Prognostic Assessment of HLM Score in Heart Failure Due to Ischemic Heart Disease: A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. The HLM Score
- HLM score 2–6: HLM-1.
- HLM score 7–11: HLM-2.
- HLM score 12–16: HLM-3.
- HLM score 17–20: HLM-4.
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; Mancone, M.; D’Amato, A.; Mariani, M.V.; Prosperi, S.; Alunni Fegatelli, D.; Birtolo, L.I.; Angotti, D.; Milanese, A.; Cerrato, E.; et al. Heart failure ‘the cancer of the heart’: The prognostic role of the HLM score. ESC Heart Fail. 2024, 11, 390–399. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, A.; Prosperi, S.; Severino, P.; Myftari, V.; Labbro Francia, A.; Cestiè, C.; Pierucci, N.; Marek-Iannucci, S.; Mariani, M.V.; Germanò, R.; et al. Current Approaches to Worsening Heart Failure: Pathophysiological and Molecular Insights. Int. J. Mol. Sci. 2024, 25, 1574. [Google Scholar] [CrossRef] [PubMed]
- Greene, S.J.; Bauersachs, J.; Brugts, J.J.; Ezekowitz, J.A.; Lam, C.S.P.; Lund, L.H.; Ponikowski, P.; Voors, A.A.; Zannad, F.; Zieroth, S.; et al. Worsening Heart Failure: Nomenclature, Epidemiology, and Future Directions: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Pagliaro, B.R.; Cannata, F.; Stefanini, G.G.; Bolognese, L. Myocardial ischemia and coronary disease in heart failure. Heart Fail. Rev. 2020, 25, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Johansson, I.; Joseph, P.; Balasubramanian, K.; McMurray, J.J.V.; Lund, L.H.; Ezekowitz, J.A.; G-CHF Investigators. Health-Related Quality of Life and Mortality in Heart Failure: The Global Congestive Heart Failure Study of 23,000 Patients from 40 Countries. Circulation 2021, 143, 2129–2142. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Ferrero, P.; Iacovoni, A.; D’Elia, E.; Vaduganathan, M.; Gavazzi, A.; Senni, M. Prognostic scores in heart failure—Critical appraisal and practical use. Int. J. Cardiol. 2015, 188, 1–9. [Google Scholar] [CrossRef]
- Passantino, A.; Guida, P.; Parisi, G.; Iacoviello, M.; Scrutinio, D. Critical Appraisal of Multivariable Prognostic Scores in Heart Failure: Development, Validation and Clinical Utility. Adv. Exp. Med. Biol. 2018, 1067, 387–403. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Starling, R.C. Chronic Heart Failure: Diagnosis and Management beyond LVEF Classification. J. Clin. Med. 2022, 11, 1718. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Prosperi, S.; Myftari, V.; Canuti, E.S.; Labbro Francia, A.; Cestiè, C.; Maestrini, V.; Lavalle, C.; Badagliacca, R.; et al. Heart Failure Pharmacological Management: Gaps and Current Perspectives. J. Clin. Med. 2023, 12, 1020. [Google Scholar] [CrossRef]
- Severino, P.; D’Amato, A.; Prosperi, S.; Dei Cas, A.; Mattioli, A.V.; Cevese, A.; Novo, G.; Prat, M.; Pedrinelli, R.; Raddino, R.; et al. On Behalf of the Italian National Institute For Cardiovascular Research Inrc. Do the Current Guidelines for Heart Failure Diagnosis and Treatment Fit with Clinical Complexity? J. Clin. Med. 2022, 11, 857. [Google Scholar] [CrossRef]
- von Lewinski, D.; Kolesnik, E.; Tripolt, N.J.; Pferschy, P.N.; Benedikt, M.; Wallner, M.; Alber, H.; Berger, R.; Lichtenauer, M.; Saely, C.H.; et al. Empagliflozin in acute myocardial infarction: The EMMY trial. Eur. Heart J. 2022, 43, 4421–4432. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef]
- Severino, P.; Maestrini, V.; Mariani, M.V.; Birtolo, L.I.; Scarpati, R.; Mancone, M.; Fedele, F. Structural and myocardial dysfunction in heart failure beyond ejection fraction. Heart Fail. Rev. 2020, 25, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Fedele, F.; Severino, P.; Calcagno, S.; Mancone, M. Heart failure: TNM-like classification. J. Am. Coll. Cardiol. 2014, 63, 1959–1960. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.C.; Moura, B.; Metra, M.; Böhm, M.; Bauersachs, J.; Ben Gal, T.; Adamopoulos, S.; Abdelhamid, M.; Bistola, V.; Čelutkienė, J.; et al. Patient profiling in heart failure for tailoring medical therapy. A consensus document of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2021, 23, 872–881. [Google Scholar] [CrossRef]
- Anker, S.D.; Usman, M.S.; Anker, M.S.; Butler, J.; Böhm, M.; Abraham, W.T.; Adamo, M.; Chopra, V.K.; Cicoira, M.; Cosentino, F.; et al. Patient phenotype profiling in heart failure with preserved ejection fraction to guide therapeutic decision making. A scientific statement of the Heart Failure Association, the European Heart Rhythm Association of the European Society of Cardiology, and the European Society of Hypertension. Eur. J. Heart Fail. 2023, 25, 936–955. [Google Scholar] [CrossRef]
- Verbrugge, F.H.; Guazzi, M.; Testani, J.M.; Borlaug, B.A. Altered Hemodynamics and End-Organ Damage in Heart Failure: Impact on the Lung and Kidney. Circulation 2020, 142, 998–1012. [Google Scholar] [CrossRef] [PubMed]
- Aspromonte, N.; Fumarulo, I.; Petrucci, L.; Biferali, B.; Liguori, A.; Gasbarrini, A.; Massetti, M.; Miele, L. The Liver in Heart Failure: From Biomarkers to Clinical Risk. Int. J. Mol. Sci. 2023, 24, 15665. [Google Scholar] [CrossRef] [PubMed]
- Szlagor, M.; Dybiec, J.; Młynarska, E.; Rysz, J.; Franczyk, B. Chronic Kidney Disease as a Comorbidity in Heart Failure. Int. J. Mol. Sci. 2023, 24, 2988. [Google Scholar] [CrossRef] [PubMed]
- Chioncel, O.; Mebazaa, A.; Maggioni, A.P.; Harjola, V.P.; Rosano, G.; Laroche, C.; Piepoli, M.F.; Crespo-Leiro, M.G.; Lainscak, M.; Ponikowski, P.; et al. Acute heart failure congestion and perfusion status—Impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2019, 21, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, B.; Llorens, P.; Gil, V.; Jacob, J.; Alquézar-Arbé, A.; Masip, J.; Llauger, L.; Tost, J.; Andueza, J.A.; Garrido, J.M.; et al. Impact of congestion and perfusion status in the emergency department on severity of decompensation and short-term prognosis in patients with acute heart failure. Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Kochar, A.; Doll, J.A.; Liang, L.; Curran, J.; Peterson, E.D. Temporal Trends in Post Myocardial Infarction Heart Failure and Outcomes Among Older Adults. J. Card. Fail. 2022, 28, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Elgendy, I.Y.; Mahtta, D.; Pepine, C.J. Medical Therapy for Heart Failure Caused by Ischemic Heart Disease. Circ. Res. 2019, 124, 1520–1535. [Google Scholar] [CrossRef] [PubMed]
- Kamon, D.; Sugawara, Y.; Soeda, T.; Okamura, A.; Nakada, Y.; Hashimoto, Y.; Ueda, T.; Nishida, T.; Onoue, K.; Okayama, S.; et al. Predominant subtype of heart failure after acute myocardial infarction is heart failure with non-reduced ejection fraction. ESC Heart Fail. 2021, 8, 317–325. [Google Scholar] [CrossRef]
- Jiang, H.; Fang, T.; Cheng, Z. Mechanism of heart failure after myocardial infarction. J. Int. Med. Res. 2023, 51, 3000605231202573. [Google Scholar] [CrossRef]
- Sutton, M.G.; Sharpe, N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 2000, 101, 2981–2988. [Google Scholar] [CrossRef]
- Gronda, E.; Sacchi, S.; Benincasa, G.; Vanoli, E.; Napoli, C. Unresolved issues in left ventricular postischemic remodeling and progression to heart failure. J. Cardiovasc. Med. 2019, 20, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Prosperi, S.; Myftari, V.; Colombo, L.; Tomarelli, E.; Piccialuti, A.; Di Pietro, G.; Birtolo, L.I.; Maestrini, V.; et al. Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA): Focus on Coronary Microvascular Dysfunction and Genetic Susceptibility. J. Clin. Med. 2023, 12, 3586. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef] [PubMed]
Heart (H) | Lungs (L) | Malfunction of Other Organs (M) |
---|---|---|
H1: Diastolic dysfunction and/or presence of structural cardiac damage * in absence of LV systolic dysfunction (LVEF ≥ 50%) | L0: Absence of any lung involvement | M0: Absence of malfunction of other organs ** |
H2: LV systolic (LVEF < 50%) or diastolic dysfunction with structural damage without LV dilation | L1: Hemodynamic lung involvement, assessed by CXR, and/or sPAP ≥ 35 mmHg at rest, assessed by TTE, with absence of clinical signs of lung congestion | M1: Presence of single end-organ damage (except heart and lungs) |
H3: LV dilation, structural cardiac damage with systolic (LVEF < 50%) or diastolic dysfunction, or right ventricular systolic dysfunction (TAPSE < 17 mm) | L2: Clinical signs and symptoms of lung congestion assessed by physical examination (crepitation, raised jugular venous pressure, orthopnea, dyspnea, necessity of supplemental oxygen due to cardiac causes) and increase in left ventricular filling pressure, assessed by echocardiographic evaluation and, if feasible, by right heart catheterization | M2: Presence of two instances of distinct end-organ damage (except heart and lungs) |
H4: Biventricular systolic dysfunction (LVEF < 50% and TAPSE < 17 mm) | L3: “Cardiac lung”, defined by arterialization of pulmonary vasculature, with post-capillary pulmonary hypertension (type II) and necessity of supplemental oxygen at discharge due to cardiac causes, despite use of congestion relief therapy and absence of congestion | M3: Presence of ≥3 instances of end-organ damage (except heart and lungs) |
Variable | Total Population (N = 146) | HLM-1 (N = 4) | HLM-2 (N = 63) | HLM-3 (N = 64) | HLM-4 (N = 15) | p Value |
---|---|---|---|---|---|---|
Age, years (SD) | 73 (13) | 63 (21) | 75 (12) | 73 (13) | 71 (12) | 0.55 |
Male gender, n (SD) | 110 (75.3) | 4 (100) | 48 (76.2) | 47 (73.4) | 11 (73.3) | 0.68 |
Previous HFH, n (%) | 64 (44) | 1 (25) | 32 (50.8) | 25 (39.1) | 6 (40) | 0.47 |
Acute decompensated HF, n (%) | 62 (42.5) | 2 (50) | 21 (33.3) | 28 (43.8) | 11 (73.3) | 0.04 |
Acute pulmonary edema, n (%) | 9 (6.2) | 0 (0) | 2 (3.2) | 7 (10.9) | 0 (0) | 0.19 |
Cardiogenic shock, n (%) | 3 (2.1) | 0 (0) | 0 (0) | 2 (3.1) | 1 (6.7) | 0.34 |
Arterial hypertension, n (%) | 116 (79.5) | 3 (75) | 51 (81) | 50 (78.1) | 12 (80) | 0.98 |
Diabetes mellitus, n (%) | 53 (36.3) | 0 (0) | 20 (31.7) | 28 (43.8) | 5 (33.3) | 0.22 |
Dyslipidemia, n (%) | 96 (65.8) | 4 (100) | 40 (63.5) | 43 (67.2) | 9 (60) | 0.47 |
Family history of CVD, n (%) | 38 (26) | 3 (75) | 12 (19) | 17 (26.6) | 6 (40) | 0.04 |
Smoking habit, n (%) | 67 (45.9) | 2 (50) | 31 (49.2) | 26 (40.6) | 8 (53.3) | 0.72 |
COPD, n (%) | 25 (17.1) | 1 (25) | 10 (16) | 11 (17) | 3 (20) | 0.953 |
Iron deficiency, n (%) | 22 (15) | 0 (0) | 8 (12.7) | 8 (12.5) | 6 (40) | 0.035 |
Atrial fibrillation, n (%) | 46 (31.5.) | 1 (25) | 15 (23.8) | 23 (36) | 7 (46.6) | 0.262 |
ACS at admission, (%) | 42 (28.8) | 1 (25) | 18 (28.6) | 21 (32.8) | 2 (13.3) | 0.2 |
ICD, n (%) | 37 (25.3) | 0 (0) | 10 (15.9) | 18 (28.1) | 9 (60) | 0.003 |
CRT-D, n (%) | 11 (7.5) | 0 (0) | 5 (7.9) | 4 (6.3) | 2 (13.3) | 0.75 |
PMK, n (%) | 19 (19.2) | 0 (0) | 6 (9.5) | 9 (14.1) | 4 (26.7) | 0.28 |
LVEF, % (SD) | 32 (15) | 41.3 (9) | 35 (16) | 30 (12) | 25 (10) | <0.001 |
TAPSE, mm (SD) | 18 (5) | 21 (11.2) | 18 (4) | 18 (6.8) | 14 (4) | 0.09 |
LVEDD, mm (SD) | 57.5 (13) | 60 (15.2) | 55 (13) | 59.5 (10) | 60 (7) | 0.08 |
IVS, mm (SD) | 11 (2) | 11.5 (1.8) | 11 (2) | 11 (2) | 10 (5) | 0.87 |
PW, mm (SD) | 10 (1.2) | 9 (1) | 10 (1) | 10 (2) | 10 (4) | 0.41 |
eGFR, mL/min/m2 (SD) | 61.8 (38) | 85.5 (27) | 70 (29.5) | 58 (33) | 40 (21) | 0.003 |
Variable | Total Population (N = 143) | HLM-1 (N = 4) | HLM-2 (N = 63) | HLM-3 (N = 62) | HLM-4 (N = 14) | p Value |
---|---|---|---|---|---|---|
BB, n (%) | 139 (97.2) | 4 (100) | 60 (95.2) | 61 (98.4) | 14 (100) | 0.82 |
ACEi/ARBs, n (%) | 32 (22.4) | 2 (50) | 17 (27) | 12 (19.3) | 1 (7.1) | 0.16 |
ARNI, n (%) | 86 (60.1) | 2 (50) | 37 (58.7) | 34 (54.8) | 13 (92.9) | 0.12 |
SGLT2i, n (%) | 72 (50.3) | 1 (25) | 31 (49.2) | 30 (48.4) | 10 (71.4) | 0.06 |
MRAs, n (%) | 117 (81.8) | 2 (50) | 48 (76.2) | 55 (88.7) | 12 (85.7) | 0.24 |
Total Population (N = 143) | |||||
---|---|---|---|---|---|
Outcome | HLM-1 | HLM-2 | HLM-3 | HLM-4 | p Value |
HFH, n (%) | 0 (0) | 5 (7.9) | 4 (6.5) | 3 (21.4) | 0.29 |
CV death, n (%) | 0 (0) | 2 (3.2) | 11 (17.7) | 4 (28.6) | 0.013 |
Urgent ambulatory visit, n (%) | 0 (0) | 12 (19) | 9 (14.5) | 4 (28.6) | 0.47 |
Diuretic dose escalation, n (%) | 0 (0) | 12 (19) | 9 (14.5) | 4 (28.6) | 0.47 |
Composite CV death/HFH, n (%) | 0 (0) | 7 (11.1) | 13 (21) | 7 (50) | 0.006 |
ACS Population (N = 41) | |||||
---|---|---|---|---|---|
Outcome | HLM-1 | HLM-2 | HLM-3 | HLM-4 | p Value |
HFH, n (%) | 0 (0) | 1 (5.6) | 1 (4.8) | 0 (0) | 0.9 |
CV death, n (%) | 0 (0) | 0 (0) | 6 (28.6) | 1 (100) | 0.013 |
Urgent ambulatory visit, n (%) | 0 (0) | 3 (16.7) | 4 (19) | 0 (0) | 0.92 |
Diuretic dose escalation, n (%) | 0 (0) | 3 (16.7) | 4 (19) | 0 (0) | 0.92 |
Composite CV death/HFH, n (%) | 0 (0) | 1 (5.6) | 6 (28.6) | 1 (100) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amato, A.; Severino, P.; Mancone, M.; Mariani, M.V.; Prosperi, S.; Colombo, L.; Myftari, V.; Cestiè, C.; Labbro Francia, A.; Germanò, R.; et al. Prognostic Assessment of HLM Score in Heart Failure Due to Ischemic Heart Disease: A Pilot Study. J. Clin. Med. 2024, 13, 3322. https://doi.org/10.3390/jcm13113322
D’Amato A, Severino P, Mancone M, Mariani MV, Prosperi S, Colombo L, Myftari V, Cestiè C, Labbro Francia A, Germanò R, et al. Prognostic Assessment of HLM Score in Heart Failure Due to Ischemic Heart Disease: A Pilot Study. Journal of Clinical Medicine. 2024; 13(11):3322. https://doi.org/10.3390/jcm13113322
Chicago/Turabian StyleD’Amato, Andrea, Paolo Severino, Massimo Mancone, Marco Valerio Mariani, Silvia Prosperi, Lorenzo Colombo, Vincenzo Myftari, Claudia Cestiè, Aurora Labbro Francia, Rosanna Germanò, and et al. 2024. "Prognostic Assessment of HLM Score in Heart Failure Due to Ischemic Heart Disease: A Pilot Study" Journal of Clinical Medicine 13, no. 11: 3322. https://doi.org/10.3390/jcm13113322
APA StyleD’Amato, A., Severino, P., Mancone, M., Mariani, M. V., Prosperi, S., Colombo, L., Myftari, V., Cestiè, C., Labbro Francia, A., Germanò, R., Pierucci, N., Fanisio, F., Marek-Iannucci, S., De Prisco, A., Scoccia, G., Birtolo, L. I., Manzi, G., Lavalle, C., Sardella, G., ... Vizza, C. D. (2024). Prognostic Assessment of HLM Score in Heart Failure Due to Ischemic Heart Disease: A Pilot Study. Journal of Clinical Medicine, 13(11), 3322. https://doi.org/10.3390/jcm13113322