP1, TP2, TP3) criteria, we obtained 11 DEGs
using the analytical criteria detailed in the Section 2.3. The biological functions of these 11
genes are summarized in Table S1 (Supplementary Materials).

1.2: With respect to the directionality of gene expression, we observed that the 11 genes,
when ranked by their median expression for each individual study participant and at each
of the three TP, showed lower median signal values at TP2 and TP3 compared to TP1.
Therefore, we were interested in the temporal dynamics of each of the 11 individual gene
activity levels averaged over the cohort of all 20 subjects at each TP (Figure 2).
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Out of these 11 genes, the median Gene Expression Profile value decreased from TP1
to TP2 in 10 genes. The only gene that did not follow this pattern was CCDC181 (circled in
red). From TP2 to TP3, some GEP reversed their activity to TP1 level (Figure 3).
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1.3: Next, we were interested in what extent the 11 strenuous-activity-bout-associated
genes identified in the overall cohort were differentially expressed between HV (n = 4)
and HF (n = 16) subjects, applying the same statistical criteria (20–100% restriction, FDR-
correction (p-value 0.05) and 2.0-fold change across the three TPs). By performing 1-way
ANOVA, we identified 8/11 genes in each of the two groups (HV versus HF) while 5 of the
genes (TTC34, TMEM119, C19orf33, ID1, TKTL2) overlapped between the two groups as
represented in the Venn diagram, suggesting some biological regulation differences in the
PBMC pool (Figure 4). According to further clustering analyses with the 11 genes and their
expression in all 20 subjects, we concluded that they did not have a close correlation to the
clinical phenotypes (HV, HF1 and HF2 cohorts) at TP1 (resting state) and TP3 (Recovery
state) but showed some correlation with HV/HF-state at peak exercise (Figure 5). At peak
exercise (TP2), there were two main clusters differentiating severe HF from mild HF and
HV and other cluster-mild HF and HV groups.J. Clin. Med. 2024, 13, x FOR PEER REVIEW 7 of 14 
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3.2. Differential Behavior of Genes in the HV versus Mild HF1 and Severe HF2 Cohorts (Peak
VO2/Percent Predicted VO2)

2.1: Next, we were interested in understanding the correlation between the PBMC-
transcriptome and the major clinical determinants of fitness, i.e., the condition of health,
mild or severe HF, during acute bouts of strenuous exercise using CPX. The exploratory
analysis suggested positive and inverse correlations. For exploratory reasons, we performed
cluster entities on all 20 subjects for peak VO2 and percent predicted VO2 with the entity
list that we derived from the previous fold change analysis (1.5/2) (Figure 6) which showed
differences in TP2 samples between mild HF and severe HF groups. With the FC cut off 1.5,
the samples for TP2 showed differences between mild HF and severe HF groups.
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Figure 6. Covariate regression analysis shows an expression of the 11 genes across all three TPs for
HV and HF groups in correlation to VO2max and % predicted oxygen uptake. The color coding
depicts a positive (red) and a negative (blue) correlation. The darker the color the stronger the
respective correlation. Top to bottom: TTC34, DPYD-AS1, CCDC181, TKTL2, THSD7A, TMEM119,
TNFRSF12A, CD300LD, MGAT5B, C19orf33, ID1.

3.3. Correlations between the DEG/Clinical Profiles (Peak VO2/Percent Predicted VO2) and
Survival/Heart Transplant Outcomes

3.1: Next, we were interested in understanding the correlation between genes associ-
ated with death in the severe HF group (n-9), analyzed by time-point (TP1, TP2, TP3) and
as shared gene set represented by the Venn diagram (Figure 7). We found 265 genes which
are differentially expressed between those who survived and those who died.
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3.2: In order to provide additional support for our hypothesis that the currently
identified genes and our previously described and UCLA-patented survival-related PBMC-
genes are reflective of an underlying biological process, we compared the DEG-list for those
three out of nine severe HF patients who died during follow-up (n = 265) with a DEG list
derived from 29 AdHF-patient who had undergone MCS during 2012–2014 out of whom
11 died within a year (n = 105).

To reinforce our hypothesis regarding the association of identified genes, including our
patented survival-related genes with an underlying biological process, we compared DEG
lists. These lists were obtained from three out of nine severe HF patients who died during
follow-up in the current study (n = 265) and 29 advanced HF patients, 11 of whom died
within a year after undergoing mechanical circulatory support surgery in a previous study
(n = 105) (Bondar, 2017 [35]). Out of these sets of DEG, six genes overlapped (SPOCD1,
MUC20, OLFM1, CACNA1A, DDX3Y, BCORP1) (Table S2). The direction of regulation
was the same in five out of six DEGs. The overlap of six DEGs suggests that there may be
shared underlying immune-mediated processes related to the risk of dying from Advanced
HF requiring further study.

4. Discussion

In our proof-of-concept study, we present data to support our hypotheses that (1) stren-
uous bouts of acute exercise during CPX induce longitudinal dynamic changes in tran-
scriptome profiles of PBMC in adult subjects, (2) these longitudinal dynamic changes are
different between HV and HF patients and correlate with clinical CPX-parameters and
(3) they portend potential prognostic information.

First, our data show that longitudinal dynamic changes in PBMC-transcriptome
profiles during acute bouts of strenuous exercise using CPX are present in adult subjects
confirming prior studies conducted in younger people. Prior studies had suggested that
brief exercise alters PBMC gene expression in early- and late-pubertal children. The pattern
of change involves diverse genetic pathways, consistent with a global danger-type response,
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perhaps readying PBMCs for a range of physiological functions from inflammation to tissue
repair that, to our knowledge, would be useful following a bout of physical activity [36].

Second, our results suggest that these longitudinal dynamic changes of each of the 11 DEGs
may differ between HV and HF patients. The question regarding biological relevance needs to
equally address (A) why some genes overlap and (B) why some genes do not overlap. We
hypothesize, for future studies, that the key to discriminating adaptive versus maladaptive
mechanisms of immune health may lie in understanding the patterns of dynamic cell
free-mitochondrial DNA clearance and its subsequent effect on the transcriptome and
proteome. Of our 11 DEGs, DPYD-AS1, TNFRSF12A, and CD300LD were found to play a
role in inflammation and in the immune system [37–39]. TNFRSF12A was also found to be
highly inducible and to play a key role in the development of cardiac hypertrophy followed
by HF [40]. We postulate that the temporal dynamics of total cell free-DNA, specifically cell
free-mitochondrial DNA, may either be adaptive or maladaptive, depending on the body’s
ability to produce and eliminate these molecules. Therefore, in future studies underway
in our lab, we propose to characterize the temporal dynamics of the immune system
under exercise and resting conditions through the integrated analysis of cell free-DNA
quantification (genomic), mRNA expression (transcriptomic), PBMC sub-population and
cytokine production (proteomic), as well as clinical (phenomics) data from the multivariate
CPX panel.

Third, we identified PBMC transcripts that might portend prognostic outcome pre-
diction information. The fact that mortality/survival-related PBMC transcripts and CPX-
related PBMC transcripts did only marginally overlap raises the interesting speculative
hypothesis that these phenomena are governed by different biological pathways.

Fourth, differences in gene expression related to VO2 peak between healthy individu-
als and those with HF reflect the underlying pathophysiological changes associated with
HF, including alterations in energy metabolism, mitochondrial function, oxygen transport,
inflammatory responses, neurohormonal signaling, and structural remodeling. The dif-
ference in gene expression related to peak oxygen uptake (VO2 peak) between healthy
individuals and those with HF is complex and multifactorial. Several studies have inves-
tigated gene expression profiles in cardiac and skeletal muscle tissues to understand the
molecular mechanisms underlying exercise capacity and its alterations in HF.

We anticipate that our results will provide a novel metric for classifying immune
health. We will use innovative multi-omics analyses to better understand this complex
evolutionary physiology, which integrates data from different biological layers. Multi-
omics profiling may help identify novel biomarkers for assessing exercise capacity and
prognosis in HF patients, as well as potential targets for therapeutic intervention to improve
VO2 peak and quality of life.

Limitations

First, our proof-of-concept study is very small with 4 healthy volunteers and 16 HF
subjects. This limitation implies that the presented data should serve as building blocks
for subsequent confirmatory studies. Second, the correlation analyses do not allow any
inferences about causality relations between gene expression levels and clinical phenotypes.
In addition to larger confirmatory clinical-translational studies, we therefore anticipate the
necessity for mechanistic studies.

5. Conclusions

In summary, gene expression can influence VO2 peaks in both healthy individuals and
HF patients by regulating various physiological processes involved in oxygen uptake and
utilization during exercise. We found 11 differentially expressed genes that can illustrate
changes in activity under exercise conditions and that also can characterize the clinical
phenotypes at VO2 peak. We also found 265 genes associated with mortality, of which
6 overlap with genes that we found in a mortality cohort in a previous study conducted in
our lab. As a whole, gene expression can influence VO2 peaks in both healthy individuals
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and HF patients by regulating various physiological processes involved in VO uptake
and utilization during exercise. Dysregulation of gene expression in HF can contribute to
reduced VO2 peak and exercise intolerance, highlighting the importance of understanding
the molecular mechanisms underlying these alterations for developing targeted therapeutic
strategies. Further research is needed to elucidate the specific gene expression signatures
associated with exercise intolerance in HF to identify potential therapeutic targets for
improving exercise capacity in these patients and to test the utility of an immune fitness
test to predict outcomes in various disease conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm13113200/s1, Table S1: Gene ontology information on the
11 genes identified as described in the text; Table S2: Gene ontology information on the six overlapping
genes. References [37–60] are cited in the Supplementary Materials.
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