Assessing the Impact of Simulated Color Vision Deficiency on Ophthalmologists’ Ability to Differentiate between Choroidal Melanoma and Choroidal Nevus
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. CVD Simulation and Assessment
2.3. Statistical Analysis
3. Results
3.1. Melanoma Images
3.2. Nevus Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, J.L.; Spalding, A.J.; Mir, F.A.; Birch, J. Doctors and the Assessment of Clinical Photographs—Does Colour Blindness Matter? Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 1999, 49, 459–461. [Google Scholar]
- Balasundaram, R.; Reddy, S.C. Prevalence of Colour Vision Deficiency among Medical Students and Health Personnel. Malays. Fam. Physician Off. J. Acad. Fam. Physicians Malays. 2006, 1, 52–53. [Google Scholar]
- Spalding, J.A. Colour Vision Deficiency in the Medical Profession. Br. J. Gen. Pract. 1999, 49, 469–475. [Google Scholar] [PubMed]
- Bornfeld, N.; Biewald, E.; Bauer, S.; Temming, P.; Lohmann, D.; Zeschnigk, M. The Interdisciplinary Diagnosis and Treatment of Intraocular Tumors. Dtsch. Ärztebl. Int. 2018, 115, 106–111. [Google Scholar] [CrossRef]
- Synoradzki, K.J.; Paduszyńska, N.; Solnik, M.; Toro, M.D.; Bilmin, K.; Bylina, E.; Rutkowski, P.; Yousef, Y.A.; Bucolo, C.; Zweifel, S.A.; et al. From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma. Curr. Oncol. 2024, 31, 778–800. [Google Scholar] [CrossRef] [PubMed]
- Elfalah, M.; AlRyalat, S.A.; Abu-Yaghi, N.E.; Mohammad, M.; AlNawiaseh, I.; Rayyan, D.; Albliwi, M.; Elfalah, M.; AlSarairah, F.; Yousef, Y.A. The Impact of Color Vision Deficiency on the Capability of Ophthalmologists to Diagnose Benign and Malignant Choroidal Tumors. J. Clin. Med. 2023, 12, 2744. [Google Scholar] [CrossRef] [PubMed]
- Solnik, M.; Paduszynska, N.; Czarnecka, A.M.; Synoradzki, K.J.; Yousef, Y.A.; Choragiewicz, T.; Rejdak, R.; Toro, M.D.; Zweifel, S.; Dyndor, K.; et al. Imaging of Uveal Melanoma—Current Standard and Methods in Development. Cancers 2022, 14, 3147. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Manalac, J.; Das, C.; Ferguson, K.; Shields, J.A. Choroidal Melanoma: Clinical Features, Classification, and Top 10 Pseudomelanomas. Curr. Opin. Ophthalmol. 2014, 25, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, I.; Zewar, A.; AlNawaiseh, I.; AlRawashdeh, K.; Khurma, S.; Mehyar, M.; Abdeen, G.; Yousef, Y.A. Characteristics, management, and outcome of patients with uveal melanoma treated by Iodine-125 radioactive plaque therapy in a single tertiary cancer center in Jordan. Saudi J. Ophthalmol. 2018, 32, 130–133. [Google Scholar] [CrossRef]
- Schalenbourg, A.; Zografos, L. Pitfalls in colour photography of choroidal tumours. Eye 2013, 27, 224–229. [Google Scholar] [CrossRef]
- Maheshwari, A.; Finger, P.T. Cancers of the eye. Cancer Metastasis Rev. 2018, 37, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.D.; Kalyani, P.; Topham, A. Estimating the risk of malignant transformation of a choroidal nevus. Ophthalmology 2005, 112, 1784–1789. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji—An Open Source Platform for Biological Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Lillo, J.; Alvaro, L.; Moreira, H. An Experimental Method for the Assessment of Color Simulation Tools. J. Vis. 2014, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- AlRyalat, S.A.; Muhtaseb, R.; Alshammari, T. Simulating a Colour-Blind Ophthalmologist for Diagnosing and Staging Diabetic Retinopathy. Eye 2020, 35, 2229–2232. [Google Scholar] [CrossRef] [PubMed]
- Goh, S.; Chan, V.; Tan, N. Colour Vision Deficiency: Is It a Handicap? A Narrative Review of Its Impact on Medical & Dental Education and Practice. Proc. Singap. Healthc. 2014, 23, 149–157. [Google Scholar]
- Spalding, J.A.B.; Cole, B.L.; Mir, F.A. Advice for Medical Students and Practitioners with Colour Vision Deficiency: AWebsite Resource. Clin. Exp. Optom. 2010, 93, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R.; Dhakal, R. Assessment of Color Vision among Health Science Students. Nepal. Med. Coll. J. 2020, 22, 49–53. [Google Scholar] [CrossRef]
- Elfalah, M.; Sulyman, N.; Alrwashdeh, A.; Al Hajaj, S.; Alrawashdeh, S.; Al-Rawashdeh, A.; AlRyalat, S.A. Assessing the impact of color blindness on the ability of identifying benign and malignant skin lesions by naked-eye examination. PLoS ONE 2022, 17, e0270487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Friedman, R.J.; Rigel, D.S.; Kopf, A.W. Early detection of malignant melanoma: The role of physician examination and self-examination of the skin. CA Cancer J. Clin. 1985, 35, 130–151. [Google Scholar] [CrossRef]
- Abbasi, N.R.; Shaw, H.M.; Rigel, D.S.; Friedman, R.J.; McCarthy, W.H.; Osman, I.; Kopf, A.W.; Polsky, D. Early diagnosis of cutaneous melanoma: Revisiting the ABCD criteria. JAMA 2004, 292, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Rigel, D.S.; Russak, J.; Friedman, R. The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs. CA Cancer J. Clin. 2010, 60, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Tsao, H.; Olazagasti, J.M.; Cordoro, K.M.; Brewer, J.D.; Taylor, S.C.; Bordeaux, J.S.; Chren, M.M.; Sober, A.J.; Tegeler, C.; Bhushan, R.; et al. Early detection of melanoma: Reviewing the ABCDEs. J. Am. Acad. Dermatol. 2015, 72, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Tranchand, P.; Berard, F.; Secchi, T.; Colin, C.; Moulin, G. Semiological Value of ABCDE Criteria in the Diagnosis of Cutaneous Pigmented Tumors. Dermatology 1998, 197, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Giotis, I.; Molders, N.; Land, S.; Biehl, M.; Jonkman, M.F.; Petkov, N. MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert. Syst. Appl. 2015, 42, 6578–6585. [Google Scholar] [CrossRef]
- Corbo, M.D.; Wismer, J. Agreement between Dermatologists and Primary Care Practitioners in diagnosing Malignant Melanoma: Review of the Literature. J. Cutan. Med. Surg. 2012, 16, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Frome, F.S.; Buck, S.L.; Boynton, R.M. Visibility of borders: Separate and combined effects of color differences, luminance contrast, and luminance level. J. Opt. Soc. Am. 1981, 71, 145–150. [Google Scholar] [CrossRef]
- Chen, S.C.; Pennie, M.L.; Kolm, P.; Warshaw, E.M.; Weisberg, E.L.; Brown, K.M.; Ming, M.E.; Weintraub, W.S. Diagnosing and Managing Cutaneous Pigmented Lesions: Primary Care Physicians Versus Dermatologists. J. Gen. Intern. Med. 2006, 21, 678–682. [Google Scholar] [CrossRef]
Non-Simulated Images’ Diagnosis Score | Simulated Protanopia Images’ Diagnosis Score | Simulated Deuteranopia Images’ Diagnosis Score | Simulated Tritanopia Images’ Diagnosis Score | |||||
---|---|---|---|---|---|---|---|---|
Overall (41 Participants) | Correct (%) | Wrong (%) | Correct (%) | Wrong (%) | Correct (%) | Wrong (%) | Correct (%) | Wrong (%) |
Is there a lesson? Yes | 41 (100%) | 0 (0.0%) | 41 (100%) | 0 (0.0%) | 41 (100%) | 0 (0.0%) | 41 (100%) | 0 (0.0%) |
p value | 1.0000 | 1.0000 | 1.0000 | |||||
Melanotic vs. Amelanotic | 37 (90%) | 4 (10) | 32 (78%) | 9 (22%) | 29 (71%) | 12 (29%) | 34 (82.9%) | 7 (17.1%) |
p value | 0.22 | 0.048 | 0.518 | |||||
Orange Pigments Yes | 31 (76%) | 10 (24%) | 21 (51%) | 20 (49%) | 24 (58.5%) | 17 (41.5%) | 13 (31.7%) | 28 (68.3%) |
p value | 0.038 | 0.15 | 0.1763 | |||||
Subretinal Fluid Yes | 35 (85.4%) | 6 (14.6%) | 36 (87.8%) | 5 (12.2%) | 33 (80.5%) | 8 (19.5%) | 34 (82.9%) | 7 (17.1%) |
p value | 1.0000 | 0.7701 | 1.0000 | |||||
Estimated Thickness >2 mm | 37 (90.2%) | 4 (9.8%) | 38 (92.7%) | 3 (7.3%) | 36 (87.8%) | 5 (12.2%) | 37 (90.2%) | 4 (9.8%) |
p value | 1.0000 | 1.0000 | 1.0000 | |||||
Diagnosis for Melanoma Yes | 38 (93%) | 3 (7%) | 30 (73%) | 11 (27%) | 30 (73%) | 11 (27%) | 36 (88%) | 5(12%) |
p value | 0.0372 | 0.0372 | 0.712 | |||||
Need for Referral * Yes | 41 (100%) | 0 (0%) | 39 (95%) | 2 (%) | 40 (98%) | 1 (2%) | 41 (100%) | 0 (0%) |
p value | 0.4938 | 1.0000 | 1.0000 |
Non-Simulated Images’ Diagnosis Score | Simulated Protanopia Images’ Diagnosis Score | Simulated Deuteranopia Images’ Diagnosis Score | Simulated Tritanopia Images’ Diagnosis Score | |||||
---|---|---|---|---|---|---|---|---|
Overall (41 Participants) | Correct (%) | Wrong (%) | Correct (%) | Wrong (%) | Correct (%) | Wrong (%) | Correct (%) | Wrong (%) |
Is there a lesson? Yes | 41 (100%) | 0 (0.0%) | 41 (100%) | 0 (0.0%) | 41 (100%) | 0 (0.0%) | 41 (100%) | 0 (0.0%) |
p value | 1.0000 | 1.0000 | 1.0000 | |||||
Melanotic vs. Amelanotic | 39 (95%) | 2 (5%) | 33 (80%) | 8 (20%) | 32 (78%) | 9 (22%) | 38 (93%) | 3 (7%) |
p value | 0.08 | 0.048 | 1.00 | |||||
Orange Pigments No | 25 (61%) | 16 (39%) | 34 (83%) | 17 (17%) | 23 (56%) | 18 (44%) | 24 (59%) | 17 (61%) |
p value | 0.047 | 0.822 | 0.821 | |||||
Subretinal fluid No | 31 (76%) | 10 (24%) | 37 (90%) | 4 (10%) | 33 (80%) | 8 (20%) | 32 (78%) | 9 (22%) |
p value | 0.1405 | 0.7902 | 1.0000 | |||||
Estimated Thickness <2 mm | 32 (78%) | 9 (22%) | 37 (90.2%) | 4 (9.8%) | 33 (80.5%) | 8 (19.5%) | 30 (73.2%) | 11 (26.8%) |
p value | 0.2258 | 1.0000 | 0.7976 | |||||
Diagnosis for Nevus Yes | 36 (88%) | 5 (12%) | 26 (63%) | 15 (37%) | 24 (59%) | 17 (41%) | 34 (83%) | 7 (17%) |
p value | 0.019 | 0.005 | 0.75 | |||||
Referral for Nevus * No | 39 (95%) | 2 (5%) | 32 (78%) | 9 (22%) | 30 (73%) | 11 (27%) | 38 (93%) | 3 (7%) |
p value | 0.007 | 0.003 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, Y.A.; Alkhatib, F.; Elfalah, M.; AlRyalat, S.A.; Mohammad, M.; AlHabahbeh, O.; AlJabari, R.; Zweifel, S.; AlNawiaseh, I.; Rejdak, R.; et al. Assessing the Impact of Simulated Color Vision Deficiency on Ophthalmologists’ Ability to Differentiate between Choroidal Melanoma and Choroidal Nevus. J. Clin. Med. 2024, 13, 3626. https://doi.org/10.3390/jcm13123626
Yousef YA, Alkhatib F, Elfalah M, AlRyalat SA, Mohammad M, AlHabahbeh O, AlJabari R, Zweifel S, AlNawiaseh I, Rejdak R, et al. Assessing the Impact of Simulated Color Vision Deficiency on Ophthalmologists’ Ability to Differentiate between Choroidal Melanoma and Choroidal Nevus. Journal of Clinical Medicine. 2024; 13(12):3626. https://doi.org/10.3390/jcm13123626
Chicago/Turabian StyleYousef, Yacoub A., Fawzieh Alkhatib, Mutasem Elfalah, Saif Aldeen AlRyalat, Mona Mohammad, Omar AlHabahbeh, Reem AlJabari, Sandrine Zweifel, Ibrahim AlNawiaseh, Robert Rejdak, and et al. 2024. "Assessing the Impact of Simulated Color Vision Deficiency on Ophthalmologists’ Ability to Differentiate between Choroidal Melanoma and Choroidal Nevus" Journal of Clinical Medicine 13, no. 12: 3626. https://doi.org/10.3390/jcm13123626
APA StyleYousef, Y. A., Alkhatib, F., Elfalah, M., AlRyalat, S. A., Mohammad, M., AlHabahbeh, O., AlJabari, R., Zweifel, S., AlNawiaseh, I., Rejdak, R., & Toro, M. D. (2024). Assessing the Impact of Simulated Color Vision Deficiency on Ophthalmologists’ Ability to Differentiate between Choroidal Melanoma and Choroidal Nevus. Journal of Clinical Medicine, 13(12), 3626. https://doi.org/10.3390/jcm13123626