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Abstract: Background: Carotid stenosis (CS) is an atherosclerotic disease of the carotid artery that
can lead to devastating cardiovascular outcomes such as stroke, disability, and death. The currently
available treatment for CS is medical management through risk reduction, including control of
hypertension, diabetes, and/or hypercholesterolemia. Surgical interventions are currently suggested
for patients with symptomatic disease with stenosis >50%, where patients have suffered from a
carotid-related event such as a cerebrovascular accident, or asymptomatic disease with stenosis >60%
if the long-term risk of death is <3%. There is a lack of current plasma protein biomarkers available
to predict patients at risk of such adverse events. Methods: In this study, we investigated several
growth factors and biomarkers of inflammation as potential biomarkers for adverse CS events such
as stroke, need for surgical intervention, myocardial infarction, and cardiovascular-related death. In
this pilot study, we use a support vector machine (SVM), random forest models, and the following
four significantly elevated biomarkers: C-X-C Motif Chemokine Ligand 6 (CXCL6); Interleukin-2
(IL-2); Galectin-9; and angiopoietin-like protein (ANGPTL4). Results: Our SVM model best predicted
carotid cerebrovascular events with an area under the curve (AUC) of >0.8 and an accuracy of 0.88,
demonstrating strong prognostic capability. Conclusions: Our SVM model may be used for risk
stratification of patients with CS to determine those who may benefit from surgical intervention.

Keywords: carotid stenosis; biomarkers; protein; prognostication; stroke

1. Introduction

Carotid stenosis (CS) is an atherosclerotic disease characterized by the narrowing of
the internal carotid, external carotid, and/or common carotid artery. Atherosclerosis occurs
through the initiation of local inflammation induced by increased levels of low-density
lipoprotein (LDL) cholesterol, in combination with injury to the endothelium by disease
factors such as diabetes mellites, hypertension, and smoking [1,2]. CS can lead to a transient
ischemic attack (TIA) or a cerebrovascular attack (CVA), more commonly known as a stroke,
and accounts for approximately 7% of all ischemic strokes [3]. Risk factors for CS include
hypertension, hypercholesterolemia, diabetes mellitus, and smoking, and with an aging
population, the prevalence of CS is on the rise [4].

CS can present as either symptomatic, where patients present with a TIA or CVA, or
asymptomatic, where patients do not suffer from any symptoms yet can have stenosis
with up to 99% reduction in carotid diameter. Surgical interventions, such as carotid
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endarterectomy (CEA) and carotid artery stenting (CS), are often suggested for patients
with symptomatic CS > 50% [5,6]. Additionally, studies such as the Asymptomatic Carotid
Atherosclerosis Study (ACAS) trial as well as the Carotid Revascularization Endarterectomy
vs. Stenting trial (CREST) suggest that asymptomatic patients with CS > 60% may benefit
from CEA, showing a risk reduction of 53% in stroke and death and no significant difference
in primary endpoints of stroke, myocardial infarction, or death between asymptomatic
patients who received carotid CEA or CS [7,8]. Now, the Society for Vascular Surgery (SVS)
suggests that asymptomatic patients with stenosis >60% can be provided CEA only if the
3–5 year perioperative risk of death is <3% [9]. This decision is often made by the judgment
of the treating physician based on clinical features alone, such as age, percent stenosis,
plaque morphology, past medical history, family history, etc. Current methods used to
predict the outcomes following CEA have several limitations and poor performance with
AUCs between 0.58 and 0.74 [10], indicating a need for better prediction models.

Atherosclerosis has clear pathophysiological effects on several cellular pathways, with
inflammation and the release of cytokines and growth factors being a significant factor in
the initiation and progression of the disease [11,12]. As excessive low-density lipoprotein
cholesterol (LDL-C) is taken up by macrophages at the site of arterial injury, the uptake
is exhausted, leading to the formation of foam cells. These foam cells not only play a
significant role in atherosclerotic plaque formation but also induce the activation of the
inflammatory pathway, often associated with their apoptosis and release of inflammatory
cytokines such as high sensitivity C-reactive protein (hs-CRP), interleukin 6 (IL-6), as well
as tissue necrosis factor (TNF). These cytokines and chemokines recruit and activate Th1
helper T cells at the location of the atherosclerotic plaque that then release Interleukin-2
(IL-2), required for the maturation and activation of T cells, antigen-presenting B cells
(which carry CD40 required for their activation), and natural killer cells [13]. This increases
the inflammatory environment and increases atherosclerosis in the area. Previous studies
have demonstrated an increase in these inflammatory proteins in patients with CS when
compared to patients without CS [14–16], and hence, patients with CS may also have
elevated levels of IL-2 and CD40 [17].

Angiogenesis and inflammation are two key factors in the progression of atherosclero-
sis that can contribute to the destabilization of atherosclerotic plaques. Hypoxia-inducible
factor-1 alpha (HIF-1 α) is a transcription factor known to regulate several genes that
are responsible for the homeostasis of oxygen within tissues, specifically in response to
hypoxia through glucose, anaerobic respiration, angiogenesis, and inflammation [18]. HIF-
1 α has been associated with atheromatous inflammatory plaques, as well as shown to
be correlated with CS through its role in angiogenic and proinflammatory pathways in
human and murine models [19,20]. Hence, in this study, we investigated inflammatory
and angiogenic proteins in this pathway, specifically C-X-C Motif Chemokine Ligands
(CXCL), galectin proteins, as well as growth factors such as angiopoietin-related proteins.
Bone morphogenic proteins also play an important role in angiogenesis, regulating the
expression of various angiogenic factors, such as vascular endothelial growth factor (VEGF),
as well as stimulating the proliferation and migration of endothelial cells [21]. Investigating
these proteins and pathways may allow for discovering novel prognostic biomarkers for
adverse cardiovascular outcomes in patients with CS.

There is a lack of a strong clinically relevant biomarker or a combination of biomarkers
that can predict adverse outcomes in this patient population. In this pilot study, we
investigated several inflammatory proteins and growth factors, their association with CS,
and their ability to predict adverse outcomes, including TIA, CVA, and death. CS often
goes undetected before catastrophic adverse events occur; hence, having the capability of
predicting those patients who are at a higher risk of an adverse event is crucial in devising
targeted and effective preventive strategies.
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2. Materials and Methods
2.1. Patient Selection

Asymptomatic patients (no cerebrovascular symptoms, including transient ischemic
attack (TIA), stroke, or other carotid-related ischemic events within the past six months)
attending St. Michael’s Hospital clinics between 2018 and 2020 for carotid artery ultrasound
were recruited. All patients underwent a thorough physical examination by a vascular spe-
cialist and had a carotid Doppler ultrasound conducted by a vascular ultrasound technician.
Percent stenosis of the carotid artery was determined based on the Washington criteria
for CS [22,23]. Patients with non-CS-related strokes were excluded from this study. To
ensure accuracy, two vascular surgeons and one neurologist reviewed each carotid patient’s
ultrasound to determine the degree of CS. Additionally, every stroke patient underwent
comprehensive evaluation by two vascular surgeons and a neurologist, including advanced
imaging (CTA, MRI, and US) to confirm the carotid artery’s involvement. Based on the
internal carotid artery (ICA) peak systolic velocity (PSV), end-diastolic velocity (EDV), and
the ratio of the ICA to common carotid artery (CCA) PSVs, patients were determined to
have either <50% stenosis (hemodynamically non-significant CS, the “<50% CS” group),
≥50% stenosis (“CS” group). Patients with CS < 50% stenosis were considered as hemody-
namically non-significant stenosis, as this population of patients is not surgically treated
for CS by specialists. Patients with only total occlusions within the carotid artery were
excluded due to the low risk of embolic stroke from the occluded carotid artery.

2.2. Baseline Characteristics and Cardiovascular Risk Factors

The patient’s past medical history, including the history of hypertension, hyperc-
holesterolemia, diabetes mellitus, smoking status, history of stroke, transient ischemic
attacks (TIA), coronary artery disease, congestive heart failure, and renal insufficiency,
were collected. Patients taking lipid-lowering therapy or individuals with total choles-
terol levels greater than 5.2 mmol/L or triglyceride levels greater than 1.7 mmol/L were
considered hyperlipidemic. A systolic blood pressure > 130 mm Hg or diastolic blood
pressure > 80 mm Hg was considered hypertensive. Patients with glycosylated hemoglobin
A1c > 6.5% were considered diabetic.

2.3. Sample Collection

Blood was drawn from the antecubital vein into citrated vacutainer tubes. Plasma was
isolated by centrifugation at 1000× g for 10 min at 4 ◦C and stored at −80 ◦C until protein
quantification. Luminex Discovery Assay Kits from Bio-Techne R&D Systems (LXSAHM-
15, Minneapolis, MN, USA) were used as described by the manufacturer to quantify the
levels of the following inflammatory proteins: C-X-C Motif Chemokine Ligands 1 (CXCL1);
CXCL6, Galectin-1; Galectin-9; interleukin2-(IL-2); Cluster of differentiation 40 (CD40);
CD40 ligand (CD40L), and the following growth factors: angiopoietin-1; angiopoietin-like
protein 3 (ANGPTL3); ANGPTL4; ANGPTL6; and bone morphogenetic protein 2 (BMP-2).
Each patient provided one blood sample, and each sample’s protein quantification was run
in duplicates, and values were averaged between the two runs.

2.4. Prospective Follow-Up

Patients were followed up for 24 months at 6 or 12-month intervals, according to
the SVS guidelines [2,9]. At each visit, the patient underwent a repeat carotid Doppler
ultrasound to determine the degree of CS, and each patient had an examination by a
vascular specialist. Any changes in clinical history or medication were recorded through
interviews with the patients and reviews of the patients’ medical charts. Any amaurosis
fungus, TIA, strokes, myocardial infarctions (MI), carotid surgical interventions, including
CEA and carotid stenting, and cardiovascular-related death were noted. No patients were
lost to follow-up.
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2.5. Outcomes

The primary outcomes for this study included any incidence of major adverse cere-
brovascular and carotid-related events (MACCE), defined as the composite of the incidence
of amaurosis fugax, TIA, or CVA, and any carotid-related surgical intervention, such as
CEA or carotid stenting.

2.6. Statistical Analysis

In this study, we summarized demographic and clinical characteristics by presenting
means and standard deviations for continuous variables and frequencies and percentages
for categorical variables. Initial group comparisons were conducted using the Mann–
Whitney test for continuous variables and chi-square tests for categorical variables. Subse-
quently, we identified significant proteins for further investigation in a protein panel model.

For modeling, the dataset was split into a 70% training set and a 30% testing set. The
study model was constructed using support vector machine (SVM) regression. SVM is
an algorithm used for classification tasks. The coefficients from the linear SVM represent
the weights assigned to each feature, which is used to make predictions. We developed
three distinct models to assess risk prediction. The first model incorporated the significant
proteins identified through our comparative analysis (protein panel model). The second
model comprised clinical features, including Age (years), Sex (Male = 1; Female = 0),
Hypertension (Yes = 1; No = 0), Dyslipidemia (Yes = 1; No = 0), Diabetes (Yes = 1; No = 0),
Smoking (0.19 × Current = 2; Past = 1; No = 0), congestive heart failure (CHF) (Yes = 1;
No = 0), and coronary artery disease (CAD) (Yes = 1; No = 0) (clinical features model).
Lastly, the third model combined both the significant proteins and clinical features (full
model). To assess the comparative performance of the models, we conducted DeLong’s test
to examine statistical differences in the Area Under the Receiver Operating Characteristic
curves (AUCs). We also used a range of evaluation metrics to comprehensively evaluate
the models’ effectiveness in diagnosing CS and predicting 2-year Major Adverse Carotid-
Related Cerebrovascular Events (MACCE). These metrics included Sensitivity, Specificity,
Positive Predictive Value (PPV), Negative Predictive Value (NPV), and Accuracy. For
Kaplan–Meier analysis, each patient was assigned a specific score based on their protein
concentration, leading to the division of the overall cohort into high and low-score groups.
Event-free survival curves were computed, and event-free survival between subgroups was
compared using the log-rank test. A linear SVM was used for prognostic modeling. The
linear SVM finds the optimal hyperplane that maximizes the margin between the classes.
The coefficients from the linear SVM represent the weights assigned to each feature. These
coefficients were used in a linear equation to model the relationship between the features
and the MACCE. Statistical significance was established at p < 0.05 (two-sided), and these
analyses were conducted using Prism Version 10.1.0 and Python V3.

3. Results
3.1. Patient Demographics

A total of 155 patients with CS were enrolled, alongside 94 patients exhibiting hemo-
dynamically non-significant CS (<50% stenosis) who served as the <50% CS control group
(Table 1). Males comprised 63% of the overall population, with the CS group display-
ing a significantly higher age compared to the <50% CS group (72.8 ± 8.61 years vs.
66.7 ± 10.3 years, respectively). Furthermore, the CS group exhibited notably higher rates
of hypercholesterolemia and diabetes mellitus and a tendency toward increased rates of
coronary artery disease. Conversely, no significant differences were observed in terms of
sex, hypertension, smoking status, and congestive heart failure between the two groups.
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Table 1. Demographics and clinical features of patients recruited with and without carotid stenosis
(CS).

<50% CS ≥50% CS p
(n = 94) (n = 155)

Mean ± SD
Age 66.7 ± 10.3 72.8 ± 8.61 0.001

Sex
Male 59 (63) 99 (63)

0.861Female 35 (37) 56 (37)

% (n)

Hypertension 65 (69) 116 (75) 0.328
Hyperlipidemia 61 (65) 134 (86) <0.001

DM 16 (17) 49 (32) 0.011
Smoking 64 (68) 115 (74) 0.288

CHF 3 (3) 5 (3) 0.988
CAD 27 (29) 63 (41) 0.058
Statin 73 (69) 89 (138) 0.0026

ACEi/ARB 50 (47) 89 (57) 0.2939
B-bl 27 (29) 32 (50) 0.5752
CCB 18 (17) 35 (23) 0.4258

Renal Insufficiency 0 (0) 0(0) >0.999
Diuretic 11(12) 21 (14) 0.8454

Oral Hypoglycemic 12 (13) 29 (18) 0.2903
Insulin 1 (1) 12 (8) 0.0204

Antiplatelet(s) Only 57 (54) 74 (114) 0.0118
Anticoagulant(s) Only 6 (6) 8 (12) 0.8037

Combination of Antiplatelet +
Anticoagulant 4 (4) 5 (7) 0.9999

DM, Diabetes mellitus; CHF, Congestive Heart Failure; CAD, Coronary Artery Disease; ACEi/ARB, Angiotensin-
Converting Enzyme Inhibitors; CCB, Calcium Channel Blocker; CS, Carotid Stenosis. Continuous variables are
presented as mean ± standard deviation, and categorical variables are presented as % (n), where n represents the
total number of patients.

3.2. Plasma Levels of Inflammatory Proteins and Growth Factors

In this study, patients with CS exhibited notably higher plasma concentrations of
several biomarkers when compared to patients with <50% stenosis. Specifically, the me-
dian plasma levels of CXCL6 were 186.3 pg/mL [IQR 148.0–299.9] in the CS group vs.
176.7 pg/mL [IQR 134.8–255.1] in the <50% CS group, with a statistical significance of
p = 0.043. For IL-2, the median was 83.7 pg/mL [IQR 54.6–114.3] compared to 66.6 pg/mL
[IQR 45.6–106.7]; p = 0.027. Galectin-1 levels were 45 ng/mL [IQR 25–60] against 39.7 ng/mL
[IQR 28.1–50.7]; p = 0.006. Galectin-9 levels were markedly higher at 10.3 ng/mL [IQR
7.8–13.3] compared to 8.5 ng/mL [IQR 5.9–10.8]; p = 0.001. ANGPTL4 levels also differed
significantly, with the CS group having a median of 157.2 ng/mL [IQR 116.3–218.4] vs.
130.6 ng/mL [IQR 102.0–162.7] in the <50% group; p = 0.002. There were no statistically sig-
nificant differences in the levels of angiopoietin-1, ANGPTL3, ANGPTL6, CXCL1, BMP-2,
and CD40L between the two groups, as illustrated in Figure 1.
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Figure 1. Levels of inflammatory proteins and growth factors in patients with and without carotid
stenosis (CS). CS was defined as those with stenosis in the internal, external, or common carotid
artery of >50%. C-X-C Motif Chemokine Ligand 6 (CXCL6), Interleukin-2 (IL-2), Angiopoietin-like 4
(ANGPTL4), Cluster of differentiation 40 (CD40), CD40 ligand (CD40L), bone morphogenetic protein
2 (BMP-2). * Represents a significant difference between patients with carotid stenosis <50% and
those with carotid stenosis >50%, with a p value < 0.05.

3.3. Predicting Major Adverse Events

Follow-up data were available for an average duration of 22 ± 5 months, with the
majority (92%) of the cohort having complete data for the entire 24-month follow-up
period. Within the group with <50% CS, there were only four incidents, all of which were
myocardial infarctions (MIs). Conversely, in the group with more significant CS, there
were 10 instances requiring surgical intervention, along with seven MIs and six strokes
reported. Statistical analysis revealed a significantly elevated incidence of Major Adverse
Carotid-related Cerebrovascular Events (MACCE) in the CS group as opposed to the <50%
CS group (p = 0.034), as detailed in Table 2.
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Table 2. Distribution of adverse events during the 24-month follow-up period in patients with and
without CS.

<50% CS
(n = 94)

CS
(n = 155) p

Surgical Intervention 0 (0) 10 (7) 0.012
MI 4 (4) 7 (5) 0.923

Stroke 0 (0) 6 (4) 0.053
MACCE 4 (4) 19 (12) 0.034

MI, Myocardial Infarction; MACCE, Major Adverse Carotid-related Cerebrovascular Events; CS, Carotid Stenosis.
Data are presented as n(%), where n represents the number of patients with overall percentage in brackets.

This study evaluated the prognostic potential of specific plasma proteins in patients
with CS using support vector machine (SVM) models. These models, which were formu-
lated based on the plasma levels of CXCL6, IL-2, Galectin-9, and ANGPTL4—proteins
found to be significantly higher in CS patients—served to assess the likelihood of Major
Adverse Carotid Cerebrovascular Events (MACCE). Galectin-1 was excluded from this
model due to its substantial correlation with Galectin-9, exhibiting a correlation coefficient
greater than 0.7. CD40 was excluded from this model due to its low feature importance
and negligible change in the model’s overall predictive capability.

The accuracy of the SVM models was measured by their ability to predict MACCE.
Models using only clinical features demonstrated limited predictive accuracy (as shown in
Figure 2, green line, with an Area Under the Curve (AUC) of 0.60). The accuracy was notably
better when utilizing the biomarker panel alone (Figure 2, red line; AUC = 0.76). However,
the integration of both clinical features and the biomarker panel into the predictive model
substantially enhanced its accuracy, achieving an AUC of 0.88, a sensitivity of 0.7, and a
specificity of 0.92 (Figure 2, blue line, and Table 3).
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Figure 2. Receiver operating characteristics (ROC) curve demonstrating prognostic capability of
support vector machine models in predicting major adverse carotid cerebrovascular events (MACCE),
which is defined as the composite of stroke, carotid surgical interventions, myocardial infarctions,
and cardiovascular-related death. The green line represents a model that includes clinical features
only: age; sex; hypertension; hypercholesterolemia; diabetes mellitus; smoking status; and history of
congestive heart failure or coronary artery disease. The red line represents a model, including the
plasma protein levels of C-X-C Motif Chemokine Ligand 6 (CXCL6), Interleukin-2 (IL-2), angiopoietin-
like 4 (ANGPTL4), and Galectin-9. The blue line represents a model that includes both clinical features
and plasma protein levels. Area under the curve (AUC).
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Table 3. Model evaluation metrics for SVM model to predict major adverse carotid cerebrovascular
events.

AUC Accuracy Sensitivity Specificity F1 Score

Panel 0.76 0.80 0.65 0.85 0.62
Clinical Feature 0.60 0.70 0.50 0.75 0.47

Panel + Clinical Feature 0.88 0.88 0.70 0.92 0.72

Furthermore, the model coefficients were used to devise an equation, illustrated in
Figure 3, that calculates the two-year probability of MACCE occurrence in patients by
integrating both clinical features and normalized levels of the four plasma proteins.
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Figure 3. Model coefficients of clinical features and plasma proteins.

3.4. Probability Score Analysis

Probability of MACCE in the next two years = 0.29 × Age (years) + 0.11 × Sex
(Male = 1; Female = 0) + 0.13 × Hypertension (Yes = 1; No = 0) + 0.09 × Dyslipidemia
(Yes = 1; No = 0) + 0.16 × Diabetes (Yes = 1; No = 0) + 0.19 × Smoking (Current = 2; Past = 1;
No = 0) + 0.14 × CHF (Yes = 1; No = 0) + 0.21 × CAD (Yes = 1; No = 0) + 0.12 × CXCL6
(normalized value pg/mL) + 0.32 × IL-2 (normalized value pg/mL) + 0.21 × ANGPTL4
(normalized value pg/mL) + 0.30 × Galectin-9 (normalized value pg/mL)

The probability of having MACCE in the next two years =
0.29 × Age (years) +

0.11 × Sex (Male = 1; Female =) +
0.13 × Hypertension (Yes = 1; No = 0) +
0.09 × Dyslipidemia (Yes = 1; No = 0) +

0.16 × Diabetes (Yes = 1; No = 0) +
0.19 × Smoking (Current = 2; Past = 1; No = 0) +

0.14 × CHF (Yes = 1; No = 0) +
0.21 × CAD (Yes = 1; No = 0) +

0.12 × CXCL6 (normalized value pg/mL) +
0.32 × IL-2 (normalized value pg/mL) +

0.21× ANGPTL4 (normalized value pg/mL) +
0.30 × Galectin-9 (normalized value pg/mL)

(1)



J. Clin. Med. 2024, 13, 3382 9 of 15

3.5. Risk Stratification of Patients Based on Clinical Features and Protein Biomarker Panel

In the following phase, we assessed the effectiveness of the previously derived equa-
tion in accurately identifying patients at higher risk of MACCE by considering both their
biomarker profiles and clinical characteristics. Utilizing Equation (1), we computed proba-
bility scores for each patient, which were subsequently used to categorize individuals into
“High” or “Low” risk groups based on a probability score threshold determined through
receiver operative characteristics analysis.

Kaplan–Meier analysis unveiled a significant distinction between these risk groups.
Patients with higher probability scores exhibited a markedly increased likelihood of ex-
periencing MACCE events compared to their counterparts with lower scores (Log-rank
value = 30.9; p-value < 0.001) (see Figure 4). Specifically, in the low-score group, survival
probabilities at 12 and 24 months stood at 95% and 90%, respectively. Conversely, in the
high-score group, survival probabilities at the same time intervals were notably lower,
measuring 42% and 33%, respectively (see Figure 4).

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 9 of 15 
 

 

The probability of having MACCE in the next two years =  

0.29 × Age (years) +  

0.11 × Sex (Male = 1; Female =) +  

0.13 × Hypertension (Yes = 1; No = 0) +  

0.09 × Dyslipidemia (Yes = 1; No = 0) +  

0.16 × Diabetes (Yes = 1; No = 0) +  

0.19 × Smoking (Current = 2; Past = 1; No = 0) +  

0.14 × CHF (Yes = 1; No = 0) +  

0.21 × CAD (Yes = 1; No = 0) +  

0.12 × CXCL6 (normalized value pg/mL) +  

0.32 × IL-2 (normalized value pg/mL) +  

0.21× ANGPTL4 (normalized value pg/mL) +  
0.30 × Galectin-9 (normalized value pg/mL)  

(1) 

3.5. Risk Stratification of Patients Based on Clinical Features and Protein Biomarker Panel 

In the following phase, we assessed the effectiveness of the previously derived equa-

tion in accurately identifying patients at higher risk of MACCE by considering both their 

biomarker profiles and clinical characteristics. Utilizing Equation (1), we computed prob-

ability scores for each patient, which were subsequently used to categorize individuals 

into “High” or “Low” risk groups based on a probability score threshold determined 

through receiver operative characteristics analysis.  

Kaplan–Meier analysis unveiled a significant distinction between these risk groups. 

Patients with higher probability scores exhibited a markedly increased likelihood of ex-

periencing MACCE events compared to their counterparts with lower scores (Log-rank 

value = 30.9; p-value < 0.001) (see Figure 4). Specifically, in the low-score group, survival 

probabilities at 12 and 24 months stood at 95% and 90%, respectively. Conversely, in the 

high-score group, survival probabilities at the same time intervals were notably lower, 

measuring 42% and 33%, respectively (see Figure 4). 

 

Figure 4. Kaplan–Meier analysis representing MACCE survival over a period of 24 months between 

patients with high and low probability scores. Scores were calculated using the probability equation, 

and patients were then split into high vs. low based on cut-off values obtained by receiver operating 

characteristics analysis. Shaded regions represent 95% Confidence Intervals. 

  

Figure 4. Kaplan–Meier analysis representing MACCE survival over a period of 24 months between
patients with high and low probability scores. Scores were calculated using the probability equation,
and patients were then split into high vs. low based on cut-off values obtained by receiver operating
characteristics analysis. Shaded regions represent 95% Confidence Intervals.

4. Discussion

In this pilot study, we were able to demonstrate that four plasma proteins could be
combined using computational modeling to diagnose CS (see Appendix A) and predict
adverse outcomes in patients with CS. Specifically, when CXCL6, IL-2, ANGPTL4, and
Galectin-9 plasma concentrations were used in combination with clinical features such as
hypertension, dyslipidemia, and age, our models could predict MACEE with AUCs of 0.88,
which represented good prognostic capability [24].

Several inflammatory proteins and growth factors were investigated for their rela-
tionship with CS and their ability to predict adverse outcomes, such as stroke, myocardial
infarction, and the need for surgical intervention. Inflammatory and endothelial growth
factor families, including C-X-C Motif Chemokine Ligands (CXCL), galectin proteins, and
interleukins, as well as growth factors, such as angiopoietin-related proteins and bone mor-
phogenic proteins, have demonstrated their association with CS [25–28]. The CXCL family
are small proteins involved in inflammation and the immune response, with functions
including neutrophil and macrophage attraction, by CXCL1. Macrophages up-take oxida-
tively modified LDL within atherosclerotic plaques, leading to an inflammatory response
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and recruitment of inflammatory cells that released interleukins such as IL-2, leading to
the progression of the disease [29]. Cell permeability, proliferation, and apoptosis after
ischemia-reperfusion injury through the HIF-1 α pathway are regulated by CXCL6. CXCL1
and CXCL6 have not been investigated in CS previously [30–32]. It was evident in our
study that patients with CS had significantly elevated levels of CXCL6 and IL-2 but not
CXCL1 compared to controls.

Similarly, galectins are a family of proteins that have a wide range of functions, in-
cluding the regulation of inflammation and immunity, the activation of macrophages,
and cellular proliferation [33]. They bind to glycosylated protein receptors to activate or
inhibit inflammatory and immune responses [34]. Galectin-1 is an evolutionarily conserved
β-galactoside-binding lectin that functions by reducing the synthesis of proinflamma-
tory cytokines [35]. Contrarily, Galectin-9, in the same family, has the opposite effect by
promoting the recruitment of monocytes to areas of inflammation. Galectin 9 has been
previously demonstrated to facilitate leukocyte recruitment in patients with peripheral
arterial disease [36]. Patients with diabetes often have elevated levels of glycosylated pro-
teins, which is another known contributor to the progression of atherosclerotic disease [37].
Cancer models have demonstrated that CXCLs and Galectins are regulated through the
HIF-1 α pathway [38,39]. This pathway has also been implicated in atherosclerotic disease
in response to ischemia; hence, these proteins were investigated as potential prognostic
biomarkers of CS. Both galectin-1 and galectin-9 were significantly elevated in patients
with CS in this study.

Lastly, atherosclerotic disease induces the release of several growth factors, forcing
the differentiation of muscle cells, proliferation of immune cells, and the growth of new
tissue and vessels in order to cope with the pathophysiological changes at the location of
the plaque growth [40]. Angiopoietin-1 has been implicated in CS, demonstrating lower
levels in patients with unstable plaques [27]. The Angiopoietin-like protein (ANGPTL)
family of proteins has a structural homology to angiopoietins. They also play important
roles in the regulation of lipid metabolism and angiogenesis [41]. ANGPTL3, ANGPTL4,
and ANGPTL6 are related proteins associated with lipoprotein metabolism and angio-
genesis [42]. Bone morphogenic proteins are known to play a role in angiogenesis by
regulating angiogenic factors such as vascular endothelial growth factor (VEGF) and stimu-
lating the proliferation and migration of endothelial cells [21]. BMPs have not previously
been implicated in CS, but we investigated BMP-2 in this study, as it has been previously
demonstrated to increase atherosclerotic burn in patients with coronary artery disease
and DM [43]. The mentioned proteins are implicated in pathways known to be associated
with the progression of atherosclerotic disease and, hence, were chosen for investigation as
potential prognostic biomarkers for CS. Of these proteins, only ANGPTL4 was found to be
significantly elevated in patients with CS in this study.

The current gold standard for the diagnosis of CS is through Doppler ultrasounds of
the carotid arteries [9]. In this study, the biomarkers we suggested had a good capability
of diagnosing patients with CS without the need for ultrasound. Though in most clinical
settings, ultrasound for the diagnosis of CS would be the first-line diagnostic tool, the
method suggested in this manuscript needs to be further validated in larger clinical trials
prior to its use in a diagnostic setting. We obtained an AUC of 0.82 for these biomarkers in
combination with clinical features, which suggests that these biomarkers are associated
with CS.

The treatment options for asymptomatic CS have been debated; however, recent stud-
ies and guidelines provided by SVS suggest that CEA should be provided to asymptomatic
CS patients only if the 3–5 year post-operative risk of stroke and death is <3% [8,9]. Al-
though our data need to be validated in a larger cohort, our suggested model utilizing a
biomarker panel demonstrates that a panel of protein biomarkers could be used in combi-
nation with clinical features to allow for the prediction of the probability of MACCE within
the following two years. This may guide healthcare providers’ care for patients with CS as
well as allow for personalized risk stratification. This method can not only allow for risk
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stratification for surgical interventions but also for the detection of asymptomatic patients
who are at a higher risk of adverse events, giving physicians the option of providing
those patients with more aggressive medical management for the prevention of CS-related
adverse events.

This is the first study that we know of that has used a novel panel of plasma protein
biomarkers that are related to the atherosclerotic process in combination with clinical fea-
tures of patients to predict MACCE in patients with asymptomatic CS. Our SVM model was
able to predict MACCE with a strong accuracy of 0.89. Other models have demonstrated
sub-optimal performances with AUCs between 0.54 and 0.74 [44]. Other studies have
been conducted to predict outcomes in patients with CS [45]; however, most investigated
models for adverse cardiovascular events post-surgical intervention; however, we have
demonstrated a novel model that can predict MACCE in patients who neither have symp-
toms nor have undergone surgical procedures, making it valuable for use in an outpatient
clinical setting.

Computational models, such as random forest models and support vector machine
models, have become increasingly accurate for diagnostic and prognostic modeling in the
medical field. Both methods prevent overfitting and can provide strong generalizability.
However, this is still a relatively new field, with advanced computational models not
being highly adopted into clinical care [46]. In combination with both the clinical features
and a plasma biomarker panel, our models for diagnosis and predictions of MACE and
MACCE can give physicians an insight into the probabilities of these events occurring in
their patients and allow for evidence-based decision-making. We have proposed a simple
equation that could be used as a “clinical calculator” to risk-stratify patients with CS and
to decide if surgical treatment would be beneficial; however, this calculator needs to be
validated in a larger cohort of patients.

There are several limitations to our study. As this was a pilot study, our sample size
was relatively low. A second limitation was that atrial fibrillation was not considered in
the clinical characteristics when initial baseline measurements were obtained. To confirm
the accuracy and generalizability of our model, a larger sample size will be required.
CS is a chronic disease, and longer follow-up is needed in future studies to validate our
proposed protein biomarker panel. Lastly, conducting numerous comparisons is linked to
the potential for false significance.

5. Conclusions

In conclusion, we have proposed a model that included a four-protein biomarker panel
and predictive models that may be used for both diagnostic and prognostic biomarkers
for CS. This study demonstrates early results in the capability of using plasma biomark-
ers in combination with clinical risk factors for the risk stratification of patients with CS.
These models may help vascular specialists decide which patients should be offered sur-
gical management, such as CEA or carotid stenting, and which may benefit more from
conservative management.
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Appendix A

Appendix A.1. Diagnostic Capabilities of Plasma Proteins

To predict the diagnostic capability of the four elevated plasma proteins, CXCL6, IL-2,
Galectin-9, and ANGPTL4, three random forest predictive models were created. For RF,
multiple decision trees are constructed. RF generates feature importances, which indicate
the contribution of each feature to the model’s predictive power. The first model was
created based on using solely clinical features to distinguish the CS from the <50% CS
group (Figure A1, Green). With these values, the model’s ability to predict those with CS
was low, with an area under the curve (AUC) of 0.59. The second model created using
the four plasma proteins demonstrated a good diagnostic capability with an AUC of 0.8
(Figure A1, Red). Creating a final model combining both the clinical features with the four
plasma proteins demonstrated further improved diagnostic capability, with an AUC of 0.82
and an accuracy of 0.81 (Figure A1, Blue, and Table A1).
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Figure A1. Receiver operating characteristics (ROC) curve demonstrating diagnostic capability of
three random forest models. The green line represents a model that includes clinical features only, age,
sex, hypertension, hypercholesterolemia, diabetes mellitus, smoking status, and history of congestive
heart failure or coronary artery disease. The red line represents a model, including the plasma
protein levels of C-X-C Motif Chemokine Ligand 6 (CXCL6), Interleukin-2 (IL-2), angiopoietin-like 4
(ANGPTL4), and Galectin-9. The blue line represents a model that includes both clinical features and
plasma protein levels. Area under the curve (AUC).

Table A1. Model evaluation metrics for random forest model to diagnose carotid artery stenosis.

AUC Accuracy Sensitivity Specificity F1 Score

Panel 0.80 0.78 0.65 0.82 0.66
Clinical Feature 0.59 0.68 0.55 0.70 0.52

Panel + Clinical Feature 0.82 0.81 0.72 0.85 0.70

Appendix A.2. Diagnostic Capabilities of Plasma Proteins

In the first model, with clinical features alone, the model could predict MACE with an
AUC of 0.56. The model created with the four proteins only increased the accuracy of the
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model (AUC = 0.74); however, combining both clinical features in combination with the
four proteins allowed for the highest accuracy of predicting MACE, with an AUC of 0.89
and accuracy of 0.85 (Figure A2 and Table A2).

Table A2. Model evaluation metrics for random forest model to predict major adverse cardiovascular
events (MACE).

AUC Accuracy Sensitivity Specificity F1 Score

Panel 0.74 0.70 0.68 0.72 0.68
Clinical Feature 0.59 0.60 0.55 0.65 0.56

Panel + Clinical Feature 0.89 0.85 0.80 0.90 0.81
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Figure A2. Receiver operating characteristics (ROC) curve demonstrating prognostic capability of
three random forest models in predicting major adverse cardiovascular events (MACE), defined as
the composite of stroke, myocardial infarctions, and cardiovascular-related death. The green line
represents a model that includes clinical features only, age, sex, hypertension, hypercholesterolemia,
diabetes mellitus, smoking status, and history of congestive heart failure or coronary artery disease.
The red line represents a model including the plasma protein levels of C-X-C Motif Chemokine
Ligand 6 (CXCL6), Interleukin-2 (IL-2), angiopoietin-like 4 (ANGPTL4), and Galectin-9. The blue
line represents a model that includes both clinical features and plasma protein levels. Area under the
curve (AUC).
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