Effects of Exercise Rehabilitation on Cardiorespiratory Fitness in Long-COVID-19 Survivors: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Risk of Bias Assessment
2.4. Certainty of Evidence
2.5. Data Extraction
2.6. Data Synthesis
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Effect of Exercise Rehabilitation on Cardiorespiratory Fitness
3.4. Publication Bias Assessment
3.5. Risk of Bias Assessment and Certainty of Evidence
4. Discussion
5. Conclusions
6. Clinical Implication
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coronavirus World Map: Tracking the Global Outbreak. Available online: https://www.nytimes.com/interactive/2021/world/covid-cases.html (accessed on 21 August 2023).
- Carfì, A.; Bernabei, R.; Landi, F.; Gemelli, Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 symptom burden: What is long-COVID and how should we manage it? Lung 2021, 199, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Post-COVID Conditions: Information for Healthcare Providers. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html#print (accessed on 15 September 2023).
- Augustin, M.; Schommers, P.; Stecher, M.; Dewald, F.; Gieselmann, L.; Gruell, H.; Horn, C.; Vanshylla, K.; Cristanziano, V.D.; Osebold, L.; et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study. Lancet Reg. Health Eur. 2021, 6, 100122. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.A.; McAuley, H.; Harrison, E.M.; Shikotra, A.; Singapuri, A.; Sereno, M.; Elneima, O.; Docherty, A.B.; Lone, N.I.; Leavy, O.C.; et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): A UK multicentre, prospective cohort study. Lancet Respir. Med. 2021, 9, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Inciardi, R.M.; Lupi, L.; Zaccone, G.; Italia, L.; Raffo, M.; Tomasoni, D.; Cani, D.S.; Cerini, M.; Farina, D.; Gavazzi, E.; et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Legarra-Gorgoñon, G.; Oscoz-Ochandorena, S.; García-Alonso, Y.; García-Alonso, N.; Oteiza, J.; Ernaga, L.A.; Correa-Rodríguez, M.; Izquierdo, M. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J. Appl. Physiol. (1985) 2023, 134, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Back, G.D.; Oliveira, M.R.; Camargo, P.F.; Goulart, C.L.; Oliveira, C.R.; Wende, K.W.; Bonjorno Junior, J.C.; Arbex, R.F.; Caruso, F.R.; Arena, R.; et al. Mild-to-moderate COVID-19 impact on the cardiorespiratory fitness in young and middle-aged populations. Braz. J. Med. Biol. Res. 2022, 55, e12118. [Google Scholar] [CrossRef] [PubMed]
- Ekblom-Bak, E.; Väisänen, D.; Ekblom, B.; Blom, V.; Kallings, L.V.; Hemmingsson, E.; Andersson, G.; Wallin, P.; Salier Eriksson, J.; Holmlund, T.; et al. Cardiorespiratory fitness and lifestyle on severe COVID-19 risk in 279,455 adults: A case control study. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 135. [Google Scholar] [CrossRef]
- Ladlow, P.; O’Sullivan, O.; Bennett, A.N.; Barker-Davies, R.; Houston, A.; Chamley, R.; May, S.; Mills, D.; Dewson, D.; Rogers-Smith, K.; et al. The effect of medium-term recovery status after COVID-19 illness on cardiopulmonary exercise capacity in a physically active adult population. J. Appl. Physiol. 2022, 132, 1525–1535. [Google Scholar] [CrossRef]
- Raman, B.; Cassar, M.P.; Tunnicliffe, E.M.; Filippini, N.; Griffanti, L.; Alfaro-Almagro, F.; Okell, T.; Sheerin, F.; Xie, C.; Mahmod, M.; et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. eClinicalMedicine 2021, 31, 100683. [Google Scholar] [CrossRef] [PubMed]
- Pleguezuelos, E.; Del Carmen, A.; Llorensi, G.; Carcole, J.; Casarramona, P.; Moreno, E.; Ortega, P.; Serra-Prat, M.; Palomera, E.; Miravitlles, M.M.; et al. Severe loss of mechanical efficiency in COVID-19 patients. J. Cachexia Sarcopenia Muscle 2021, 12, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Sloan, R.A.; Sawada, S.S.; Martin, C.K.; Church, T.; Blair, S.N. Associations between cardiorespiratory fitness and health-related quality of life. Health Qual. Life Outcomes 2009, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Cardiorespiratory Fitness and Long-Term Mortality. Available online: www.acc.org/latest-in-cardiology/articles/2019/02/20/08/11/cardiorespiratory-fitness-and-long-term-mortalit (accessed on 22 August 2023).
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. An official American Thoracic Society/European Respiratory Society Statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef] [PubMed]
- Riebe, D.; Ehrman, J.K.; Liguori, G. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Rochester, C.L.; Vogiatzis, I.; Holland, A.E.; Lareau, S.C.; Marciniuk, D.D.; Puhan, M.A.; Spruit, M.A.; Masefield, S.; Casaburi, R.; Clini, E.M.; et al. An official American Thoracic Society/European Respiratory Society Policy Statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2015, 192, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Inam, A.B.; Belli, S.; Ahmed, J.; Khalil, W.; Jafar, M.M. Effectiveness of aerobic exercise training program on cardio-respiratory fitness and quality of life in patients recovered from COVID-19. Eur. J. Physiother. 2022, 6, 358–363. [Google Scholar] [CrossRef]
- Teixeira, D.O.; Amaral, V.; Viana, A.A.; Heubel, A.D.; Linares, S.N.; Martinelli, B.; Witzler, P.H.C.; Orikassa, D.E.; Oliveira, G.Y.; Zanini, G.S.; et al. Cardiovascular, respiratory, and functional effects of home-based exercise training after COVID-19 hospitalization. Med. Sci. Sports Exerc. 2022, 54, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Paniagua, J.; Díaz-Arribas, M.J.; Valera-Calero, J.A.; Gallardo-Vidal, M.I.; Fernández-de-Las-Peñas, C.; López-de-Uralde-Villanueva, I.; Del Corral, T.; Plaza-Manzano, G. A tele-health primary care rehabilitation program improves self-perceived exertion in COVID-19 survivors experiencing post-COVID fatigue and dyspnea: A quasi-experimental study. PLoS ONE 2022, 17, e0271802. [Google Scholar] [CrossRef] [PubMed]
- Compagno, S.; Palermi, S.; Pescatore, V.; Brugin, E.; Sarto, M.; Marin, R.; Calzavara, V.; Nizzetto, M.; Scevola, M.; Aloi, A.; et al. Physical and psychological reconditioning in long COVID syndrome: Results of an out-of-hospital exercise and psychological—Based rehabilitation program. Int. J. Cardiol. Heart Vasc. 2022, 41, 101080. [Google Scholar] [CrossRef]
- Meléndez-Oliva, E.; Martínez-Pozas, O.; Cuenca-Zaldívar, J.N.; Villafañe, J.H.; Jiménez-Ortega, L.; Sánchez-Romero, E.A. Efficacy of pulmonary rehabilitation in post-COVID-19: A systematic review and meta-analysis. Biomedicines 2023, 11, 2213. [Google Scholar] [CrossRef]
- Reinert, G.; Müller, D.; Wagner, P.; Martínez-Pozas, O.; Cuenca-Záldivar, J.N.; Fernández-Carnero, J.; Sánchez Romero, E.A.; Corbellini, C. Pulmonary rehabilitation in SARS-CoV-2: A systematic review and meta-analysis of post-acute patients. Diagnostics 2022, 12, 3032. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, H.; Liu, X.; Sun, T.; Wu, J.; Liu, Z. Effect of pulmonary rehabilitation for patients with post-COVID-19: A systematic review and meta-analysis. Front. Med. 2022, 9, 837420. [Google Scholar] [CrossRef] [PubMed]
- Fugazzaro, S.; Contri, A.; Esseroukh, O.; Kaleci, S.; Croci, S.; Massari, M.; Facciolongo, N.C.; Besutti, G.; Iori, M.; Salvarani, C.; et al. Rehabilitation interventions for post-acute COVID-19 syndrome: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 5185. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Mustafaoglu, R.; Yeldan, I.; Yasaci, Z.; Erhan, B. Effect of pulmonary rehabilitation approaches on dyspnea, exercise capacity, fatigue, lung functions, and quality of life in patients with COVID-19: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2022, 103, 2051–2062. [Google Scholar] [CrossRef]
- Jimeno-Almazán, A.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz, B.J.; Courel-Ibáñez, J.; Pallarés, J.G. Effects of a concurrent training, respiratory muscle exercise, and self-management recommendations on recovery from post-COVID-19 conditions: The RECOVE trial. J. Appl. Physiol. (1985) 2023, 134, 95–104. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Cuello, C.; Akl, E.A.; Mustafa, R.A.; Meerpohl, J.J.; Thayer, K.; Morgan, R.L.; Gartlehner, G.; Kunz, R.; Katikireddi, S.V.; et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J. Clin. Epidemiol. 2019, 111, 105–114. [Google Scholar] [CrossRef]
- Santesso, N.; Glenton, C.; Dahm, P.; Garner, P.; Akl, E.A.; Alper, B.; Brignardello-Petersen, R.; Carrasco-Labra, A.; De Beer, H.; Hultcrantz, M.; et al. GRADE guidelines 26: Informative statements to communicate the findings of systematic reviews of interventions. J. Clin. Epidemiol. 2020, 119, 126–135. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane handbook for systematic reviews of interventions. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Chichester, UK, 2019; pp. 1–694. [Google Scholar]
- Rosenthal, R. Meta-analytic procedures for social research. In Meta-Analytic Procedures for Social Research; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. GRADE guidelines 6. Rating the quality of evidence-imprecision. J. Clin. Epidemiol. 2011, 64, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Furtado, P.L.; do Socorro Brasileiro-Santos, M.; de Mello, B.L.C.; Andrade Araújo, A.; da Silva, M.A.S.; Arielly Suassuna, J.; Brasileiro-Santos, G.; de Lima Martins, R.; da Cruz Santos, A. The effect of telerehabilitation on physical fitness and depression/anxiety in post-COVID-19 patients: A randomized controlled trial. Int. J. Telerehabil. 2023, 15, e6560. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xia, W.; Zhan, C.; Liu, S.; Yin, Z.; Wang, J.; Chong, Y.; Zheng, C.; Fang, X.; Cheng, W.; et al. A telerehabilitation programme in post-discharge COVID-19 patients (TERECO): A randomised controlled trial. Thorax 2022, 77, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, I.; Goessler, K.; de Oliveira Júnior, G.N.; Prado, D.M.L.D.; Santos, J.V.P.; Meletti, M.M.; de Andrade, D.C.O.; Gil, S.; Boza, J.A.S.O.; Lima, F.R.L.; et al. Effects of a 16-week home-based exercise training programme on health-related quality of life, functional capacity, and persistent symptoms in survivors of severe/critical COVID-19: A randomised controlled trial. Br. J. Sports Med. 2023, 57, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Everaerts, S.; Heyns, A.; Langer, D.; Beyens, H.; Hermans, G.; Troosters, T.; Gosselink, R.; Lorent, N.; Janssens, W. COVID-19 recovery: Benefits of multidisciplinary respiratory rehabilitation. BMJ Open Respir. Res. 2021, 8, e000837. [Google Scholar] [CrossRef] [PubMed]
- Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of pulmonary rehabilitation in COVID-19: A prospective observational cohort study. ERJ Open Res. 2021, 7, 00108–02021. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, M.; Rzepka-Cholasińska, A.; Pietrzykowski, Ł.; Michalski, P.; Kosobucka-Ozdoba, A.; Jasiewicz, M.; Kasprzak, M.; Kryś, J.; Kubica, A. Effects of multidisciplinary rehabilitation program in patients with long COVID-19: Post-COVID-19 rehabilitation (PCR SIRIO 8) study. J. Clin. Med. 2023, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, V.T.; Tourlakopoulos, K.N.; Vavougios, G.D.; Papayianni, E.; Kiribesi, K.; Maggoutas, S.; Nikolaidis, K.; Fradelos, E.C.; Dimeas, I.; Daniil, Z.; et al. Eight weeks unsupervised pulmonary rehabilitation in previously hospitalized of SARS-CoV-2 infection. J. Pers. Med. 2021, 11, 806. [Google Scholar] [CrossRef]
- Al-Mhanna, S.B.; Mohamed, M.; Noor, N.M.; Afolabi, H.A.; Irekeola, A.A.; Bello, K.E.; Aldhahi, M.I.; Ghazali, W.S.W. Effectiveness of Pulmonary Rehabilitation among COVID-19 Patients: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 2130. [Google Scholar] [CrossRef]
- DeSouza, C.A.; Shapiro, L.F.; Clevenger, C.M.; Dinenno, F.A.; Monahan, K.D.; Tanaka, H.; Seals, D.R. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 2000, 102, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, N.; Prasad, A.; Hastings, J.L.; Arbab-Zadeh, A.; Bhella, P.S.; Shibata, S.; Palmer, D.; Levine, B.D. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation 2010, 122, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, P.H.; Kitzman, D.W. Chronotropic incompetence: Causes, consequences, and management. Circulation 2011, 123, 1010–1020. [Google Scholar] [CrossRef]
- Singh, S.J.; Puhan, M.A.; Andrianopoulos, V.; Hernandes, N.A.; Mitchell, K.E.; Hill, C.J.; Lee, A.L.; Camillo, C.A.; Troosters, T.; Spruit, M.A.; et al. An official systematic review of the European Respiratory Society/American Thoracic Society: Measurement properties of field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1447–1478. [Google Scholar] [CrossRef]
- Dennis, C. Rehabilitation of patients with coronary artery disease. In Heart Disease, 4th ed.; Braunwald, E., Ed.; Saunders: Philadelphia, PA, USA, 2004. [Google Scholar]
- Picorelli, A.M.; Pereira, L.S.; Pereira, D.S.; Felício, D.; Sherrington, C. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: A systematic review. J. Physiother. 2014, 60, 151–156. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. Aging of the immune system. Mechanisms and therapeutic targets. Ann. Am. Thorac. Soc. 2016, 13, S422–S428. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.O.; MacFadyen, R.J.; Clarkson, P.B.; MacDonald, T.M. Impaired exercise tolerance in hypertensive patients. Ann. Intern. Med. 1996, 124, 41–55. [Google Scholar] [CrossRef]
- Shah, P.B. Intention-to-treat and per-protocol analysis. CMAJ 2011, 183, 696. [Google Scholar] [CrossRef]
- Argarini, R. The Effect of Rehabilitation and Exercise Program on Physical Function in Patients with Long COVID-19 Using a Mobile Interactive Application. Available online: https://trialsearch.who.int/Trial2.aspx?TrialID=ACTRN12622000742774 (accessed on 24 May 2022).
- Ahmed, I. Effect of Physical Therapy Exercises on Cardiorespiratory Fitness Level in COVID19 Patients after Recovery. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04445376 (accessed on 24 June 2020).
- Anastasio, F.; LA Macchia, T.; Rossi, G.; D’Abbondanza, M.; Curcio, R.; Vaudo, G.; Pucci, G. Mid-term impact of mild-moderate COVID-19 on cardiorespiratory fitness in élite athletes. J. Sports Med. Phys. Fitness 2022, 62, 1383–1390. [Google Scholar] [CrossRef]
- Aparisi, Á.; Ybarra-Falcón, C.; García-Gómez, M.; Tobar, J.; Iglesias-Echeverría, C.; Jaurrieta-Largo, S.; Ladrón, R.; Uribarri, A.; Catalá, P.; Hinojosa, W.; et al. Exercise ventilatory inefficiency in post-COVID-19 syndrome: Insights from a prospective evaluation. J. Clin. Med. 2021, 10, 2591. [Google Scholar] [CrossRef]
- Arena, R.; Faghy, M.A. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. Expert. Rev. Cardiovasc. Ther. 2021, 19, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Azmodeh, M.; Hoseini, R.; Amiri, E. Physical activity levels and self-perception of fitness in COVID-19-recovered individuals. Iran. J. Psychiatry Behav. Sci. 2022, 1, e115038. [Google Scholar] [CrossRef]
- Baricich, A.; Borg, M.B.; Cuneo, D.; Cadario, E.; Azzolina, D.; Balbo, P.E.; Bellan, M.; Zeppegno, P.; Pirisi, M.; Cisari, C.; et al. Midterm functional sequelae and implications in rehabilitation after COVID-19: A cross-sectional study. Eur. J. Phys. Rehabil. Med. 2021, 57, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Bellmunt, A. Effects of COVID-19 Hospitalization on Physical Performance. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04751630 (accessed on 12 February 2021).
- Blokland, I.J.; Ilbrink, S.; Houdijk, H.; Dijkstra, J.W.; van Bennekom, C.A.M.; Fickert, R.; de Lijster, R.; Groot, F.P. Inspanningscapaciteit na beademing vanwege COVID-19 [Exercise capacity after mechanical ventilation because of COVID-19: Cardiopulmonary exercise tests in clinical rehabilitation]. Ned. Tijdschr. Geneeskd. 2020, 164, D5253. [Google Scholar] [PubMed]
- Bohn, L.; Barros, D.; Borges-Machado, F.; Carrapatoso, S.; Pizarro, A.N.; Carvalho, J. Active older adults keep aerobic capacity and experience small reductions in body strength during confinement due to COVID-19 outbreak. J. Aging Phys. Act. 2021, 29, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Botek, M.; Krejčí, J.; Valenta, M.; McKune, A.; Sládečková, B.; Konečný, P.; Klimešová, I.; Pastucha, D. Molecular hydrogen positively affects physical and respiratory function in acute post-COVID-19 patients: A new perspective in rehabilitation. Int. J. Environ. Res. Public Health 2022, 19, 1992. [Google Scholar] [CrossRef]
- Brandenburg, J.P.; Lesser, I.A.; Thomson, C.J.; Giles, L.V. Does higher self-reported cardiorespiratory fitness reduce the odds of hospitalization from COVID-19? J. Phys. Act. Health 2021, 18, 782–788. [Google Scholar] [CrossRef]
- Brawner, C.A.; Ehrman, J.K.; Bole, S.; Kerrigan, D.J.; Parikh, S.S.; Lewis, B.K.; Gindi, R.M.; Keteyian, C.; Abdul-Nour, K.; Keteyian, S.J. Inverse relationship of maximal exercise capacity to hospitalization secondary to coronavirus disease 2019. Mayo Clin Proc. 2021, 96, 32–39. [Google Scholar] [CrossRef]
- Cafiero, G.; Passi, F.; Calo’ Carducci, F.I.; Gentili, F.; Giordano, U.; Perri, C.; Hashem Said, M.; Turchetta, A. Competitive sport after SARS-CoV-2 infection in children. Ital. J. Pediatr. 2021, 47, 221. [Google Scholar] [CrossRef]
- Cancino-López, J.; Vergara, P.Z.; Dinamarca, B.L.; Contreras, P.F.; Cárcamo, L.M.; Ibarra, N.C.; Soto-Sánchez, J. Telerehabilitation is effective to recover functionality and increase skeletal muscle mass index in COVID-19 survivors. Int. J. Telerehabil. 2021, 13, e6415. [Google Scholar] [CrossRef]
- Christensen, R.A.G.; Arneja, J.; St Cyr, K.; Sturrock, S.L.; Brooks, J.D. The association of estimated cardiorespiratory fitness with COVID-19 incidence and mortality: A cohort study. PLoS ONE 2021, 16, e0250508. [Google Scholar] [CrossRef] [PubMed]
- Crameri, G.A.G.; Bielecki, M.; Züst, R.; Buehrer, T.W.; Stanga, Z.; Deuel, J.W. Reduced maximal aerobic capacity after COVID-19 in young adult recruits, Switzerland, May 2020. Euro Surveill. 2020, 25, 2001542. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M. Home-Based Rehabilitation on Cardiorespiratory Fitness in Post COVID-19 type II Diabetes Mellitus Patients-Randomized Controlled Trial. Available online: https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=NTk1NTI=&Enc=&userName=Post-COVID-19,%20Type%20II%20Diabetes%20Mellitus (accessed on 21 October 2021).
- Cuenca-Zaldivar, J.N.; Monroy Acevedo, Á.; Fernández-Carnero, J.; Sánchez-Romero, E.A.; Villafañe, J.H.; Barragán Carballar, C. Effects of a multicomponent exercise program on improving frailty in post-COVID-19 older adults after intensive care Units: A single-group retrospective cohort study. Biology 2022, 11, 1084. [Google Scholar] [CrossRef] [PubMed]
- Debeaumont, D.; Boujibar, F.; Ferrand-Devouge, E.; Artaud-Macari, E.; Tamion, F.; Gravier, F.E.; Smondack, P.; Cuvelier, A.; Muir, J.F.; Alexandre, K.; et al. Cardiopulmonary exercise testing to assess persistent symptoms at 6 months in people with COVID-19 who survived hospitalization: A pilot study. Phys. Ther. 2021, 101, pzab099. [Google Scholar] [CrossRef] [PubMed]
- Delevatti, R.S.; Danielevicz, A.; Sirydakis, M.E.; de Melo, P.U.G.; de la Rocha Freitas, C.; Rech, C.R.; Guglielmo, L.G.A.; Speretta, G.F.F.; Hansen, F.; Fonseca, F.R.; et al. Effects of physical training on functional, clinical, morphological, behavioural and psychosocial outcomes in post-COVID-19 infection: COVID-19 and REhabilitation study (CORE-study)-a study protocol for a randomised controlled clinical trial. Trials 2023, 24, 39. [Google Scholar] [CrossRef] [PubMed]
- Tegtbur, U. Telemedicine-Assisted Rehabilitation after COVID-19 in Children. Available online: https://drks.de/search/en/trial/DRKS00028963 (accessed on 23 May 2022).
- Fereydounnia, S.; Shadmehr, A.; Tahmasbi, A.; Salehi, R.S. The comparison of the effectiveness of respiratory physiotherapy plus myofascial release therapy versus respiratory physiotherapy alone on cardiorespiratory parameters in patients with COVID-19. Int. J. Ther. Massage Bodyw. 2022, 15, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Gattoni, C.; Conti, E.; Casolo, A.; Nuccio, S.; Baglieri, C.; Capelli, C.; Girardi, M. COVID-19 disease in professional football players: Symptoms and impact on pulmonary function and metabolic power during matches. Physiol. Rep. 2022, 10, e15337. [Google Scholar] [CrossRef] [PubMed]
- Af Geijerstam, A.; Mehlig, K.; Börjesson, M.; Robertson, J.; Nyberg, J.; Adiels, M.; Rosengren, A.; Åberg, M.; Lissner, L. Fitness, strength and severity of COVID-19: A prospective register study of 1 559 187 Swedish conscripts. BMJ Open 2021, 11, e051316. [Google Scholar] [CrossRef]
- Hail University Poly Clinic. Low versus Moderate-Intensity Aerobic Training in Post-Discharge COVID-19 Subjects. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05373407 (accessed on 13 May 2022).
- Hekmatikar, A.H.A.; Shamsi, M.M.; Ashkazari, Z.S.Z.; Suzuki, K. Exercise in an overweight patient with COVID-19: A case study. Int. J. Environ. Res. Public Health 2021, 18, 5882. [Google Scholar] [CrossRef]
- Hermann, M.; Pekacka-Egli, A.M.; Witassek, F.; Baumgaertner, R.; Schoendorf, S.; Spielmanns, M. Feasibility and efficacy of cardiopulmonary rehabilitation after COVID-19. Am. J. Phys. Med. Rehabil. 2020, 99, 865–869. [Google Scholar] [CrossRef]
- Heubel, A.D.; Ciolac, E.G.; Mendes, R.G. Acute and Chronic Cardiovascular and Respiratory Changes in COVID-19 Hospitalized Patients and the Effect of Physical Rehabilitation Supervised by Telecommunication. Available online: https://ensaiosclinicos.gov.br/rg/RBR-9y32yy (accessed on 24 May 2020).
- Jafarnezhadgero, A.A.; Noroozi, R.; Fakhri, E.; Granacher, U.; Oliveira, A.S. The impact of COVID-19 and muscle fatigue on cardiorespiratory fitness and running kinetics in female recreational runners. Front. Physiol. 2022, 13, 942589. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Almazán, A.; Pallarés, J.G.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz Martínez, B.J.; Bernal-Morel, E.; Courel-Ibáñez, J. Post-COVID-19 syndrome and the potential benefits of exercise. Int. J. Environ. Res. Public Health 2021, 18, 5329. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Almazán, A.; Martínez-Cava, A.; Buendía-Romero, Á.; Franco-López, F.; Sánchez-Agar, J.A.; Sánchez-Alcaraz, B.J.; Tufano, J.J.; Pallarés, J.G.; Courel-Ibáñez, J. Relationship between the severity of persistent symptoms, physical fitness, and cardiopulmonary function in post-COVID-19 condition. a population-based analysis. Intern. Emerg. Med. 2022, 17, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Kisiel, M.A.; Janols, H.; Nordqvist, T.; Bergquist, J.; Hagfeldt, S.; Malinovschi, A.; Svartengren, M. Predictors of post-COVID-19 and the impact of persistent symptoms in non-hospitalized patients 12 months after COVID-19, with a focus on work ability. Ups. J. Med. Sci. 2022, 127. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Kennouche, D.; Foschia, C.; Brownstein, C.G.; Gondin, J.; Lapole, T.; Rimaud, D.; Royer, N.; Thiery, G.; Gauthier, V.; et al. Cardiorespiratory fitness and neuromuscular function of mechanically ventilated ICU COVID-19 patients. Crit. Care Med. 2022, 50, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Milovancev, A.; Avakumovic, J.; Lakicevic, N.; Stajer, V.; Korovljev, D.; Todorovic, N.; Bianco, A.; Maksimovic, N.; Ostojic, S.; Drid, P. Cardiorespiratory fitness in volleyball athletes following a COVID-19 infection: A cross-sectional study. Int. J. Environ. Res. Public Health 2021, 18, 4059. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulos, A.; Goodwill, S.; Copeland, R.; Klonizakis, M. The relationship between physical activity and severity of COVID-19 symptoms in non-hospitalized individuals. Eur. J. Public Health 2022, 32, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Pleguezuelos, E.; Del Carmen, A.; Moreno, E.; Miravitlles, M.; Serra, M.; Garnacho-Castaño, M.V. Effects of a telerehabilitation program and detraining on cardiorespiratory fitness in patients with post-COVID-19 sequelae: A randomized controlled trial. Scand. J. Med. Sci. Sports 2024, 34, e14543. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, M.R.; Cowan, J.; Milne, K.M.; Puyat, J.H.; Voduc, N.; Corrales-Medina, V.; Lavoie, K.L.; Mulloy, A.; Chirinos, J.A.; Abdallah, S.J.; et al. Cardiorespiratory physiology, exertional symptoms, and psychological burden in post-COVID-19 fatigue. Respir. Physiol. Neurobiol. 2022, 302, 103898. [Google Scholar] [CrossRef]
- Skjørten, I.; Ankerstjerne, O.A.W.; Trebinjac, D.; Brønstad, E.; Rasch-Halvorsen, Ø.; Einvik, G.; Lerum, T.V.; Stavem, K.; Edvardsen, A.; Ingul, C.B. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur. Respir. J. 2021, 58, 2100996. [Google Scholar] [CrossRef]
- Stavrou, V.T.; Vavougios, G.D.; Boutlas, S.; Tourlakopoulos, K.N.; Papayianni, E.; Astara, K.; Stavrou, I.T.; Daniil, Z.; Gourgoulianis, K.I. Physical fitness differences, amenable to hypoxia-driven and sarcopenia pathophysiology, between sleep apnea and COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 669. [Google Scholar] [CrossRef] [PubMed]
- Trapé, Á.A.; Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Merellano-Navarro, E.; Rodrigues, J.A.L.; da Silva Lizzi, E.A.; Sorgi, C.A.; Papoti, M.; Brazo-Sayavera, J. Effects of moderate-intensity intermittent hypoxic training on health outcomes of patients recovered from COVID-19: The AEROBICOVID study protocol for a randomized controlled trial. Trials 2021, 22, 534. [Google Scholar] [CrossRef] [PubMed]
- Williamson, T.; Miers, A.; Garvey, D.; Morris, C.; Dyer, F.; Wells, C.; Rahman, S. Impact of outpatient rehabilitation programme on physical fitness for patients post COVID-19. Eur. Respir. J. 2021, 58, PA2260. [Google Scholar] [CrossRef]
- Windt, M.R.; Flanagan, L.; Mullaney, H. Prospective out-patient study of pulmonary rehabilitation for long COVID: Pilot study (abstract). Am. J. Respir. Crit. Care Med. 2022, 205, A4962. [Google Scholar] [CrossRef]
- Wood, C.I.; Yu, Z.; Sealy, D.-A.; Moss, I.; Zugbuo-Wenzler, E.; McFadden, C.; Landi, D.; Brace, A.M. Mental health impacts of the COVID-19 pandemic on college students. J. Am. Coll. Health, 2022; in press. [Google Scholar] [CrossRef]
- Xiong, L.; Li, Q.; Cao, X.; Xiong, H.; Huang, M.; Yang, F.; Liu, Q.; Meng, D.; Zhou, M.; Wang, G.; et al. Dynamic changes of functional fitness, antibodies to SARS-CoV-2 and immunological indicators within 1 year after discharge in Chinese health care workers with severe COVID-19: A cohort study. BMC Med. 2021, 19, 163. [Google Scholar] [CrossRef]
Author (Year) | Design | Participants | COVID-19 Characteristics | Region | IG Program | CG Program | Mean-Aged Population | Outcome and Results |
---|---|---|---|---|---|---|---|---|
Ahmed (2022) [20] | non-rct | IG: n = 20 (65% M) age = 39.6 ± 2.4 y Comorbidities (N/A) No control group | Hospitalisation duration IG: 16 days No control group Long-COVID-19 duration IG: 5 wk No control group | Asia | Aerobic: 50–70% of HRmax or RPE 4–6 of 10 scales Resistance: - Respiratory: breathing Others: - (20–60 min, 3 days, 5 wk) Centre-based training | - | Young-aged adults | ↑ 6MWD after completing training |
Amaral (2022) [21] | rct | IG: n = 12 (58% M)20 age = 51.9 ± 10.2 y Comorbidities (42% HT, 33% DM, 8%DLP) CG: n = (40% M) age = 53.3 ± 11.6 y Comorbidities (55% HT, 5% DM, 10%DLP) | Hospitalisation duration IG: 6 days CG: 7 days Long-COVID-19 duration IG: 5.1 wk CG: 5.1 wk | South America | Aerobic: 11–13RPE Resistance: intensity not reported Respiratory: - Others: - (30 min of aerobic exercise, 2–5 days, 12 wk) Telerehabilitation | No intervention | Middle-aged adults | ↔ 6MWD compared to CG |
Calvo-Paniagua (2022) [22] | non-rct | IG: n = 68 (38% M) age = 48.5 ± 9.7 y Comorbidities (1.5% HT, 8.8% DM) No control group | Hospitalisation duration IG: 7.7 days No control group Long-COVID-19 duration IG: 12 wk No control group | Europe | Aerobic: no intensity Resistance: intensity not reported Respiratory: intensity not reported Others: - (40 min, 3 days, 7 wk) Telerehabilitation | - | Middle-aged adults | ↑ 6MWD after completing training |
Compagno (2022) [23] | non-rct | IG: n = 30 (65% M) age = 58.4 ± 11.6 y Comorbidities (33.3% HT, 10% DM, 30%DLP) No control group | Hospitalisation duration IG: N/A No control group Long-COVID-19 duration IG: 12 wk No control group | Europe | Aerobic: 60–80% VO2peak Resistance: 30–50% of the 1-RM Respiratory: - Others: - (90 min, 3 days, 4 wk) Centre-based training | - | Middle-aged adults | ↑ VO2peak after completing training |
Everaerts (2020) [42] | non-rct | IG: n = 22 (68% M) age = 54.2 ± 10.4 y Comorbidities (N/A) No control group | Hospitalisation duration IG: 26.7 days No control group Long-COVID-19 duration IG: 10 wk No control group | Europe | Aerobic: 60–75% individuals exhibited maximum capacity Resistance: intensity not reported Respiratory: - Others: - (90 min, 3 days, 12 wk) Centre-based | - | Middle-aged adults | ↑ 6MWD and VO2peak after completing training |
Furtado (2023) [39] | rct | IG: n = 16 (50% M) age = 47.5 ± 12 y Comorbidities (43.8% HT, 12.5% DM, 37.5%DLP) CG: n = 16 (37.5% M) age = 49.2 ± 13 y Comorbidities (12.5% HT, 18.8% DM, 31.2%DLP) | Hospitalisation duration IG: N/A CG: N/A Long-COVID-19 duration IG: 5 wk CG: 5 wk | South America | Aerobic: 6–8 Borg scale of 10 scales Resistance: 6–8 Borg scale of 10 scales Respiratory: - Others: neuromuscular exercise (45–60 min, 3 days, 8 wk) Telerehabilitation | No physical training program | Middle-aged adults | ↑ 6MWD compared to CG |
Gloeckl (2021) [43] | non-rct | IG: n = 50 (44% M) age = 58.7 ± 7.5 y Comorbidities (42%HT, 14%DM, 26%DLP) No control group | Hospitalisation duration IG: 38.3 days No control group Long-COVID-19 duration IG: 8.5 wk No control group | Asia | Aerobic: 60–70% of peak power Resistance: intensity not reported Respiratory: breathing Others: - (20 min for aerobic exercise, 30 min for resistance exercise, 30 min for respiratory exercise, 5 days, 3 wk) Centre-based training | - | Middle-aged adults | ↑ 6MWD after completing training |
Jimeno-Almazán (2023) [29] | rct | IG: n = 60 (68.3% M) age = 43.8 ± 8.1 y Comorbidities (N/A) CG: n = 20 (70% M) age = 47.8 ± 7.6 y Comorbidities (N/A) | Hospitalisation duration IG: N/A CG: N/A Long-COVID-19 duration IG: 44.3 wk CG: 39.4 | Europe | Aerobic: 70–80%HRR or 16 Borg scale, 3–5 min/55–65%HRR, 2–3 min Resistance: 50%RM Respiratory: inspiratory muscle training Others: - (Varied session: 3 days of aerobic resistance and inspiratory muscle training every day, 8 wk) Centre-based training | Self-management | Middle-aged adults | ↔ VO2peak compared to CG |
Li (2021) [40] | rct | IG: n = 59 (45.8% M) age = 49.2 ± 10.8 y Comorbidities (13.6% HT, 13.6% DM) CG: n = 60 (43.3% M) age = 52.0 ± 11.1 y Comorbidities (30% HT, 15% DM) | Hospitalisation duration IG: 28.7 days CG: 23.7 days Long-COVID-19 duration IG: 11 wk CG: 11.2 wk | Asia | Aerobic: 30–40% HRR to 40–60% HRR Resistance: intensity not reported Respiratory: breathing exercise Others: - (40–60 min, 3–4 days, 6 wk) Telerehabilitation | Education | Middle-aged adults | ↑ 6MWD compared to CG |
Longobardi (2023) [41] | rct | IG: n = 25 (48% M) age = 60.8 ± 7.1 y Comorbidities (60% HT, 32% DM, 52%DLP) CG: n = 25 (52% M) age = 61.2 ± 7.7 y Comorbidities (52% HT, 40% DM, 56%DLP) | Hospitalisation duration IG: 18 days CG: 19 days Long-COVID-19 duration IG: 25.4 wk CG: 25.1 wk | South America | Aerobic: Borg scale (9–11) and Borg scale (15–17) Resistance: Borg scale (9–11) and Borg scale (15–17) Respiratory: - Others: - (60–80 min, 3 days, 16 wk) Home-based training | General active lifestyle | Older-aged adults | ↔ VO2peak compared to CG |
Ostrowska (2023) [44] | non-rct | IG: n = 97 (45% M) age = 59.3 ± 13.3 y Comorbidities (46.4% HT, 27.7%DLP) No control group | Hospitalisation duration IG: N/A Long-COVID-19 duration IG: 12 wk | Europe | Aerobic: intensity not reported Resistance: intensity not reported Respiratory: - Others: - (90 min, 3 days, 6 wk) Centre-based training | - | Older-aged adults | ↑ 6MWD after completing training ↔ VO2peak after completing training |
Stavrou (2021) [45] | non-rct | IG: n = 20 (75% M) age = 64.1 ± 9.9 y Comorbidities (65% HT, 20%DM) No control group | Hospitalisation duration IG: 15.1 days Long-COVID-19 duration IG: 8 wk | Europe | Aerobic: 75–110%HRpeak Resistance: intensity not reported Respiratory: Yoga breathing Others: - (100 min, 3 days, 8 wk) Home-based training | - | Older-aged adults | ↑ 6MWD after completing training |
Outcomes | Mean Change (SD) | SMD (95% CI) | Number of Participants (Studies) | Certainty of Evidence (GRADE) | Comments | |
---|---|---|---|---|---|---|
Control Program | Exercise Rehabilitation Program | |||||
Peak oxygen consumption (VO2peak, mL/min/kg) | Mean change VO2peak was 1.75 (5.4) | Mean change VO2peak was 0.35 (6.2) | 0.26 (−0.11 to 0.64) | 130 (two RCTs) | ΘΘΘΘ Very low a,b | Exercise rehabilitation program may not be superior in improving VO2peak compared to control program |
Six-minute-walk distance (6MWD, m) | Mean change 6MWD was 14.4 (62.6) | Mean change 6MWD was 74.4 (75.6) | 0.85 (0.11 to 1.59) | 183 (three RCTs) | ΘΘΘΘ Very low a,b | Exercise rehabilitation program may provide a greater 6MWD than the control program, but the evidence is very uncertain |
Outcomes | Mean (SD) | MD (95% CI) | Number of Participants (studies) | Certainty of Evidence (GRADE) | Comments | |
Pre-Intervention | Post-Intervention | |||||
Peak oxygen consumption (VO2peak, mL/min/kg) | Mean VO2peak was 17 (4.3) | Mean VO2peak was 19.9 (6.0) | 1.72 (−2.21 to 5.66) | 92 (three non-RCTs) | ⊕ΘΘΘ Very low c,d | Exercise rehabilitation program may not improve VO2peak |
Six-minute walk distance (6MWD, m) | Mean 6MWD was 455.8 (156.8) | Mean 6MWD was 543.9 (174.3) | 76.45 (59.19 to 93.71) | 277 (six non-RCTs) | ⊕⊕ΘΘ Low c,e | Exercise rehabilitation program may result in a large increase in 6MWD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nantakool, S.; Sa-nguanmoo, P.; Konghakote, S.; Chuatrakoon, B. Effects of Exercise Rehabilitation on Cardiorespiratory Fitness in Long-COVID-19 Survivors: A Meta-Analysis. J. Clin. Med. 2024, 13, 3621. https://doi.org/10.3390/jcm13123621
Nantakool S, Sa-nguanmoo P, Konghakote S, Chuatrakoon B. Effects of Exercise Rehabilitation on Cardiorespiratory Fitness in Long-COVID-19 Survivors: A Meta-Analysis. Journal of Clinical Medicine. 2024; 13(12):3621. https://doi.org/10.3390/jcm13123621
Chicago/Turabian StyleNantakool, Sothida, Piangkwan Sa-nguanmoo, Supatcha Konghakote, and Busaba Chuatrakoon. 2024. "Effects of Exercise Rehabilitation on Cardiorespiratory Fitness in Long-COVID-19 Survivors: A Meta-Analysis" Journal of Clinical Medicine 13, no. 12: 3621. https://doi.org/10.3390/jcm13123621
APA StyleNantakool, S., Sa-nguanmoo, P., Konghakote, S., & Chuatrakoon, B. (2024). Effects of Exercise Rehabilitation on Cardiorespiratory Fitness in Long-COVID-19 Survivors: A Meta-Analysis. Journal of Clinical Medicine, 13(12), 3621. https://doi.org/10.3390/jcm13123621