Fatigue, Internet Addiction and Symptoms of Long COVID—A Cross-Sectional Study of Polish Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Methods for Assessing Fatigue
2.3. Methods for Assessing Internet Addiction
2.4. Statistical Methods
3. Results
3.1. Respondent Population
3.2. Level of Internet Addiction
3.3. Internet Addiction and Long COVID Symptoms
3.4. Fatigue Level
3.5. Internet Addiction and Fatigue Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olson, J.A.; Sandra, D.A.; Colucci, É.S.; Al Bikaii, A.; Chmoulevitch, D.; Nahas, J.; Raz, A.; Veissière, S.P. Smartphone addiction is increasing across the world: A meta-analysis of 24 countries. Comput. Hum. Behav. 2022, 129, 107138. [Google Scholar] [CrossRef]
- Horwood, S.; Anglim, J.; Mallawaarachchi, S.R. Problematic smartphone use in a large nationally representative sample: Age, reporting biases, and technology concerns. Comput. Hum. Behav. 2021, 122, 106848. [Google Scholar] [CrossRef]
- D’Angelo, J.; Moreno, M.A. Screening for Problematic Internet Use. Pediatrics 2020, 145, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Hashim, N.M.H.N.; Ahmad, M.; Wel, C.A.C.; Nor, S.M.; Omar, N.A. Negative and positive impact of internet addiction on young adults: Empericial study in Malaysia. Intang. Cap. 2014, 10, 619–638. [Google Scholar] [CrossRef]
- Zenebe, Y.; Kunno, K.; Mekonnen, M.; Bewuket, A.; Birkie, M.; Necho, M.; Seid, M.; Tsegaw, M.; Akele, B. Prevalence and associated factors of internet addiction among undergraduate university students in Ethiopia: A community university-based cross-sectional study. BMC Psychol. 2021, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, A.Y.L. Internet addiction prevalence and quality of (real) life: A meta-analysis of 31 nations across seven world regions. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Latorre, A.; Navarro, C.; Olivan-Blazquez, B.; Gervilla, E.; Botaya, R.M.; Calafat-Villalonga, C.; Serrano-Ripoll, M.J. Effectiveness and cost-effectiveness of a lifestyle modification programme in the prevention and treatment of subclinical, mild and moderate depression in primary care: A randomised clinical trial protocol. BMJ Open 2020, 10, e038457. [Google Scholar] [CrossRef] [PubMed]
- Masaeli, N.; Farhadi, H. Prevalence of Internet-based addictive behaviors during COVID-19 pandemic: A systematic review. J. Addict. Dis. 2021, 39, 468–488. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, J.; Zhang, W. Reciprocal longitudinal relations between peer victimization and mobile phone addiction: The explanatory mechanism of adolescent depression. J. Adolesc. 2021, 89, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, D.; Yang, X.; Zhang, C.; Fan, C.; Zhou, Z. Perceived stress and mobile phone addiction in Chinese adolescents: A moderated mediation model. Comput. Hum. Behav. 2018, 87, 247–253. [Google Scholar] [CrossRef]
- Lian, S.L.; Sun, X.J.; Zhou, Z.K.; Fan, C.Y.; Niu, G.F.; Liu, Q.Q. Social networking site addiction and undergraduate students’ irrational procrastination: The mediating role of social networking site fatigue and the moderating role of effortful control. PLoS ONE 2018, 13, e208162. [Google Scholar] [CrossRef]
- Lian, S.; Sun, X.; Niu, G.; Yang, X.; Zhou, Z.; Yang, C. Mobile phone addiction and psychological distress among Chinese adolescents: The mediating role of rumination and moderating role of the capacity to be alone. J. Affect. Disord. 2021, 279, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Mahjoub, S.Z. Fatigue in Healthy and Diseased Individuals. Am. J. Hosp. Palliat. Med. 2014, 31, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.R.; Son, S.; Kim, K.K. Information and communication technology overload and social networking service fatigue: A stress perspective. Comput. Hum. Behav. 2016, 55, 51–61. [Google Scholar] [CrossRef]
- Fu, S.; Li, H.; Liu, Y.; Pirkkalainen, H.; Salo, M. Social media overload, exhaustion, and use discontinuance: Examining the effects of information overload, system feature overload, and social overload. Inf. Process. Manage. 2020, 57, 102307. [Google Scholar] [CrossRef]
- Azzolino, D.; Cesari, M. Fatigue in the COVID-19 pandemic. Lancet Healthy Longev. 2022, 3, e128–e129. [Google Scholar] [CrossRef]
- Garrigues, E.; Janvier, P.; Kherabi, Y.; Le Bot, A.; Hamon, A.; Gouze, H.; Nguyen, Y. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020, 81, e4–e6. [Google Scholar] [CrossRef]
- Kizilbash, S.J.; Ahrens, S.P.; Bruce, B.K.; Chelimsky, G.; Driscoll, S.W.; Harbeck-Weber, C.; Fischer, P.R. Adolescent fatigue, POTS, and recovery: A guide for clinicians. Curr. Probl. Pediatr. Adolesc. Health Care 2014, 44, 108–133. [Google Scholar] [CrossRef]
- Liang, S.; Ren, Z.; Yang, G. Cross-sectional and prospective association between internet addiction and risk of fatigue among Chinese college students. Medicine 2022, 101, E30034. [Google Scholar] [CrossRef]
- Bener, A.; Yildirim, E.; Torun, P.; Çatan, F.; Bolat, E.; Alıç, S.; Griffiths, M.D. Internet addiction, fatigue, and sleep problems among adolescent students: A large-scale study. Int. J. Ment. Health Addict. 2018, 17, 959–969. [Google Scholar] [CrossRef]
- de Sire, A.; Moggio, L.; Marotta, N.; Agostini, F.; Tasselli, A.; Drago Ferrante, V.; Curci, C.; Calafiore, D.; Ferraro, F.; Bernetti, A.; et al. Impact of Rehabilitation on Fatigue in Post-COVID-19 Patients: A Systematic Review and Meta-Analysis. Appl. Sci. 2022, 12, 8593. [Google Scholar] [CrossRef]
- Gavin, J.; Brosnan, M. The Relationship Between Hikikomori Risk and Internet Use During COVID-19 Restrictions. Cyberpsychology Behav. Soc. Netw. 2022, 25, 189–193. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 24 January 2024).
- Gruszczak, A.; Bartosik-Psujek, H.; Pocińska, K.; Stelmasiak, Z. Validation analysis of selected psychometric features of Polish version of modified fatigue impact scale–preliminary findings. Neurol. Neurochir. Pol. 2009, 43, 148–154. [Google Scholar]
- Meca-Lallana, V.; Brañas-Pampillón, M.; Higueras, Y.; Candeliere-Merlicco, A.; Aladro-Benito, Y.; Rodríguez-De la Fuente, O.; Ballesteros, J. Assessing fatigue in multiple sclerosis: Psychometric properties of the five-item modified fatigue impact scale (MFIS-5). Mult. Scler. J. –Exp. Transl. Clin. 2019, 9, 2055217319887987. [Google Scholar] [CrossRef]
- Majchrzak, P.; Ogińska-Bulik, N. Zachowania ryzykowne związane z cyberprzestrzenią. Zachowania Ryzykowne Dzieci i Młodzieży. In Polska Adaptacja Internet Addiction Test; Ogińska-Bulik, N., Ed.; Wyd. WSHE: Łódź, Poland, 2006; pp. 59–78. [Google Scholar]
- Salarvand, S.; Bagheri, Z.; Keshvari, M.; Dalvand, P.; Gheshlagh, R.G.; Keshvari, M. The Prevalence of Internet Addiction and Its Relations to the Self Esteem and Life Satisfaction in Students of a Medical University. Acta Med. Iran. 2018, 56, 392–397. [Google Scholar]
- Khatib, S.; Sabobeh, T.; Habib, A.; John, S.; Gomez, R.; Sivasankar, S.; Masoud, A. Post-COVID-19 fatigue as a major health problem: A cross-sectional study from Missouri, USA. Ir. J. Med. Sci. 2023, 192, 699–705. [Google Scholar] [CrossRef]
- Salari, N.; Khodayari, Y.; Hosseinian-Far, A.; Zarei, H.; Rasoulpoor, S.; Akbari, H.; Mohammadi, M. Global prevalence of chronic fatigue syndrome among long COVID-19 patients: A systematic review and meta-analysis. BioPsychoSoc Med. 2022, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Babicki, M.; Kołat, D.; Kapusta, J.; Kałuzińska-Kołat, Ż.; Jankowski, P.; Mastalerz-Migas, A.; Chudzik, M.P. Prevalence and assessment of risk factors among Polish adults with post-COVID-19 syndrome: A 12-month follow-up study. Pol. Arch. Med. Wewnętrznej 2023, 133, 16512. [Google Scholar]
- Paradowska-Nowakowska, E.; Łoboda, D.; Gołba, K.S.; Sarecka-Hujar, B. Long COVID-19 Syndrome Severity According to Sex, Time from the Onset of the Disease, and Exercise Capacity—The Results of a Cross-Sectional Study. Life 2023, 13, 508. [Google Scholar] [CrossRef]
- Song, Y.X.; Huang, Y.C.; Li, Y.Y.; Bao, Y.P.; Zhou, G.D.; Lu, L.; Sun, Y. Risk factors for poor progression of addictive internet use across different COVID-19 periods in China. Am. J. Addict. 2023, 32, 593–605. [Google Scholar] [CrossRef]
- Ran, M.S.; Xiao, Y.; Rohlof, H. Editorial: The impact of COVID-19 on internet addiction, suicidal behavior, and study behavior in adolescents in various cultural contexts. Front. Psychiatry 2024, 15, 1375244. [Google Scholar] [CrossRef] [PubMed]
- Putra, P.Y.; Fithriyah, I.; Zahra, Z. Internet Addiction and Online Gaming Disorder in Children and Adolescents During COVID-19 Pandemic: A Systematic Review. Psychiatry Investig. 2023, 20, 196–204. [Google Scholar] [CrossRef]
- Daglis, T. The Increase in Addiction during COVID-19. Encyclopedia 2021, 1, 1257–1266. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Ali, A.; Miah, S.; Hasan, M.; Ahmed, M.; Sunna, T.C. Psychological disorders among college going students: A post COVID-19 insight from Bangladesh. J. Affect. Disord. Rep. 2024, 15, 100686. [Google Scholar] [CrossRef]
- Sehrawat, C.; Neelam Pandey, N. Internet Addiction and Social Anxiety Among Adolescents Post Covid in Digital World. Int. J. Indian Psychol. 2022, 11, 1580–1589. [Google Scholar]
- El Sayed, S.; Shokry, D.; Gomaa, S.M. Post-COVID-19 fatigue and anhedonia: A cross-sectional study and their correlation to post-recovery period. Neuropsychopharmacol. Rep. 2021, 41, 50–55. [Google Scholar] [CrossRef]
- Moreno-Pérez, O.; Merino, E.; Leon-Ramirez, J.M.; Andres, M.; Ramos, J.M.; Arenas-Jiménez, J.; COVID19-ALC research group. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect. 2021, 82, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Chopra, V.; Flanders, S.A.; O’Malley, M.; Malani, A.N.; Prescott, H.C. Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med. 2021, 174, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Daher, A.; Balfanz, P.; Cornelissen, C.; Müller, A.; Bergs, I.; Marx, N.; Müller, T. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020, 174, 106197. [Google Scholar] [CrossRef]
- Bielecka-Dabrowa, A.; Sakowicz, A.; Gryglewska-Wawrzak, K.; Kapusta, J.; Banach, M.; Jankowski, P.; Chudzik, M. The Effect of Sex on the Risk of Long-COVID and Cardiovascular Complications in Healthy Patients without Comorbidities: Data from a Polish Long-COVID Cardiovascular (PoLoCOV-CVD) Study. J. Clin. Med. 2024, 13, 1559. [Google Scholar] [CrossRef]
- Mukhlif, H.H.; Younis, N.M. Evaluation of the association between internet addiction and fatigue among undergraduate students at universities in Mosul city, Iraq: A cross-sectional study. RMJ 2022, 47, 829–833. [Google Scholar] [CrossRef]
- Torales, J.; González-Urbieta, I.; Barrios, I.; Waisman-Campos, M.; Terrazas-Landivar, A.; Viola, L.; Ventriglio, A. “Pandemic Fatigue” in South America: A Multi-Center Report from Argentina, Bolivia, Paraguay, Peru, and Uruguay. Brain Sci. 2023, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yu, W.; Cao, X. Experience Pandemic Fatigue? Social Media Use May Play a Role: Testing a Model of Pandemic Fatigue Development from a Social Media Perspective. Health Commun. 2023, 38, 3346–3356. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Naiim, C.M.; Aboelsaad, M.; Ibrahim, M.K. Internet addiction and relationships with depression, anxiety, stress and academic performance among Egypt pharmacy students: A cross-sectional designed study. BMC Public Health 2022, 22, 1826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zeng, P.; Tan, J.; Sun, S.; Zhao, M.; Cui, J.; Liu, D. Relationship of Problematic Smartphone Use, Sleep Quality, and Daytime Fatigue Among Quarantined Medical Students During the COVID-19 Pandemic. Front. Psychiatry 2021, 10, 755059. [Google Scholar] [CrossRef] [PubMed]
- Líška, D.; Liptaková, E.; Babičová, A.; Batalik, L.; Baňárová, P.S.; Dobrodenková, S. What is the quality of life in patients with long COVID compared to a healthy control group? Front. Public Health 2022, 2, 975992. [Google Scholar] [CrossRef] [PubMed]
- Margalit, I.; Yelin, D.; Sagi, M.; Rahat, M.M.; Sheena, L.; Mizrahi, N.; Yahav, D. Risk Factors and Multidimensional Assessment of Long Coronavirus Disease Fatigue: A Nested Case-Control Study. Clin. Infect. Dis. 2022, 75, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- Sandler, C.X.; Wyller, V.B.; Moss-Morris, R.; Buchwald, D.; Crawley, E.; Hautvast, J.; Lloyd, A.R. Long COVID and Post-infective Fatigue Syndrome: A Review. Open Forum Infect. Dis. 2021, 8, ofab440. [Google Scholar] [CrossRef] [PubMed]
- Twomey, R.; DeMars, J.; Franklin, K.; Culos-Reed, S.N.; Weatherald, J.; Wrightson, J.G. Chronic Fatigue and Postexertional Malaise in People Living With Long COVID: An Observational Study. Phys. Ther. 2022, 102, pzac005. [Google Scholar] [CrossRef]
- Vélez-Santamaría, R.; Fernández-Solana, J.; Méndez-López, F.; Domínguez-García, M.; González-Bernal, J.J.; Magallón-Botaya, R.; Santamaría-Peláez, M. Functionality, physical activity, fatigue and quality of life in patients with acute COVID-19 and Long COVID infection. Sci. Rep. 2023, 13, 19907. [Google Scholar] [CrossRef]
Sex | Measure of Internet Addiction | |||||
---|---|---|---|---|---|---|
N | Mean | Median | Std. Dev. | Lower Quartile | Upper Quartile | |
Woman | 242 | 38.7 | 40 | 12.9 | 30 | 40 |
Man | 160 | 37.6 | 38.5 | 13.6 | 27 | 44.5 |
Total | 402 | 38.3 | 40 | 13.2 | 29 | 42 |
Occurrence Long COVID-19 | Measure of Internet Addiction | |||||
---|---|---|---|---|---|---|
N | Mean | Median | Std. Dev. | Lower Quartile | Upper Quartile | |
Woman (p = 0.0123 *) | ||||||
not | 130 | 36.8 | 39.5 | 12.7 | 28 | 40 |
yes | 112 | 41.0 | 40 | 12.9 | 32 | 50.5 |
Man (p = 0.0018 **) | ||||||
not | 89 | 34.6 | 33 | 12.1 | 24 | 40 |
yes | 71 | 41.4 | 40 | 14.6 | 31 | 50 |
MFIS | Mean | Median | Std. Dev. | Lower Quartile | Upper Quartile |
---|---|---|---|---|---|
F-1 (physical) | 8.8 | 9 | 7.8 | 1 | 14 |
F-2 (cognitive) | 10.9 | 10 | 9.1 | 2 | 18 |
F-3 (psychosocial) | 2.0 | 2 | 1.9 | 0 | 4 |
MFIS (comprehensive) | 21.7 | 21 | 18.5 | 5 | 35 |
MFIS | Sex | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Woman (N = 242) | Man (N = 160) | ||||||||||
Mean | Me | Std. Dev. | Q1 | Q3 | Mean | Me | Std. Dev. | Q1 | Q3 | ||
F-1 (physical) | 8.6 | 9 | 7.6 | 0 | 14 | 9.2 | 9 | 8.2 | 3 | 14 | 0.6254 |
F-2 (cognitive) | 10.5 | 10 | 8.9 | 0 | 18 | 11.4 | 10 | 9.5 | 4 | 17 | 0.4523 |
F-3 (psychosocial) | 2.0 | 2 | 1.9 | 0 | 4 | 2.0 | 2 | 1.9 | 0 | 3 | 0.6448 |
MFIS (comprehensive) | 21.1 | 21 | 18.0 | 0 | 36 | 22.6 | 21 | 19.3 | 7 | 33.5 | 0.4481 |
MFIS | Occurrence of Long COVID-19 | |
---|---|---|
Not | Yes | |
Measure of Internet Addiction | ||
F-1 (physical) | 0.17 (p = 0.0140 *) | 0.22 (p = 0.0024 **) |
F-2 (cognitive) | 0.14 (p = 0.0328 *) | 0.23 (p = 0.0020 **) |
F-3 (psychosocial) | 0.18 (p = 0.0079 **) | 0.25 (p = 0.0006 ***) |
MFIS (comprehensive) | 0.16 (p = 0.0188 *) | 0.23 (p = 0.0017 **) |
MFIS | Occurrence of Long COVID | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No (N = 219) | Yes (N = 183) | ||||||||||
Mean | Me | Std. Dev. | Q1 | Q3 | Mean | Me | Std. Dev. | Q1 | Q3 | ||
F-1 (physical) | 7.1 | 5 | 7.2 | 0 | 11 | 11.0 | 9 | 8.0 | 4 | 18 | 0.0000 *** |
F-2 (cognitive) | 9.1 | 8 | 8.9 | 0 | 16 | 13.1 | 11 | 9.0 | 6 | 20 | 0.0000 *** |
F-3 (psychosocial) | 1.6 | 1 | 1.8 | 0 | 2 | 2.5 | 2 | 1.9 | 1 | 4 | 0.0000 *** |
MFIS (comprehensive) | 17.7 | 14 | 17.5 | 0 | 29 | 26.5 | 21 | 18.6 | 11 | 42 | 0.0000 *** |
MFIS | Occurrence of Long COVID | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Not | Yes | ||||||||||
Mean | Me | Std. Dev. | Q1 | Q3 | Mean | Me | Std. Dev. | Q1 | Q3 | ||
Woman | |||||||||||
F-1 (physical) | 6.2 | 4 | 6.6 | 0 | 11 | 11.4 | 10.5 | 7.7 | 5 | 18 | 0.0000 *** |
F-2 (cognitive) | 8.1 | 6 | 8.4 | 0 | 16 | 13.4 | 14 | 8.7 | 7 | 20 | 0.0000 *** |
F-3 (psychosocial) | 1.4 | 1 | 1.7 | 0 | 2 | 2.6 | 2 | 1.9 | 1.5 | 4 | 0.0000 *** |
MFIS (comprehensive) | 15.7 | 11.5 | 16.2 | 0 | 29 | 27.4 | 29 | 17.9 | 13 | 42 | 0.0000 *** |
Man | |||||||||||
F-1 (physical) | 8.2 | 8 | 7.9 | 2 | 10 | 10.4 | 9 | 8.5 | 4 | 18 | 0.0803 |
F-2 (cognitive) | 10.4 | 10 | 9.4 | 2 | 16 | 12.5 | 10 | 9.5 | 5 | 20 | 0.1356 |
F-3 (psychosocial) | 1.9 | 2 | 1.9 | 0 | 3 | 2.2 | 2 | 1.9 | 0 | 4 | 0.1642 |
MFIS (comprehensive) | 20.6 | 21 | 18.9 | 4 | 30 | 25.2 | 21 | 19.6 | 9 | 42 | 0.1149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalewska, A.; Gałczyk, M. Fatigue, Internet Addiction and Symptoms of Long COVID—A Cross-Sectional Study of Polish Students. J. Clin. Med. 2024, 13, 3383. https://doi.org/10.3390/jcm13123383
Zalewska A, Gałczyk M. Fatigue, Internet Addiction and Symptoms of Long COVID—A Cross-Sectional Study of Polish Students. Journal of Clinical Medicine. 2024; 13(12):3383. https://doi.org/10.3390/jcm13123383
Chicago/Turabian StyleZalewska, Anna, and Monika Gałczyk. 2024. "Fatigue, Internet Addiction and Symptoms of Long COVID—A Cross-Sectional Study of Polish Students" Journal of Clinical Medicine 13, no. 12: 3383. https://doi.org/10.3390/jcm13123383
APA StyleZalewska, A., & Gałczyk, M. (2024). Fatigue, Internet Addiction and Symptoms of Long COVID—A Cross-Sectional Study of Polish Students. Journal of Clinical Medicine, 13(12), 3383. https://doi.org/10.3390/jcm13123383