The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays?
Abstract
:1. Introduction and Principles of Viscoelastic Testing
2. Evidence for Use of VET
2.1. Direct Oral Anticoagulants
2.2. Liver Disease
2.3. Orthotopic Liver Transplantation
2.4. Cardiothoracic Surgery
2.5. Trauma
2.6. Obstetrics
2.7. Pediatrics
3. Challenges and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kujovich, J.L. Coagulopathy in liver disease: A balancing act. Hematol. Am. Soc. Hematol. Educ. Program 2015, 2015, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Carll, T. Chapter One—Viscoelastic Testing Methods; Makowski, G.S., Ed.; Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2023; Volume 117, pp. 1–52. ISSN 0065-2423. ISBN 9780443192944. [Google Scholar] [CrossRef]
- Volod, O.; Runge, A. Measurement of Blood Viscoelasticity Using Thromboelastography. Methods Mol. Biol. 2023, 2663, 709–724. [Google Scholar] [PubMed]
- Volod, O.; Runge, A. The TEG 5000 System: System Description and Protocol for Measurements. Methods Mol. Biol. 2023, 2663, 725–733. [Google Scholar] [PubMed]
- Volod, O.; Runge, A. The TEG 6s System: System Description and Protocol for Measurements. Methods Mol. Biol. 2023, 2663, 735–742. [Google Scholar] [PubMed]
- Volod, O.; Viola, F. The Quantra System: System Description and Protocols for Measurements. Methods Mol. Biol. 2023, 2663, 743–761. [Google Scholar] [PubMed]
- Gill, M. The TEG®6s on Shaky Ground? A Novel Assessment of the TEG®6s Performance under a Challenging Condition. J. Extra Corpor. Technol. 2017, 49, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Haas, T.; Faraoni, D. Viscoelastic testing in pediatric patients. Transfusion 2020, 60 (Suppl. S6), S75–S85. [Google Scholar] [CrossRef] [PubMed]
- Lawson, P.J.; Moore, H.B.; Moore, E.E.; Stettler, G.R.; Pshak, T.J.; Kam, I.; Silliman, C.C.; Nydam, T.L. Preoperative thrombelastography maximum amplitude predicts massive transfusion in liver transplantation. J. Surg. Res. 2017, 220, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.; Raja, M.; Rahman, S. Point-of-care viscoelastic testing. BJA Educ. 2022, 22, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Cohen, T.; Haas, T.; Cushing, M.M. The strengths and weaknesses of viscoelastic testing compared to traditional coagulation testing. Transfusion 2020, 60, S21–S28. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.E.; Israel, A.K.; Refaai, M.A. The utility of thromboelastography to guide blood product transfusion. Am. J. Clin. Pathol. 2019, 152, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T. Viscoelastic testing in liver transplantation. Transfusion 2020, 60 (Suppl. S6), S61–S69. [Google Scholar] [CrossRef] [PubMed]
- Haas, T.; Fries, D.; Tanaka, K.; Asmis, L.; Curry, N.; Schöchl, H. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: Is there any evidence? Br. J. Anaesth. 2015, 114, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Toulon, P.; Ozier, Y.; Ankri, A.; Fléron, M.H.; Leroux, G.; Samama, C.M. Point-of-care versus central laboratory coagulation testing during haemorrhagic surgery. A multicenter study. Thromb. Haemost. 2009, 101, 394–401. [Google Scholar] [PubMed]
- Davenport, R.; Manson, J.; De’Ath, H.; Platton, S.; Coates, A.; Allard, S.; Hart, D.; Pearse, R.; Pasi, K.J.; MacCallum, P.; et al. Functional definition and characterization of acute traumatic coagulopathy. Crit. Care Med. 2011, 39, 2652–2658. [Google Scholar] [CrossRef] [PubMed]
- Lisman, T. Interpreting hemostatic profiles assessed with viscoelastic tests in patients with cirrhosis. J. Clin. Gastroenterol. 2020, 54, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.D.; Haney, E.I.; Mathew, B.A.; Lopez-Espina, C.G.; Orr, A.W.; Popovsky, M.A. New-Generation Thromboelastography: Comprehensive Evaluation of Citrated and Heparinized Blood Sample Storage Effect on Clot-Forming Variables. Arch. Pathol. Lab. Med. 2017, 141, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, R.; Sawa, T.; Kawajiri, H.; Amaya, F.; Tanaka, K.; Ogawa, S. A comparison of the ClotPro system with rotational thromboelastometry in cardiac surgery: A prospective observational study. Sci. Rep. 2022, 12, 17269. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, D.; DiNardo, J.A. Viscoelastic hemostatic assays: Update on technology and clinical applications. Am. J. Hematol. 2021, 96, 1331–1337. [Google Scholar] [CrossRef]
- Hartmann, J.; Hermelin, D.; Levy, J.H. Viscoelastic testing: An illustrated review of technology and clinical applications. Res. Pract. Thromb. Haemost. 2022, 7, 100031. [Google Scholar] [CrossRef] [PubMed]
- Bunch, C.M.; Chang, E.; Moore, E.E.; Moore, H.B.; Kwaan, H.C.; Miller, J.B.; Al-Fadhl, M.D.; Thomas, A.V.; Zackariya, N.; Patel, S.S.; et al. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock. Front. Physiol. 2023, 14, 1094845. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, J.W.; Quinlan, D.J.; Hirsh, J.; Connolly, S.J.; Weitz, J.I. Laboratory monitoring of non-vitamin k antagonist oral anticoagulant use in patients with atrial fibrillation: A review. JAMA Cardiol. 2017, 2, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Ziakas, P.D.; Mylonakis, E. Web search popularity, publicity, and utilization of direct oral anticoagulants in the United States, 2008-2018: A STROBE-compliant study. Medicine 2020, 99, e20005. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J.; Pasalic, L.; Lippi, G. Oral anticoagulation therapy: An update on usage, costs and associated risks. Pathology 2020, 52, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Douxfils, J.; Adcock, D.M.; Bates, S.M.; Favaloro, E.J.; Gouin-Thibault, I.; Guillermo, C.; Gosselin, R.C. 2021 update of the international council for standardization in haematology recommendations for laboratory measurement of direct oral anticoagulants. Thromb. Haemost. 2021, 121, 1008–1020. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Eikelboom, J.W. Urgent need to measure effects of direct oral anticoagulants. Circulation 2016, 134, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Sahli, S.D.; Castellucci, C.; Roche, T.R.; Rössler, J.; Spahn, D.R.; Kaserer, A. The impact of direct oral anticoagulants on viscoelastic testing—A systematic review. Front. Cardiovasc. Med. 2022, 9, 991675. [Google Scholar] [CrossRef] [PubMed]
- Artang, R.; Anderson, M.; Nielsen, J.D. Fully automated thromboelastograph TEG 6s to measure anticoagulant effects of direct oral anticoagulants in healthy male volunteers. Res. Pract. Thromb. Haemost. 2019, 3, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Oberladstätter, D.; Voelckel, W.; Schlimp, C.; Zipperle, J.; Ziegler, B.; Grottke, O.; Schöchl, H. A prospective observational study of the rapid detection of clinically-relevant plasma direct oral anticoagulant levels following acute traumatic injury. Anaesthesia 2021, 76, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Bliden, K.; Chaudhary, R.; Mohammed, N.; Muresan, A.; Lopez-Espina, C.; Cohen, E.; Raviv, G.; Doubleday, M.; Zaman, F.; Mathew, B.; et al. Determination of non-Vitamin K oral anticoagulant (NOAC) effects using a new-generation thrombelastography TEG 6s system. J. Thromb. Thrombolysis 2017, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, S.; Tanaka, K.A.; Sawa, T.; Sanda, M.; Mizobe, T.; Ogawa, S. Whole blood point-of-care testing for incomplete reversal with idarucizumab in supratherapeutic dabigatran. Anesth. Analg. 2020, 130, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Oberladstätter, D.; Schlimp, C.J.; Zipperle, J.; Osuchowski, M.F.; Voelckel, W.; Grottke, O.; Schöchl, H. Impact of Idarucizumab and Andexanet Alfa on DOAC Plasma Concentration and ClotPro® Clotting Time: An Ex Vivo Spiking Study in A Cohort of Trauma Patients. J. Clin. Med. 2021, 10, 3476. [Google Scholar] [CrossRef] [PubMed]
- Buliarca, A.; Horhat, A.; Mocan, T.; Craciun, R.; Procopet, B.; Sparchez, Z. Viscoelastic tests in liver disease: Where do we stand now? World J. Gastroenterol. 2021, 27, 3290–3302. [Google Scholar] [CrossRef]
- Lim, H.I.; Cuker, A. Thrombocytopenia and liver disease: Pathophysiology and periprocedural management. Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Jandl, J.H.; Aster, R.H.; Forkner, C.E.; Fisher, A.M.; Vilter, R.W. Splenic pooling and the pathophysiology of hypersplenism. Trans. Am. Clin. Climatol. Assoc. 1967, 78, 927. [Google Scholar]
- Roberts, L.N.; Lisman, T.; Stanworth, S.; Hernandez-Gea, V.; Magnusson, M.; Tripodi, A.; Thachil, J. Periprocedural management of abnormal coagulation parameters and thrombocytopenia in patients with cirrhosis: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2022, 20, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Simonetto, D.A.; Singal, A.K.; Garcia-Tsao, G.; Caldwell, S.H.; Ahn, J.; Kamath, P.S. ACG clinical guideline: Disorders of the hepatic and mesenteric circulation. Am. J. Gastroenterol. 2020, 115, 1840. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, R.S.; Davitkov, P.; Ko, C.W.; Rajasekhar, A.; Su, G.L.; Sultan, S.; Falck-Ytter, Y. AGA clinical practice guide line on the management of coagulation disorders in patients with cirrhosis. Gastroenterology 2021, 161, e11627e1. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A.; Primignani, M.; Chantarangkul, V.; Clerici, M.; Dell’Era, A.; Fabris, F.; Salerno, F.; Mannucci, P.M. Thrombin generation in patients with cirrhosis: The role of platelets. Hepatology 2006, 44, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Nilles, K.M.; Flamm, S.L. Thrombocytopenia in chronic liver disease: New management strategies. Clin. Liver Dis. 2020, 24, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Hugenholtz, G.; Lisman, T.; Stravitz, R.T. Thromboelastography does not predict outcome in different etiologies of cirrhosis. Res. Pract. Thromb. Haemost. 2017, 1, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Chau, T.N.; Chan, Y.W.; Patch, D.; Tokunaga, S.; Greenslade, L.; Burroughs, A.K. Thrombelastographic changes and earlyrebleeding in cirrhotic patients with variceal bleeding. Gut 1998, 43, 267–271. [Google Scholar] [CrossRef] [PubMed]
- De Pietri, L.; Bianchini, M.; Montalti, R.; De Maria, N.; Di Maira, T.; Begliomini, B.; Villa, E. Thrombelastography-guided blood product use before invasive procedures in cirrhosis with severe coagulopathy: A randomized, controlled trial. Hepatology 2016, 63, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Tangcheewinsirikul, N.; Moonla, C.; Uaprasert, N.; Pittayanon, R.; Rojnuckarin, P. Viscoelastometric versus standard coagulation tests to guide periprocedural transfusion in adults with cirrhosis: A metaanalysis of randomized controlled trials. Vox Sang. 2022, 117, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Miki, C.; Iriyama, K.; Gunson, B.K.; Mayer, A.D.; Buckels, J.A.; McMaster, P. Influence of intraoperative blood loss on plasma levels of cytokines and endotoxin and subsequent graft liver function. Arch. Surg. 1997, 132, 136–411. [Google Scholar] [CrossRef]
- Park, S.Y. Viscoelastic coagulation test for liver transplantation. Anesth. Pain Med. 2020, 15, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Roullet, S.; Freyburger, G.; Cruc, M.; Quinart, A.; Stecken, L.; Audy, M.; Sztark, F. Management of bleeding and transfusion during liver transplantation before andafter the introduction of a rotational thromboelastometry-basedalgorithm. Liver Transpl. 2015, 21, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Shieh, J.F.; Chang, K.Y.; Chu, Y.C.; Liu, C.S.; Loong, C.C.; Tsou, M.Y. Thromboelastography-guided transfusion decreases intraoperative blood transfusion during orthotopic liver transplantation: Randomized clinical trial. Transplant. Proc. 2010, 42, 2590–2593. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, A.; Gilquin, N.; Steer, N.; Gazon, M.; Quattrone, D.; Pradat, P.; Aubrun, F. The use of a thromboelastometry-based algorithm reduces the need for blood product transfusion during orthotopic liver transplantation: A randomised controlled study. Eur. J. Anaesthesiol. 2019, 36, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, J.C.R.; Neto, E.B.L.; da Silva, E.L.; Nunes, R.R.; Marinho, D.S.; Muniz, F.N.; Brasil, I.R. Analysis of the hemostatic therapy in liver transplantation guided by rotational thromboelastometry or conventional laboratory tests. Eur. J. Gastroenterol. Hepatol. 2020, 32, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.N.; Kwon, M.A.; Kim, S.H.; Kim, J.Y.; Moon, Y.J.; Park, S.Y.; Hwang, J.Y. Korean clinical practice guideline for perioperative red blood cell transfusion from Korean Society of Anesthesiologists. Korean J. Anesthesiol. 2019, 72, 91–118. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.B. American Society of Anesthesiologists Task Force on Perioperative Blood Management Practice guidelines for perioperative blood management: An updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management. Anesthesiology 2015, 122, 241–275. [Google Scholar]
- Kozek-Langenecker, S.A.; Afshari, A.; Albaladejo, P.; Santullano, C.A.; De Robertis, E.; Filipescu, D.C.; Wyffels, P. Management of severe perioperative bleeding: Guidelines from the European Society of Anaesthesiology. Eur. J. Anaesthesiol. 2013, 30, 270–382. [Google Scholar] [PubMed]
- Serraino, G.F.; Murphy, G.J. Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: Updated systematic review and meta-analysis. Br. J. Anaesth. 2017, 118, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Wikkelsø, A.; Wetterslev, J.; Møller, A.M.; Afshari, A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst. Rev. 2016, 2016, CD007871. [Google Scholar] [CrossRef] [PubMed]
- Karkouti, K.; Callum, J.; Wijeysundera, D.N.; Rao, V.; Crowther, M.; Grocott, H.P.; Scales, D.C. Point-of-care hemostatic testing in cardiac surgery: A stepped-wedge clustered randomized controlled trial. Circulation 2016, 134, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, Q.; Yang, K.; Jiang, L.; Yu, J. Thromboelastography or rotational thromboelastometry for bleeding management in adults undergoing cardiac surgery: A systematic review with meta-analysis and trial sequential analysis. J. Thorac. Dis. 2019, 11, 1170–1181. [Google Scholar] [CrossRef]
- Meco, M.; Montisci, A.; Giustiniano, E.; Greco, M.; Pappalardo, F.; Mammana, L.; Albano, G. Viscoelastic blood tests use in adult cardiac surgery: Meta-analysis, meta-regression, and trial sequential analysis. J. Cardiothorac. Vasc. Anesth. 2020, 34, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Deppe, A.C.; Weber, C.; Zimmermann, J.; Kuhn, E.W.; Slottosch, I.; Liakopoulos, O.J.; Choi, Y.H.; Wahlers, T. Point-of-care thromboelastography/thromboelastometry-based coagulation management in cardiac surgery: A meta-analysis of 8332 patients. J. Surg. Res. 2016, 203, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.; van Egmond, L.; Henskens, Y.M.C.; Roekaerts, P.M.; Maessen, J.G.; Ten Cate, H.; Lancé, M.D. Shifts of trans-fusion demand in cardiac surgery after implementation of rotational thromboelastometry-guided transfusion protocols: Analysis of the HEROES-CS (HEmostasis Registry of patiEntSin Cardiac Surgery) observational, prospective open cohortdatabase. J. Cardiothorac. Vasc. Anesth. 2019, 33, 307–317. [Google Scholar] [PubMed]
- Santos, A.S.; Oliveira, A.J.F.; Barbosa, M.C.L.; Nogueira, J.L.D.S. Viscoelastic haemostatic assays in the perioperative period of surgical procedures: Systematic review and meta-analysis. J. Clin. Anesth. 2020, 64, 109809. [Google Scholar] [CrossRef] [PubMed]
- Rahe-Meyer, N.; Solomon, C.; Winterhalter, M.; Piepenbrock, S.; Tanaka, K.; Haverich, A.; Pichlmaier, M. Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery. J. Thoracic. Cardiovascular. Surg. 2009, 138, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Bolliger, D.; Lancé, M.D.; Siegemund, M. Point-of-Care Platelet Function Monitoring: Implications for Patients with Platelet Inhibitors in Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Erdoes, G.; Ahmed, A.; Kurz, S.D.; Gerber, D.; Bolliger, D. Perioperative hemostatic management of patients with type A aortic dissection. Front. Cardiovasc. Med. 2023, 10, 1294505. [Google Scholar] [CrossRef] [PubMed]
- Ferrraris, V.; Saha, S.; Oesterich, J.; Song, H.K.; Rosengart, T.; Reece, T.B.; Clough, E.R. 2012 update to the society of thoracic surgeons guideline on use of anti-platelet drugs in patients having cardiac and non cardiac operations. Ann. Thorac. Surg. 2012, 94, 1761–1781. [Google Scholar] [CrossRef] [PubMed]
- Boer, C.; Meesters, M.; Milojevic, M.; Benedetto, U.; Bolliger, D.; von Heymann, C.; Pagano, D. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. J. Cardiothora Vasc. Anaesth. 2018, 32, 88–120. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, E.; Rubino, A.; Altemimi, B.; Collier, T.; Besser, M.W.; Klein, A.A. Validation of viscoelastic coagulation tests during cardiopulmonary bypass. J. Thromb. Haemost. 2015, 13, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Abdelmotieleb, M. Viscoelastic testing in cardiac surgery. Transfusion 2020, 60, S52–S60. [Google Scholar] [CrossRef] [PubMed]
- Preisman, S.; Kogan, A.; Itzkovsky, K.; Leikin, G.; Raanani, E. Modified thromboelastography evaluation of platelet dysfunction in patients undergoing coronary artery surgery. Eur. J. Cardiothorac. Surg. 2010, 37, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Cattano, D.; Altamirano, A.V.; Kaynak, H.E.; Seitan, C.; Paniccia, R.; Chen, Z.; Huang, H.; Prisco, D.; Hagberg, C.A.; Pivalizza, E.G. Perioperative assessment of platelet function by Thromboelastograph Platelet Mapping in cardiovascular patients undergoing non-cardiac surgery. J. Thromb. Thrombolysis 2013, 35, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Baksaas-Aasen, K.; Gall, L.S.; Stensballe, J.; Juffermans, N.P.; Curry, N.; Maegele, M.; Brohi, K. Viscoelastic haemostatic assay augmented protocols for major trauma haemorrhage (ITACTIC): A randomized, controlled trial. Intensive Care Med. 2021, 47, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Moore, E.E.; Moore, H.B.; Chapman, M.P.; Chin, T.L.; Ghasabyan, A.; Sauaia, A. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: A pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann. Surg. 2016, 263, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.D.; Makley, A.T.; Hanseman, D.J.; Pritts, T.A.; Robinson, B.R. All the bang without the bucks: Defining essential point-of-care testing for traumatic coagulopathy. J. Trauma Acute Care Surg. 2015, 79, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Rowell, S.E.; Barbosa, R.R.; Lennox, T.C.; Fair, K.A.; Rao, A.J.; Underwood, S.J.; Schreiber, M.A. Moderate elevations ininternational normalized ratio should not lead to delays in neuro-surgical intervention in patients with traumatic brain injury. J. Trauma Acute Care Surg. 2014, 77, 846–850. [Google Scholar] [CrossRef]
- Ågren, A.; Wikman, A.T.; Holmström, M.; Östlund, A.; Edgren, G. Thromboelastography (TEG®) compared to conventional coag-ulation tests in surgical patients–a laboratory evaluation. Scand. J. Clin. Lab. Investig. 2013, 73, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fiol, A. Anesthesia implications of coagulation and anticoagulation during pregnancy. Semin. Perinatol. 2014, 38, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.A.; Bagot, C.N.; Appiah, A.; Johns, J.; Ross, J.; Roberts, L.N.; Patel, R.K.; Arya, R. Women with unexplained recurrent pregnancy loss do not have evidence of an underlying prothrombotic state: Experience with calibrated automated thrombography and rotational thromboelastometry. Thromb. Res. 2014, 133, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Wallace, N.H.; Dumont, A.; Burns, A.; Christopher, T.A.; Rinder, H.M. Thromboelastography in the characterization of coagulation status in antiphospholipid syndrome. Blood 2016, 128, 4983. [Google Scholar] [CrossRef]
- Rigouzzo, A.; Louvet, N.; Favier, R.; Ore, M.V.; Piana, F.; Girault, L.; Constant, I. Assessment of coagulation by thromboelastography during ongoing postpartum hemorrhage: A retrospective cohort analysis. Anesth. Analg. 2020, 130, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Shreeve, N.E.; Barry, J.A.; Deutsch, L.R.; Gomez, K.; Kadir, R.A. Changes in thromboelastography parameters in pregnancy, labor, and the immediate postpartum period. Int. J. Gynecol. Obstet. 2016, 134, 290–293. [Google Scholar] [CrossRef] [PubMed]
- McNamara, H.; Kenyon, C.; Smith, R.; Mallaiah, S.; Barclay, P. Four years’ experience of a ROTEM® -guided algorithm for treatment of coagulopathy in obstetric haemorrhage. Anaesthesia 2019, 74, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Snegovskikh, D.; Souza, D.; Walton, Z.; Dai, F.; Rachler, R.; Garay, A.; Norwitz, E.R. Point-of-care viscoelastic testing improves the outcome of pregnancies complicated by severe postpartum hemorrhage. J. Clin. Anesth. 2018, 44, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Kohli, M.; Malik, A.; Kohli, M.; Bogra, J. Role of thromboelastography versus coagulation screen as a safety predictor in pre-eclampsia/eclampsia patients undergoing lower-segment caesarean section in regional anaesthesia. J. Obs. Gynecol. India 2016, 66, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Mallaiah, S.; Chevannes, C.; McNamara, H. A reply: Introduction of an algorithm for ROTEM-guided fibrinogen concentrate administration in major obstetric haemorrhage. Anaesthesia 2015, 70, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Gruneberg, D.; Hofer, S.; Schöchl, H.; Zipperle, J.; Oberladstätter, D.; Decker, S.O.; Von der Forst, M.; Tourelle, K.M.; Dietrich, M.; Weigand, M.A.; et al. Comparison of Two Viscoelastic Testing Devices in a Parturient Population. J. Clin. Med. 2024, 13, 692. [Google Scholar] [CrossRef] [PubMed]
- Oswald, E.; Stalzer, B.; Heitz, E.; Weiss, M.; Schmugge, M.; Strasak, A.; Innerhofer, P.; Haas, T. Thromboelastometry (ROTEM) in children: Age-related reference ranges and correlations with standard coagulation tests. Br. J. Anaesth. 2010, 105, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Sokou, R.; Foudoulaki-Paparizos, L.; Lytras, T.; Konstantinidi, A.; Theodoraki, M.; Lambadaridis, I.; Tsantes, A.E. Reference ranges of thromboelastometry in healthy full-term and preterm neonates. Clin. Chem. Lab. Med. 2017, 55, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Strauss, T.; Levy-Shraga, Y.; Ravid, B.; Schushan-Eisen, I.; Maayan-Metzger, A.; Kuint, J.; Kenet, G. Clot formation of neonates tested by thromboelastography correlates with gestational age. Thromb. Haemost. 2010, 103, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Summerhayes, R.G.; Ignjatovic, V.; Horton, S.B.; Monagle, P.T. Reference values for kaolin-activated thromboelastography in healthy children. Anesth. Analg. 2007, 105, 1610–1613. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.M.; Naik-Mathuria, B.J.; Gay, A.N.; Olutoye, O.O.; Teruya, J. Parameters of thromboelastography in healthy newborns. Am. J. Clin. Pathol. 2008, 130, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Motta, M.; Guaragni, B.; Pezzotti, E.; Rodriguez-Perez, C.; Chirico, G. Reference intervals of citrated-native whole blood thromboelastography in premature neonates. Early Hum. Dev. 2017, 115, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, L.; Cotoia, A.; Colacicco, G.; Tullo, L.; Salatto, P.; Mollica, G.; Cinnella, G. Reference values for coagulation assessment in full-term newborns. Minerva Anestesiol. 2017, 83, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Schott, N.J.; Emery, S.P.; Garbee, C.; Waters, J. Thromboelastography in term neonates. J. Matern. Fetal. Neonatal. Med. 2018, 31, 2599–2604. [Google Scholar] [CrossRef] [PubMed]
- Pivalizza, E.G.; Pivalizza, P.J.; Kee, S.; Gottschalk, L.I.; Szmuk, P.; Abramson, D.C. Sonoclot analysis in healthy children. Anesth. Analg. 2001, 92, 904–906. [Google Scholar] [CrossRef]
- Nakayama, Y.; Nakajima, Y.; Tanaka, K.A.; Sessler, D.I.; Maeda, S.; Iida, J.; Mizobe, T. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br. J. Anaesth. 2014, 114, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Shim, H.S.; Kim, W.H.; Lee, S.Y.; Park, S.K.; Yang, J.H.; Kim, C.S. Predictive value of intraoperative Thromboelastometry for the risk of perioperative excessive blood loss in infants and children undergoing congenital cardiac surgery: A retrospective analysis. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Haas, T.; Goobie, S.; Spielmann, N.; Weiss, M.; Schmugge, M. Improvements in patient blood management for pediatric craniosynostosis surgery using a ROTEM((R)) -assisted strategy—feasibility and costs. Paediatr. Anaesth. 2014, 24, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Nystrup, K.B.; Stensballe, J.; Bottger, M.; Johansson, P.I.; Ostrowski, S.R. Transfusion therapy in paediatric trauma patients: A review of the literature. Scand. J. Trauma Resusc. Emerg. Med. 2015, 23, 21. [Google Scholar] [CrossRef]
- Maconachie, S.; Jansen, M.; Cottle, E.; Roy, J.; Ross, B.; Winearls, J.; George, S. Viscoelastic haemostatic assays and fibrinogen in paediatric acute traumatic coagulopathy: A comprehensive review. Emerg. Med. Australas. 2020, 32, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Hao, F.; Wang, Y.; Guo, C. Rotation thromboelastometry (ROTEM) enables improved outcomes in the pediatric trauma population. J. Int. Med. Res. 2018, 46, 5195–5204. [Google Scholar] [CrossRef] [PubMed]
- Sujka, J.; Gonzalez, K.W.; Curiel, K.L.; Daniel, J.; Fischer, R.T.; Andrews, W.S.; Hendrickson, R.J. The impact of thromboelastography on resuscitation in pediatric liver transplantation. Pediatr. Transplant. 2018, 22, e13176. [Google Scholar] [CrossRef] [PubMed]
Variable | Significance | TEG® | ROTEM® |
---|---|---|---|
Time [minutes] from start of 2 mm above baseline | Clotting factor deficiency if prolonged | Reaction Time [R] | Clotting time [CT] |
Time [minutes] from 2 mm above baseline to 20 mm above baseline | Hypofibrinogemia if prolonged | Kinetics Time [K] | Clot formation time [CFT] |
Alpha [α] angle [°] | Measures the slope between clot initiation and formation, representing thrombin propagation | Angle between end of R time and slope of curve | Angle between end of CT to slope of the curve |
Maximum strength [mm] and peak amplitude of waveform | Low fibrinogen, low platelets or platelet dysfunction if reduced | Maximal Amplitude [MA] | Maximal clot firmness [MCF] |
Time [minutes] to Maximum Clot Firmness | Hypofibrinogemia if prolonged | - | MCF-t |
Clot Lysis | Detection of hyperfibrinolysis | CLT [time taken for amplitude to decrease by 2 mm from MA] | LY30, LY45, LY60 [percentage drop in amplitude of MCF at 30, 45 and 60 min] |
Clot elasticity [dyn/cm2] | Clot ‘firmness’ | G | MCE |
Maximum Lysis | Detection of hyperfibrinolysis | - | ML |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reardon, B.; Pasalic, L.; Favaloro, E.J. The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays? J. Clin. Med. 2024, 13, 3612. https://doi.org/10.3390/jcm13123612
Reardon B, Pasalic L, Favaloro EJ. The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays? Journal of Clinical Medicine. 2024; 13(12):3612. https://doi.org/10.3390/jcm13123612
Chicago/Turabian StyleReardon, Benjamin, Leonardo Pasalic, and Emmanuel J. Favaloro. 2024. "The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays?" Journal of Clinical Medicine 13, no. 12: 3612. https://doi.org/10.3390/jcm13123612
APA StyleReardon, B., Pasalic, L., & Favaloro, E. J. (2024). The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays? Journal of Clinical Medicine, 13(12), 3612. https://doi.org/10.3390/jcm13123612