Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Baseline Characteristics and Cardiovascular Risk Factors
2.3. Sample Collection
2.4. Prospective Follow-Up
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Plasma Levels of Inflammatory Proteins and Growth Factors
3.3. Predicting Major Adverse Events
3.4. Probability Score Analysis
0.29 × Age (years) +
0.11 × Sex (Male = 1; Female =) +
0.13 × Hypertension (Yes = 1; No = 0) +
0.09 × Dyslipidemia (Yes = 1; No = 0) +
0.16 × Diabetes (Yes = 1; No = 0) +
0.19 × Smoking (Current = 2; Past = 1; No = 0) +
0.14 × CHF (Yes = 1; No = 0) +
0.21 × CAD (Yes = 1; No = 0) +
0.12 × CXCL6 (normalized value pg/mL) +
0.32 × IL-2 (normalized value pg/mL) +
0.21× ANGPTL4 (normalized value pg/mL) +
0.30 × Galectin-9 (normalized value pg/mL)
3.5. Risk Stratification of Patients Based on Clinical Features and Protein Biomarker Panel
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Diagnostic Capabilities of Plasma Proteins
AUC | Accuracy | Sensitivity | Specificity | F1 Score | |
---|---|---|---|---|---|
Panel | 0.80 | 0.78 | 0.65 | 0.82 | 0.66 |
Clinical Feature | 0.59 | 0.68 | 0.55 | 0.70 | 0.52 |
Panel + Clinical Feature | 0.82 | 0.81 | 0.72 | 0.85 | 0.70 |
Appendix A.2. Diagnostic Capabilities of Plasma Proteins
AUC | Accuracy | Sensitivity | Specificity | F1 Score | |
---|---|---|---|---|---|
Panel | 0.74 | 0.70 | 0.68 | 0.72 | 0.68 |
Clinical Feature | 0.59 | 0.60 | 0.55 | 0.65 | 0.56 |
Panel + Clinical Feature | 0.89 | 0.85 | 0.80 | 0.90 | 0.81 |
References
- Bir, S.C.; Kelley, R.E. Carotid atherosclerotic disease: A systematic review of pathogenesis and management. Brain Circ. 2022, 8, 127–136. [Google Scholar] [PubMed]
- Bandyk, D.F. Follow-up after carotid endarterectomy and stenting: What to look for and why. Semin. Vasc. Surg. 2020, 33, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Dharmakidari, S.; Bhattacharya, P.; Chaturvedi, S. Carotid Artery Stenosis: Medical Therapy, Surgery, and Stenting. Curr. Neurol. Neurosci. Rep. 2017, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- Guirguis-Blake, J.M.; Webber, E.M.; Coppola, E.L. Screening for Asymptomatic Carotid Artery Stenosis in the General Population: An Evidence Update for the U.S. Preventive Services Task Force. In U.S. Preventive Services Task Force Evidence Syntheses, Formerly Systematic Evidence Reviews; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2021. Available online: http://www.ncbi.nlm.nih.gov/books/NBK567809/ (accessed on 2 August 2023).
- Chambers, B.R.; Donnan, G. Carotid endarterectomy for asymptomatic carotid stenosis. Cochrane Database Syst. Rev. 2005, 2005, CD001923. [Google Scholar] [CrossRef] [PubMed]
- Nadareishvili, Z.G.; Rothwell, P.M.; Beletsky, V.; Pagniello, A.; Norris, J.W. Long-term Risk of Stroke and Other Vascular Events in Patients With Asymptomatic Carotid Artery Stenosis. Arch. Neurol. 2002, 59, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Mott, M.; Koroshetz, W.; Wright, C.B. CREST-2: Identifying the Best Method of Stroke Prevention for Carotid Artery Stenosis. Stroke 2017, 48, e130–e131. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Marler, J.R.; Goldstein, M.; Grady, P.A.; Toole, J.F.; Baker, W.H.; Castaldo, J.E.; Chambless, L.E.; Moore, W.S.; Robertson, J.T.; et al. Enderterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA 1995, 273, 1421–1428. [Google Scholar] [CrossRef]
- Ricotta, J.J.; Aburahma, A.; Ascher, E.; Eskandari, M.; Faries, P.; Lal, B.K.; Society for Vascular Surgery. Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease: Executive summary. J. Vasc. Surg. 2011, 54, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Beaton, D.; Eisenberg, N.; Lee, D.S.; Wijeysundera, D.N.; Lindsay, T.F.; de Mestral, C.; Mamdani, M.; Roche-Nagle, G.; Al-Omran, M. Using machine learning to predict outcomes following carotid endarterectomy. J. Vasc. Surg. 2023, 78, 973–987.e6. [Google Scholar] [CrossRef]
- Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, Indicators, Risk Factors and New Hopes. Int. J. Prev. Med. 2014, 5, 927–946. [Google Scholar]
- Wolf, D.; Ley, K. Immunity and Inflammation in atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Thèze, J. Interleukin 2. In Encyclopedia of Immunology, 2nd ed.; Delves, P.J., Ed.; Elsevier: Oxford, UK, 1998; pp. 1436–1438. Available online: https://www.sciencedirect.com/science/article/pii/B0122267656003741 (accessed on 30 May 2024).
- Shindo, A.; Tanemura, H.; Yata, K.; Hamada, K.; Shibata, M.; Umeda, Y.; Asakura, F.; Toma, N.; Sakaida, H.; Fujisawa, T.; et al. Inflammatory Biomarkers in Atherosclerosis: Pentraxin 3 Can Become a Novel Marker of Plaque Vulnerability. PLoS ONE 2014, 9, e100045. [Google Scholar] [CrossRef] [PubMed]
- Biscetti, F.; Straface, G.; De Cristofaro, R.; Lancellotti, S.; Rizzo, P.; Arena, V.; Stigliano, E.; Pecorini, G.; Egashira, K.; De Angelis, G.; et al. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes 2010, 59, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, T.; Kiris, T.; Avci, E.; Yildirim, S.E.; Argan, O.; Safak, Ö.; Aktas, Z.; Toklu, O.; Esin, F.K. Increased Serum CRP-Albumin Ratio Is Independently Associated With Severity of Carotid Artery Stenosis. Angiology 2020, 71, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Tay, N.Q.; Lee, D.C.P.; Chua, Y.L.; Prabhu, N.; Gascoigne, N.R.J.; Kemeny, D.M. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells. Front. Immunol. 2017, 8, 1484. [Google Scholar] [CrossRef] [PubMed]
- Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway and its Potential for Therapeutic Intervention in Malignancy and Ischemia. Yale J. Biol. Med. 2007, 80, 51–60. [Google Scholar] [PubMed]
- Thomas, C.; Leleu, D.; Masson, D. Cholesterol and HIF-1 α: Dangerous Liaisons in Atherosclerosis. Front. Immunol. 2022, 13, 868958. [Google Scholar] [CrossRef]
- Moller, M.J.; Qin, Z.; Toursarkissian, B. Tissue Markers in Human Atherosclerotic Carotid Artery Plaque. Ann. Vasc. Surg. 2012, 26, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, T.M.; Burch, J.B.; Lassar, A.B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 1997, 11, 451–462. [Google Scholar] [CrossRef]
- Chang, Y.J.; Golby, A.J.; Albers, G.W. Detection of Carotid Stenosis. Stroke 1995, 26, 1325–1328. [Google Scholar] [CrossRef]
- Chen, J.C.; Salvian, A.J.; Taylor, D.C.; Teal, P.A.; Marotta, T.R.; Hsiang, Y.N. Predictive ability of duplex ultrasonography for internal carotid artery stenosis of 70%–99%: A comparative study. Ann. Vasc. Surg. 1998, 12, 244–247. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Szentes, V.; Gazdag, M.; Szokodi, I.; Dézsi, C.A. The Role of CXCR3 and Associated Chemokines in the Development of Atherosclerosis and During Myocardial Infarction. Front. Immunol. 2018, 9, 1932. [Google Scholar] [CrossRef] [PubMed]
- Oyenuga, A.; Folsom, A.R.; Fashanu, O.; Aguilar, D.; Ballantyne, C.M. Plasma Galectin-3 and Sonographic Measures of Carotid Atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study. Angiology 2019, 70, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Pelisek, J.; Well, G.; Reeps, C.; Rudelius, M.; Kuehnl, A.; Culmes, M.; Poppert, H.; Zimmermann, A.; Berger, H.; Eckstein, H.-H. Neovascularization and angiogenic factors in advanced human carotid artery stenosis. Circ. J. 2012, 76, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Puz, P.; Lasek-Bal, A.; Ziaja, D.; Kazibutowska, Z.; Ziaja, K. Inflammatory markers in patients with internal carotid artery stenosis. Arch. Med. Sci. 2013, 9, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Sheedy, F.; Fisher, E. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, Y.; Zhang, X.; Pan, K.; Deng, Y.; Wang, J.; Xu, T. CXCL6 regulates cell permeability, proliferation, and apoptosis after ischemia-reperfusion injury by modulating Sirt3 expression via AKT/FOXO3a activation. Cancer Biol. Ther. 2021, 22, 30–39. [Google Scholar] [CrossRef] [PubMed]
- CXCL1 C-X-C Motif Chemokine Ligand 1 [Homo Sapiens (Human)]-Gene-NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/2919#summary (accessed on 1 November 2023).
- Wu, C.L.; Yin, R.; Wang, S.N.; Ying, R. A Review of CXCL1 in Cardiac Fibrosis. Front. Cardiovasc. Med. 2021, 8, 674498. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, Z.; Wang, R.; Zheng, Y.; Li, H.; Yang, L. Galectin-3 Is a Potential Mediator for Atherosclerosis. J. Immunol. Res. 2020, 2020, 5284728. [Google Scholar] [CrossRef]
- Cummings, R.D.; Liu, F.T. Galectins. In Essentials of Glycobiology, 2nd ed.; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2009. Available online: http://www.ncbi.nlm.nih.gov/books/NBK1944/ (accessed on 3 August 2023).
- Seropian, I.M.; González, G.E.; Maller, S.M.; Berrocal, D.H.; Abbate, A.; Rabinovich, G.A. Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities. Mediat. Inflamm. 2018, 2018, 8696543. [Google Scholar] [CrossRef] [PubMed]
- Krautter, F.; Hussain, M.T.; Zhi, Z.; Lezama, D.R.; Manning, J.E.; Brown, E.; Marigliano, N.; Raucci, F.; Recio, C.; Chimen, M.; et al. Galectin-9: A novel promoter of atherosclerosis progression. Atherosclerosis 2022, 363, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Rayfield, E.J. How hyperglycemia promotes atherosclerosis: Molecular mechanisms. Cardiovasc. Diabetol. 2002, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-Y.; Chen, T.-T.; Xia, L.; Guo, M.; Xu, Y.; Yue, F.; Jiang, Y.; Chen, G.-Q.; Zhao, K.-W. Hypoxia inducible factor-1 mediates expression of galectin-1: The potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 2010, 31, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; Gawrońska-Szklarz, B.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int. J. Mol. Sci. 2021, 22, 843. [Google Scholar] [CrossRef] [PubMed]
- Raines, E.W.; Ross, R. Biology of atherosclerotic plaque formation: Possible role of growth factors in lesion development and the potential impact of soy. J. Nutr. 1995, 125 (Suppl. S3), 624S–630S. [Google Scholar] [PubMed]
- Tarugi, P.; Bertolini, S.; Calandra, S. Angiopoietin-like protein 3 (ANGPTL3) deficiency and familial combined hypolipidemia. J. Biomed. Res. 2019, 33, 73–81. [Google Scholar] [CrossRef]
- Santulli, G. Angiopoietin-Like Proteins: A Comprehensive Look. Front. Endocrinol. 2014, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Sara, J.D.; Wang, F.-L.; Liu, L.-P.; Su, L.-X.; Zhe, J.; Wu, X.; Liu, J.-H. Increased plasma BMP-2 levels are associated with atherosclerosis burden and coronary calcification in type 2 diabetic patients. Cardiovasc. Diabetol. 2015, 14, 64. [Google Scholar] [CrossRef]
- Volkers, E.J.; Algra, A.; Kappelle, L.J.; Jansen, O.; Howard, G.; Hendrikse, J.; Halliday, A.; Gregson, J.; Fraedrich, G.; Eckstein, H.-H.; et al. Prediction Models for Clinical Outcome After a Carotid Revascularization Procedure. Stroke 2018, 49, 1880–1885. [Google Scholar] [CrossRef]
- Li, B.; Verma, R.; Beaton, D.; Tamim, H.; Hussain, M.A.; Hoballah, J.J.; Lee, D.S.; Wijeysundera, D.N.; de Mestral, C.; Mamdani, M.; et al. Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning. J. Am. Heart Assoc. 2023, 12, e030508. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Feridooni, T.; Cuen-Ojeda, C.; Kishibe, T.; de Mestral, C.; Mamdani, M.; Al-Omran, M. Machine learning in vascular surgery: A systematic review and critical appraisal. NPJ Digit. Med. 2022, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
<50% CS | ≥50% CS | p | ||
---|---|---|---|---|
(n = 94) | (n = 155) | |||
Mean ± SD | ||||
Age | 66.7 ± 10.3 | 72.8 ± 8.61 | 0.001 | |
Sex | Male | 59 (63) | 99 (63) | 0.861 |
Female | 35 (37) | 56 (37) | ||
% (n) | ||||
Hypertension | 65 (69) | 116 (75) | 0.328 | |
Hyperlipidemia | 61 (65) | 134 (86) | <0.001 | |
DM | 16 (17) | 49 (32) | 0.011 | |
Smoking | 64 (68) | 115 (74) | 0.288 | |
CHF | 3 (3) | 5 (3) | 0.988 | |
CAD | 27 (29) | 63 (41) | 0.058 | |
Statin | 73 (69) | 89 (138) | 0.0026 | |
ACEi/ARB | 50 (47) | 89 (57) | 0.2939 | |
B-bl | 27 (29) | 32 (50) | 0.5752 | |
CCB | 18 (17) | 35 (23) | 0.4258 | |
Renal Insufficiency | 0 (0) | 0(0) | >0.999 | |
Diuretic | 11(12) | 21 (14) | 0.8454 | |
Oral Hypoglycemic | 12 (13) | 29 (18) | 0.2903 | |
Insulin | 1 (1) | 12 (8) | 0.0204 | |
Antiplatelet(s) Only | 57 (54) | 74 (114) | 0.0118 | |
Anticoagulant(s) Only | 6 (6) | 8 (12) | 0.8037 | |
Combination of Antiplatelet + Anticoagulant | 4 (4) | 5 (7) | 0.9999 |
<50% CS (n = 94) | CS (n = 155) | p | |
---|---|---|---|
Surgical Intervention | 0 (0) | 10 (7) | 0.012 |
MI | 4 (4) | 7 (5) | 0.923 |
Stroke | 0 (0) | 6 (4) | 0.053 |
MACCE | 4 (4) | 19 (12) | 0.034 |
AUC | Accuracy | Sensitivity | Specificity | F1 Score | |
---|---|---|---|---|---|
Panel | 0.76 | 0.80 | 0.65 | 0.85 | 0.62 |
Clinical Feature | 0.60 | 0.70 | 0.50 | 0.75 | 0.47 |
Panel + Clinical Feature | 0.88 | 0.88 | 0.70 | 0.92 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, H.; Zamzam, A.; Shaikh, F.; Saposnik, G.; Mamdani, M.; Qadura, M. Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features—A Pilot Study. J. Clin. Med. 2024, 13, 3382. https://doi.org/10.3390/jcm13123382
Khan H, Zamzam A, Shaikh F, Saposnik G, Mamdani M, Qadura M. Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features—A Pilot Study. Journal of Clinical Medicine. 2024; 13(12):3382. https://doi.org/10.3390/jcm13123382
Chicago/Turabian StyleKhan, Hamzah, Abdelrahman Zamzam, Farah Shaikh, Gustavo Saposnik, Muhammad Mamdani, and Mohammad Qadura. 2024. "Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features—A Pilot Study" Journal of Clinical Medicine 13, no. 12: 3382. https://doi.org/10.3390/jcm13123382
APA StyleKhan, H., Zamzam, A., Shaikh, F., Saposnik, G., Mamdani, M., & Qadura, M. (2024). Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features—A Pilot Study. Journal of Clinical Medicine, 13(12), 3382. https://doi.org/10.3390/jcm13123382