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Abstract: This study explores the efficacy of texture analysis by using preoperative multi-slice spiral
computed tomography (MSCT) to non-invasively determine the grade of cellular differentiation
in head and neck squamous cell carcinoma (HNSCC). In a retrospective study, MSCT scans of
patients with HNSCC were analyzed and classified based on its histological grade as moderately
differentiated, well-differentiated, or poorly differentiated. The location of the tumor was categorized
as either in the bone or in soft tissues. Segmentation of the lesion areas was conducted, followed by
texture analysis. Eleven GLCM parameters across five different distances were calculated. Median
values and correlations of texture parameters were examined in relation to tumor differentiation
grade by using Spearman’s correlation coefficient and Kruskal–Wallis and Dunn tests. Forty-six
patients were included, predominantly female (87%), with a mean age of 66.7 years. Texture analysis
revealed significant parameter correlations with histopathological grades of tumor differentiation.
The study identified no significant age correlation with tumor differentiation, which underscores
the potential of texture analysis as an age-independent biomarker. The strong correlations between
texture parameters and histopathological grades support the integration of this technique into the
clinical decision-making process.

Keywords: computed tomography; computer-assisted diagnosis; oral cancer; radiomics; tumor

1. Introduction

Head and neck squamous cell carcinoma (HNSCC), which includes both oropharyn-
geal squamous cell carcinoma (OPSCC) and oral cavity squamous cell carcinoma (OCSCC),
is a malignant tumor originating from keratinocytes within the squamous epithelium of
the head and neck region [1,2]. It typically presents as cell groups arranged in cords and
nests or as individual cells invading the connective tissue [3].

The degree of differentiation of tumor cells varies according to four parameters based
on the Broders histological classification [4] as follows: grade 1 (0 to 25% of undifferentiated
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cells), grade 2 (25 to 50% of undifferentiated cells), grade 3 (50 to 75% of undifferentiated
cells), and grade 4 (75 to 100% of undifferentiated cells). Meanwhile, there is a grading
system for invasive margins, in which factors such as nuclear pleomorphism, invasion
pattern, and degree of keratinization are taken into account [5].

The clinical diagnosis of a lesion is established based on a series of data obtained
through anamnesis and physical examination. If neoplasia is suspected, a biopsy is manda-
tory to define the case through histopathological examination [6]. Imaging exams (e.g.,
computed tomography) help with diagnosis and, most importantly, evaluation of the extent
of the tumor. The clinical examination, associated with biopsy and study of the lesion
by computed tomography (CT), allows us to determine the tumor extent and define the
treatment for the lesion [7–10].

However, despite significant advancements in the diagnosis and histopathological
classification of HNSCC, there are still important gaps regarding the use of quantitative
imaging techniques to assess tumor cell differentiation non-invasively [11,12]. Although
cellular differentiation is a critical factor for tumor behavior and prognosis, reliable and
non-invasive methodologies for its evaluation are still being developed [11]. Previous
studies [13] emphasize the importance of cellular differentiation in determining tumor
behavior, with poorly differentiated carcinomas showing a higher propensity for metastasis.
Furthermore, its potential as a reliable biomarker, particularly in distinguishing between
various grades of cellular differentiation, has not been extensively studied.

Considering the profound impact of the degree of cellular differentiation on prognosis,
it becomes imperative to deeply investigate its significance, particularly in the context
ofHNSCC. Recent evidence, as highlighted by Kademani et al. [14], underscores the critical
role of cellular differentiation in determining tumor behavior, with poorly differentiated
carcinomas demonstrating a heightened propensity for metastasis. This observation not
only highlights the importance of precise differentiation but also of the urgency for reliable,
new methodologies. Such predictive tools could revolutionize the clinical practice by
enabling clinicians to anticipate disease aggressiveness and tailor treatment strategies,
ultimately enhancing patient outcomes.

Texture analysis, a quantitative imaging technique, has emerged as a promising tool
for characterizing tissue properties and identifying subtle histological features associated
with tumor behavior [15–18]. By quantifying texture features of imaging modalities such
as CT or magnetic resonance imaging (MRI), texture analysis can potentially enhance
diagnostic accuracy and prognostic stratification of HNSCC [16,18].

Therefore, the aim of this study was to determine, through texture analysis, the
grade of cellular differentiation in HNSC. By correlating texture features extracted from
preoperative multi-slice spiral CT imaging with histopathological findings, and we aimed
to establish a non-invasive, objective method for evaluating tumor differentiation, with
implications for prognosis and treatment planning.

2. Materials and Methods
2.1. Patients

The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Institutional Review Board (or Ethics Committee) of Faculty of Medical
Sciences at the University of Campinas (UNICAMP) (protocol code: 33377320.0.0000.5404;
date of approval: 16 October 2020). All subjects provided a signed written informed
consent form.

In this retrospective study, a search was conducted in our institution’s database in
order to identify all patients with HNSCC according to the following inclusion criteria:
histopathologically proven HNSCC, no radiotherapy or “making interpretation difficult”
chemotherapy, and contrast-enhanced MSCT scans. Exclusion criteria were applied to pa-
tients with tumors of histological types other than OPSCC, images with artifacts hindering
interpretation, neoplasia images acquired without intravenous contrast administration
(iodine), and unclear medical records. HNSCC was histologically graded as moderately
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differentiated, well-differentiated, and poorly differentiated, whereas tumor location was
categorized as either in the bone or in soft tissues.

The classification of tumor location in the bone or soft tissues was specifically designed
to facilitate the image processing during texture analysis. This targeted approach not only
streamlines the image processing workflow but also potentially increases the accuracy
and reliability of the texture analysis. Furthermore, the separation into the bone or soft
tissue categories acknowledges the distinct texture features between these two types of
tissues [19].

Recognizing the biological and histopathological differences between OPSCC and
OCSCC, including the differing role of human papillomavirus (HPV) infection, both types
were included in the study. This decision was driven by the limited sample size and the
retrospective nature of the study, as excluding OPSCC cases would have further reduced
the statistical power of the analysis. Previous research, such as the study by Kuno et al. [20],
has demonstrated the feasibility and relevance of including a mixed sample of HNSCC for
texture analysis.

2.2. CT Image Acquisition

All patients underwent a 64-section contrast-enhanced MSCT scan (Aquilion TSX-
101A model, Toshiba Medical Systems Corporation, Tokyo, Japan) preoperatively by using
a multi-slice system and field of vision (FOV) of 320 mm, yielding slice thickness and
reconstruction interval of 3 mm each and matrix size of 512 × 512. The scanner was
operated at 120 kilovolts kVp and 400 mA.

2.3. Image Processing and Analysis

All images were acquired in Digital Imaging and Communications in Medicine (DI-
COM). MSCT scans were selected based on the identification of the largest area of the
lesion. Two radiologists with 6 and 16 years of experience in interpreting MSCT scans were
extensively involved in reviewing all the cases. They performed the segmentation with
mutual agreement. The InVesalius® software (www.cti.gov.br/invesalius, accessed on 5
July 2023) was used for the initial image processing. Once all the lesions were segmented
and similar areas identified, the DICOM files were converted into the NIfTI format by using
the InVesalius® software toolbox [21]. Figure 1 shows the segmentation process before
calculating the texture parameter values.

Figure 1. (A) Axial MSCT image shows squamous cell carcinoma located in the tonsillar pillar on the
left side. (B) 3D VOI (red) segmentation process covering the lesion.

www.cti.gov.br/invesalius
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2.4. Texture Analysis

In this study, we assessed eleven gray-level co-occurrence matrix (GLCM) parameters
from each segmented lesion volume by using texture analysis in the MATLAB software
(MathWorks, Natick, MA, USA, www.mathworks.com, accessed on 19 July 2023). The
GLCM is a matrix showing how many times a pair of pixel values appear at a specific
distance and angle. The GLCM is used for capturing second-order statistical texture
parameters such as contrast, correlation, entropy of difference, entropy, homogeneity, sum
average, sum entropy, sum variance, uniformity, variance of difference, and variance. The
mean value of the texture parameters was estimated on a volume of interest (VOI) basis.
Hence, we opted for 128 levels as being the most suitable balance between GLCM shortage
and amount of information extracted [22]. Previous studies have shown successful results
by using Haralick parameters [21,23–25]. The number of slices used for GLCM calculation
within the manually segmented VOI depending on the specific VOI being analyzed [22].
The texture parameters were assessed at five varying distances (q1, q2, q3, q4, and q5) and
calculated similarly to the study by Gomes et al. [21].

2.5. Statistical Analysis

Spearman’s correlation coefficient was used to assess the correlation between distances
of the same texture analysis parameter. Tumor differentiation grades were compared by
using the Kruskal–Wallis test, followed by the Dunn test (numerical variables) or the Chi-
Square test (categorical variables). Statistical analysis was conducted by using the software
R, version 3.6.0 (The R Foundation for Statistical Computing, Vienna, Austria), with a
significance level set at 5%.

3. Results

After applying the criteria for inclusion and exclusion, 45 patients were included. There
was a female predominance (87%), and the mean age was 66.7 years (range: 33–93 years).
The results showed that five (11.1%) patients had a moderately differentiated tumor in the
bones, seven (15.6%) had well-differentiated tumor in the soft tissues, 30 (66.7%) had mod-
erately differentiated tumor in the soft tissues, and three (6.7%) had poorly differentiated
tumor in the soft tissues.

Texture analysis with eleven parameters at five different distances generated a large
number of variables, which significantly increased the chance of type I error. Therefore,
the variables were reduced by using the mean of the five distances. Before calculating
the mean of the five distances for each parameter, the Spearman’s correlation coefficient
between the distances was calculated and assessed. As a high correlation was observed
in nine out of the eleven parameters, the mean value between the distances was used. In
the correlation texture parameter, the distance 5 did not show a high correlation with the
other distances. Therefore, this parameter was evaluated in two ways: the mean from 1
to 4 and 5 considered separately. A similar situation occurred with the texture parameter
difference of entropy, where the mean of distances from 2 to 5 was used, and distance 1
was evaluated separately.

Table 1 shows the median of age and texture parameters according to tumor differenti-
ation grade groups. Table 2 shows the comparison between tumor differentiation grade in
relation to age and texture analysis. It is observed that no statistically significant difference
was found between the groups in relation to age (p-value = 0.725). Figure 2 shows the
tumor differentiation grade groups significant for texture parameters.

With regard to texture analysis, the observed results are as follows:

- Group BM (moderately differentiated tumor in bone) showed lower correlation com-
pared to Group SM (moderately differentiated tumor in soft tissue);

- Group BM (moderately differentiated tumor in bone) showed lower uniformity com-
pared to Group SM (moderately differentiated tumor in soft tissue) and Group SP
(poorly differentiated tumor in soft tissue);

www.mathworks.com
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- Group BM (moderately differentiated tumor in bone) showed lower homogeneity
compared to Group SM (moderately differentiated tumor in soft tissue) and Group SP
(poorly differentiated tumor in soft tissue);

- Group BM (moderately differentiated tumor in bone) presented higher entropy and
sum of entropy compared to Group SM (moderately differentiated tumor in soft tissue)
and Group SP (poorly differentiated tumor in soft tissue);

- Group BM (moderately differentiated tumor in bone) presented higher entropy of
difference (mean of distances from 2 to 5) compared to Group SM (moderately differ-
entiated tumor in soft tissue) and Group SP (poorly differentiated tumor in soft tissue);

- Group SW (well-differentiated tumor in soft tissue) and Group SP (poorly differenti-
ated tumor in soft tissue) showed lower entropy of difference (distance 1) compared
to Group BM (moderately differentiated tumor in bone) and Group SM (moderately
differentiated tumor in soft tissue).

Table 1. Median of age and texture parameters according to tumor differentiation.

Texture
Parameters

Moderately
Differentiated

Bone
(BM) (N = 5)

Well Differentiated
Soft Tissue

(SW) (N = 7)

Moderately
Differentiated

Soft Tissue
(SM) (N = 30)

Poorly
Differentiated

Soft Tissue
(SP) (N = 3)

Age 63.0 [59.0;85.0] 70.0 [59.0;89.0] 65.5 [33.0;93.0] 67.0 [63.0;73.0]
Uniformity 0.06 [0.01;0.18] 0.18 [0.04;0.32] 0.20 [0.02;0.69] 0.69 [0.14;0.78]
Contrast 76.8 [14.9;271] 24.8 [0.71;49.9] 9.63 [0.40;166] 0.97 [0.22;37.6]
Correlation M 0.75 [0.50;0.76] 0.86 [0.40;0.91] 0.73 [0.27;0.96] 0.63 [0.47;0.85]
Correlation q5 0.50 [0.21;0.62] 0.76 [0.14;0.82] 0.84 [0.07;0.94] 0.40 [0.28;0.73]
Variance 147 [24.2;243] 80.3 [2.67;125] 18.6 [0.47;279] 0.87 [0.27;109]
Homogeneity 0.49 [0.36;0.64] 0.71 [0.54;0.88] 0.75 [0.39;0.91] 0.93 [0.65;0.93]
Entropy 2.12 [1.55;2.40] 1.29 [0.77;1.74] 1.08 [0.39;2.66] 0.39 [0.32;1.96]
SumAverage 74.4 [59.0;126] 77.7 [58.4;131] 80.7 [24.5;137] 94.7 [77.7;98.2]
SumVariance 570 [82.0;702] 276 [9.98;473] 62.8 [1.19;951] 2.50 [0.88;399]
SumEntropy 1.52 [1.15;1.63] 1.04 [0.68;1.26] 0.82 [0.33;1.80] 0.33 [0.26;1.17]
DifferenceVariance 55.7 [6.81;212] 20.5 [0.61;40.4] 9.65 [0.35;141] 0.92 [0.20;31.9]
DifferenceEntropy M 0.98 [0.79;1.19] 0.68 [0.31;0.84] 0.54 [0.24;1.22] 0.21 [0.21;0.78]
DifferenceEntropy q1 0.71 [0.61;0.90] 0.50 [0.19;0.61] 0.64 [0.60;0.71] 0.19 [0.12;0.55]

CorrelationM = average of distances 1 to 4; DifferenceEntropyM = average of distances 2 to 5. Bold indicates
significant p value.

Figure 2. The groups are statistically different at 5% significance level regarding parameters followed
by asterisk (*). All parameters were rescaled to be inserted into the graph in order to avoid distorting
the scale for the other parameters.
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Table 2. Comparison of tumor differentiation grade in relation to age and texture analysis.

Texture
Parameters

Moderately
Differentiated

Bone
(BM) (N = 5)

Well
Differentiated

Soft Tissue
(SW) (N = 7)

Moderately
Differentiated

Soft Tissue
(SM) (N = 30)

Poorly
Differentiated

Soft Tissue
(SP) (N = 3)

p-Value

Age 67.0 (10.3) 71.1 (9.01) 65.5 (13.4) 67.7 (5.03) 0.725
Uniformity 0.07 (0.07) 0.18 (0.10) 0.24 (0.16) 0.54 (0.35) 0.021
Contrast 99.4 (104) 22.2 (16.5) 23.6 (39.5) 12.9 (21.4) 0.062
Correlation M 0.69 (0.11) 0.73 (0.21) 0.70 (0.20) 0.65 (0.19) 0.807
Correlation q5 0.45 (0.15) 0.58 (0.28) 0.80 (0.16) 0.47 (0.23) 0.001
Variance 127 (96.5) 59.0 (51.4) 52.1 (75.0) 36.7 (62.6) 0.123
Homogeneity 0.50 (0.11) 0.70 (0.11) 0.73 (0.12) 0.84 (0.16) 0.006
Entropy 2.06 (0.34) 1.30 (0.36) 1.18 (0.53) 0.89 (0.93) 0.020
SumAverage 84.7 (27.3) 83.6 (22.9) 85.3 (26.2) 90.2 (11.0) 0.836
SumVariance 445 (274) 214 (193) 184 (265) 134 (229) 0.092
SumEntropy 1.45 (0.19) 1.01 (0.25) 0.90 (0.36) 0.59 (0.51) 0.012
DifferenceVariance 75.6 (82.2) 18.1 (13.2) 19.7 (31.8) 11.0 (18.1) 0.096
DifferenceEntropy M 0.99 (0.15) 0.65 (0.18) 0.57 (0.24) 0.40 (0.33) 0.008
DifferenceEntropy q1 0.74 (0.14) 0.47 (0.14) 0.65 (0.03) 0.29 (0.23) <0.001

CorrelationM = average distances 1 to 4; DifferenceEntropyM = average of distances 2 to 5. Bold indicates
significant p value.

4. Discussion

The objective of this study was to assess the degree of cellular differentiation in HNSCC
by relating texture parameters derived from preoperative MSCT scans with histopathologi-
cal features. We endeavored to devise a non-invasive, objective technique for determining
tumor differentiation. This approach has implications for prognosis and treatment planning,
while also considering the location of the lesion in soft and bone tissues.

It is observed that the parameter of correlation indicated a statistically significant
difference (p = 0.001) in the Group MD (moderately differentiated tumor in hard tissue)
compared to Group SM (moderately differentiated tumor in soft tissue) and Group SP
(poorly differentiated tumor in soft tissue), indicating lower values in Group BM. The
parameter of correlation assesses the degree of interdependence between image pixels and
higher values, which indicates a greater interdependence between pixels [26], that is, the
uniformity of the tissue content represented by the pixel values would be greater. This
indicates that there is no variation in tissue types comprising the region, with a consequently
less complex internal pattern [27,28]. Thus, this finding means that tumors in hard tissue
(BM) are less uniform than those in soft tissue, either poorly or moderately differentiated.

The parameters of uniformity and homogeneity obtained by texture analysis, which
were statistically significant in Group SW compared to Groups SM and MP, corroborate
what was previously indicated (i.e., correlation) for this same group. This reinforces that
texture image values of patients with moderately differentiated tumor in bone indicate
greater tissue organization [29].

Considering the parameters of entropy (i.e., entropy, entropy of difference, and sum
of entropy), it can be observed that they all presented statistically significant differences
between the Groups BM, SM, and SP, with the former having higher values than the
others. These are complementary parameters and indicate disorganization of image pixels.
In the previously cited study by Costa et al. [30], entropy was directly related to image
disorganization, with lower values indicating a greater lack of uniformity in the tissue
and a greater variation in shades of gray (i.e., internal components of the tissue), which
often correlates with a higher degree of malignancy. This reflects the complexity and
heterogeneity often seen in more aggressive tumors.

Moreover, the difference in entropy parameters between the groups further under-
scores the potential of texture analysis in discriminating between different degrees of tumor
differentiation [31,32]. Specifically, higher entropy values in Group BM (moderately dif-
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ferentiated tumor in bone) suggest a more chaotic and less predictable tissue structure
compared to the soft tissue groups. This aligns with the notion that bone tumors, due to
their denser and more complex structure, may exhibit more pronounced texture irregulari-
ties in the images [33], which can be captured through advanced analytical techniques such
as those used in this study.

The findings of this study support the use of texture analysis in the context of medical
imaging, particularly in enhancing our understanding of tumor biology and behavior
without the need for invasive procedures [16,34]. By incorporating a detailed set of textu-
ral parameters, this study adds to the current knowledge and suggests further areas for
exploration in the use of imaging analysis in oncology. For instance, a recent study demon-
strated the efficacy of automated analysis of CT scans by employing textural features and
machine learning techniques, achieving high accuracy in their applications, highlighting
the potential of texture analysis in diverse medical contexts [35].

It is important to acknowledge the limitations of this study. The sample size, although
adequate for a preliminary analysis, is relatively small and could affect the generalizability
of the findings. Additionally, our sample included both OPSCC and OCSCC cases. Al-
though we recognize the significant biological and histopathological differences between
these two types of squamous cell carcinoma, including the differing role of HPV infection,
we opted to include both to maintain a robust sample size. Excluding the small number
of OPSCC cases would have further reduced the statistical power of our analysis. This
approach is supported by the study conducted by Kuno et al. [20], which demonstrated
the feasibility and relevance of using CT texture analysis across different subtypes of head
and neck squamous cell carcinoma. Their research showed that CT texture features could
significantly predict treatment outcomes, underscoring the potential of texture analysis
to provide valuable insights even when diverse tumor subtypes are included in the study
population. However, future studies should aim to separate these groups or control for
these differences more explicitly to validate and expand upon our findings, ensuring a
more nuanced understanding of how texture features correlate with tumor differentiation
and patient prognosis.

Another limitation is the gender distribution of our sample, which was predominantly
female (87%). This contrasts with the typical gender distribution in head and neck cancers,
where males are usually more affected. The convenience sampling method used in this
retrospective study resulted in a gender imbalance. This could influence the generalizability
of our results, and future studies should aim for a more balanced gender distribution to
ensure more representative findings

Further research involving larger cohorts and multiple cancer types would be valuable
in validating and expanding our findings. Additionally, future studies should consider in-
cluding HPV status and its potential impact on the analyzed texture parameters, especially
in OPSCC cases. We have an ongoing prospective study that aims to address these points
by incorporating a larger sample size and including cross-validation to further validate our
findings and examine the benefits of including both OPSCC and OCSCC.

5. Conclusions

In conclusion, this study highlights the potential of texture analysis of preoperative
MSCT images as a non-invasive method to assess tumor differentiation in HNSCC. The
significant correlations found between texture parameters and histopathological features
suggest that this approach could serve as a valuable tool in the clinical setting, aiding in
the prognosis and tailoring of treatment strategies for patients with different tumor types.
As medical imaging technology and analytical methods continue to evolve, the integration
of texture analysis into clinical practice could enhance the precision and effectiveness of
cancer diagnosis and treatment planning.
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