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Abstract: Background/Objectives: scoliosis is a three-dimensional structural deformity characterized
by lateral and rotational curvature of the spine. The current gold-standard method to assess scoliosis is
the measurement of lateral curvature of the spine using the Cobb angle in coronal plane radiographs.
The interrater variability for Cobb angle measurements reaches up to 10◦. The purpose of this
study was to describe and assess the performance of a fully automated method for measuring Cobb
angles using a commercially available artificial intelligence (AI) model trained on over 17,000 images,
and investigate its interrater/intrarater agreement with a reference standard. Methods: in total,
196 AP/PA full-spine radiographs were included in this study. A reference standard was established
by four radiologists, defined as the median of their Cobb angle measurements. Independently, an
AI-based software, IB Lab SQUIRREL (version 1.0), also performed Cobb angle measurements on
the same radiographs. Results: after comparing the readers’ Cobb angle end vertebrae selection
to the AI’s outputs, 194 curvatures were considered valid for performance assessment, displaying
an accuracy of 88.58% in end vertebrae selection. The AI’s performance showed very low absolute
bias, with a mean difference and standard deviation of differences from the reference standard
of 0.16◦ ± 0.35◦ in the Cobb angle measurements. The ICC comparing the reference standard
and the AI’s measurements was 0.97. Conclusions: the AI model demonstrated good results in
the determination of end vertebrae and excellent results in automated Cobb angle measurements
compared to radiologists and could serve as a reliable tool in clinical practice and research.

Keywords: scoliosis; spinal deformity; spinal asymmetry; artificial intelligence; machine learning;
deep learning

1. Introduction

Scoliosis is a three-dimensional structural deformity characterized by lateral and
rotational curvature of the spine. It can be broadly classified according to etiology as idio-
pathic, paralytic, or congenital and further according to age as infantile (0–3 years), juvenile
(3–10 years), adolescent (10–18 years), and adult (>18 years) [1,2]. There are alternative, non-
invasive measurement methods like infrared thermography, rasterstereography, ultrasound
imaging, and smartphone measurements [3–6]. However, the current standard method to
assess scoliosis is the measurement of the spine’s lateral curvature using the Cobb angle in
coronal plane radiographs. When scoliosis is defined as a Cobb angle >10◦, an estimated
2–3% of the US population and 1–4% of adolescents worldwide are affected, females more

J. Clin. Med. 2024, 13, 4122. https://doi.org/10.3390/jcm13144122 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm13144122
https://doi.org/10.3390/jcm13144122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-2895-1268
https://orcid.org/0000-0003-4829-2711
https://orcid.org/0000-0002-5465-3459
https://orcid.org/0000-0002-9091-5866
https://orcid.org/0000-0001-8008-2226
https://doi.org/10.3390/jcm13144122
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm13144122?type=check_update&version=1


J. Clin. Med. 2024, 13, 4122 2 of 16

often than males [7–10]. The causes of scoliosis depend on its type and are not yet fully
understood. Environmental, degenerative, and genetic causes are being discussed [7–13].

The Cobb angle was outlined in 1948 [14] and is the angle formed between a line
parallel to the superior endplate of the uppermost vertebra and the inferior endplate
of the lowermost vertebra involved in the scoliotic curve [9] (Figure 1). The manual
measurement of Cobb angles is a time-consuming task that is prone to error. Several studies
have investigated the interrater/intrarater agreement in Cobb angle measurements, with
reported variability ranging from 3 to 10◦, as well as variability in the definition of the
upper and lower end vertebrae [7,15–18]. As a treatment option, bracing has been shown
to reduce the progression of high-risk curves in patients with scoliosis, thereby decreasing
the need for surgery [19]. Curves larger than 50◦ are generally associated with an elevated
risk of progression and the need for spinal surgery [20].
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Artificial intelligence (AI) in medicine has experienced rapid advances in diagnosis
and prognosis and is increasingly being adopted into the orthopedic field [21]. In the
context of scoliosis, AI promises great potential to reliably measure the Cobb angle in
coronal spine radiographs, showing good to excellent correlation when compared to human
raters [7,22–28]. Earlier studies comparing manual scoliosis measurements to computer-
aided methods found higher intrarater agreement for the latter [29]. Recently, AI models
with the purpose of predicting curve progression have been introduced, proving higher
accuracy than spine surgeons [30–32].

In contrast to existing models, IB Lab SQUIRREL was trained on a substantially
larger dataset of 17,000 images, surpassing existing models by more than 10-fold [33].
As variations between individual patients need to be represented in a dataset, a deep
learning model is highly dependent on the quality and quantity of the input data. A large
amount of training data includes a greater amount of variation, ensuring a more robust
model. The ground truth established in this study is more elaborate than previous studies
and represents high clinical standards [33,34]. The study presented here aims to describe
and validate IB Lab SQUIRREL, a commercially available software, and to investigate its
interrater/intrarater agreement in measuring Cobb angles in coronal X-rays compared to
expert radiologists.
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2. Materials and Methods
2.1. Dataset

In total, 977 anonymized AP/PA full-spine (at least C7 to S1) radiographs of adoles-
cents and adults (10–64 years) from two Austrian clinical sites were acquired. The combined
dataset covers various imaging systems and different radiography modalities.

To estimate the number of measurements for standalone performance testing, the
method of Lu et al. [35] and reference values from a pilot study were utilized. Based on the
inter-expert parameters (µ, σ, and δ) derived from a pilot study, the minimum number of
measurements to guarantee sufficient power (90%) for standalone performance testing was
found to be 56 curvatures for the Cobb angle measurement. This number was increased
substantially to ensure sufficient statistical power.

Prior to sampling, initial quality assurance was performed based on the IB Lab SQUIR-
REL image requirements, which resulted in the exclusion of 41 images, leaving 936 images
(see the “Initial quality assurance” column in Table A1 of Appendix A). Following visual
estimation of the main spinal curvature, these images were classified into “mild” (10–20◦),
“moderate” (20.1–40◦), and “severe” (>40◦) curvature severity subgroups. A random sam-
ple of 67 spines was drawn from each of the spinal curvature severity categories. Because
the total number of “severe” spinal curvatures was insufficient (37), an additional 30 im-
ages with “moderate” spinal curvatures were sampled from the dataset. This resulted in
a final dataset of 201 AP/PA full-spine radiographs, with 67 “mild”, 97 “moderate”, and
37 “severe” curvatures.

2.2. Reference Standard

The reference standard was established by four certified radiologists from The Nether-
lands, with a subspecialty in musculoskeletal radiology. Two of the expert readers had
5–10 years of post-radiology training experience, while the other two readers had 10–15 years of
post-radiology training experience. The measurements were performed independently.

The expert readers were also asked to perform quality control on each image prior
to performing measurements (see “Reader quality assurance” column of Table A1 in
Appendix A). An image was excluded from the study if one or more readers indicated that
it did not meet the requirements. This led to the exclusion of a total of five images by the
expert readers based on IB Lab SQUIRREL image requirements.

The remaining 196 AP/PA full-spine radiographs originated from 182 patients
(27.8 ± 16.9 years (10, 64); 137 female, 59 male). The dataset consists of 102 computed radio-
graphs (CR) and 94 digital radiographs (DX), originating from three different radiography
systems, namely Fluorospot Compact FD, syngoMMWP and YSIO X.pree (all Siemens or
Siemens Healthineers, Erlangen, Germany). The distribution of the images with respect to
the radiography system and modality is shown in Table A2 in Appendix A.

When analyzing AP/PA full-spine radiographs, expert reader measurements can
differ in various ways, namely vertebral labeling, selection of end vertebrae for Cobb angle
measurements, and spinal curvature laterality. Therefore, a multi-stage process was used
to ensure a reliable reference standard (see left side of Figure 2):

1. Vertebral labeling from C7 to S1 was compared between the readers. Only images
where expert readers agreed on the labeling of vertebrae were used for the study.

2. In order to perform Cobb angle measurements, expert readers needed to define spinal
curvatures by choosing appropriate superior/inferior end vertebrae. Small deviations
in end vertebrae selection were tolerated; specifically, end vertebrae selection of the
readers may extend over three consecutive vertebrae. Curvatures were only included
in the study if matching superior/inferior end vertebrae could be determined for
all readers.

3. A spinal curvature was only included in the study if the direction of the curve
(levo/dextro) matches for all readers.

4. For the remaining curvatures, the reference standard was defined as the median of
the readers’ measurements.
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To assess IB Lab SQUIRREL’s performance, its outputs were matched to the reference
standard (RS) following a similar multi-stage process (see right side of Figure 2):

1. Vertebral labeling from C7 to S1 was compared between the RS and IB Lab SQUIRREL.
Only images where IB Lab SQUIRREL agreed with the RS on the labeling of vertebrae
were used for the study.

2. A spinal curvature was only included in the study if the end vertebrae of IB Lab
SQUIRREL matched one of the superior/inferior end vertebrae of the respective RS
end vertebrae. As described above, RS superior/inferior end vertebrae of a curvature
were allowed to extend over three consecutive vertebrae. In order to give IB Lab
SQUIRREL the same flexibility as the readers regarding end vertebrae selection, IB
Lab SQUIRREL’s end vertebrae selections were also allowed to deviate slightly from
the RS. However, IB Lab SQUIRREL was only permitted to deviate in such a way that
the combination of the RS and IB Lab SQUIRREL superior/inferior end vertebrae of a
curvature did not include more than three consecutive vertebrae.

3. A spinal curvature was only included in the study if the direction of the curve
(levo/dextro) matched for IB Lab SQUIRREL and RS.

2.3. AI Model and Algorithms

IB Lab SQUIRREL automates the measurement of Cobb angles and coronal balance
on full-spine radiographs through a three-step process: predicting vertebral bodies, la-
beling the detected vertebrae, and determining the Cobb angles and coronal balance (see
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Figure 3). This process is supported by machine learning models and advanced pre-/post-
processing algorithms.
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Figure 3. Schematic representation of IB Lab SQUIRREL’s three-step process: (1) Prediction of
vertebral bodies, (2) vertebra labeling and (3) determination of Cobb angles and coronal balance.

The first step utilizes high-resolution fully convolutional deep neural networks from
the U-Net family [36] to predict segmentation masks and landmark coordinates, identifying
vertebral bodies, the sacrum, and essential landmarks. Standard image pre-processing,
including resizing, pixel outlier removal, and spectrum normalization, is performed before
applying the neural networks.

In the second step, the detected vertebrae are labeled based on the predicted position
of the sacrum and specific landmark coordinates.

In the final step, vertebra pairs most tilted towards each other are identified to deter-
mine the Cobb angles from their endplates. The coronal balance is derived by measuring
the horizontal distance between the center of the C7 vertebra and the sacrum. Although
length calibration via a calibration ball is supported by our algorithm, the magnification
factor was set to 100% in this study for simplicity.

The deep neural networks were trained on a training dataset of over 17,000 full-spine
X-rays annotated with vertebral labels (C7 to S1) using TensorFlow (version 2.5.3) [37]. This
independent training dataset was obtained from a third Austrian site and includes a variety
of age ranges and scoliosis severity levels, ensuring robustness and generalizability. The
dataset was split into three subsets for training, hyperparameter tuning, and performance
estimation, ensuring that the scoliosis severity distribution differed by no more than 5%
relative to the overall distribution.

Various image augmentation techniques such as random geometric transformations,
horizontal flips, and contrast variations were used during training to enhance robustness
and generalization.

The model achieved a Dice score of 0.93 for vertebra segmentation and a vertebra
classification accuracy of 0.98 on the training test set. While these metrics are significant,
the primary goal is the accurate measurement of the Cobb angle.

The final IB Lab SQUIRREL model outputs are internally validated and adjusted
by custom algorithms, considering anatomical restrictions and relationships, such as the
expected number of vertebrae and their relative locations.

2.4. Statistical Analysis

IB Lab SQUIRREL’s performance was assessed in three areas: vertebral labeling, end
vertebra selection for Cobb angles, and curvature laterality. The evaluation was based on
the percentage of correct labels, end vertebrae, and curvature lateralities, respectively.
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For vertebral labeling, accuracy was defined as follows:

Accuracy = (Correct Images)/(All Images) × 100

To be classified as a “Correct Image” in the case of vertebral labeling, all vertebral
labels had to match the reference standard (RS).

For Cobb angle end vertebrae selection and curvature laterality, accuracy was defined
as follows:

Accuracy = (Correct Curvatures)/(All Curvatures) × 100

To be classified as “Correct Curvature” in the case of Cobb angle end vertebrae selec-
tion, both the superior and inferior end vertebrae had to match one of the superior/inferior
end vertebrae given in the RS.

For the “Final dataset” (see Figure 2), AI performance was assessed by various statisti-
cal methods.

The performance of IB Lab SQUIRREL’s angle and length measurements was assessed
for agreement with the RS using Bland–Altman plots. The calculation of confidence
intervals for mean difference and limits of agreement was based on Bland and Altman [38].

The accuracy of IB Lab SQUIRREL’s measurements was determined by calculating the
mean difference. The precision was measured using the standard deviation of differences,
as well as the mean absolute deviation (MAD) and median absolute deviation between the
RS and IB Lab SQUIRREL.

Orthogonal linear regression provided insight regarding the presence of an absolute
and/or a proportional bias.

To verify the reliability of the expert reads as well as to compare the RS with IB
Lab SQUIRREL’s measurements, the reliability coefficient in the form of the intraclass
correlation was calculated between the expert readers and between all reads (readers as
well as IB Lab SQUIRREL). For this study specifically, we assessed reliability via a 2-way
mixed-effects model, single measures, and absolute agreement.

An assessment of interchangeability utilizing the concept from Obuchowski et al. [39]
was conducted to show the interchangeability of two modalities, that is, IB Lab SQUIR-
REL and the assessment of the expert readers. The equivalence index γ was calculated
as follows:

γ = E(YiT − YiRj)
2 − E(YiRj − YiRj’)

2

where YiT denotes the result with the new test (T) modality, that is, IB Lab SQUIRREL,
for image i; YiRj denotes the result with the existing reference modality (R), that is, the
expert, by expert j for image i. An equivalence index γ < 0 provides evidence that IB Lab
SQUIRREL is interchangeable with the RS.

The reporting of interrater/intrarater agreement is often lacking a generally accepted
standard. To improve comparability, we adhered to the Guidelines of Reporting Reliability
and Agreement Studies (GRRAS) [40].

Outlier detection between the RS and IB Lab SQUIRREL measurements was performed
using the modified z-score [41], defined for a given measurement xi as zi = (xi − x)/
(1.4825 × Median Absolute Deviation) with median absolute deviation about the me-
dian x. Measurements with a modified z-score above 3.5 or below −3.5 were visually
inspected to determine the root cause of the deviation.

Data analysis was performed using Python (version 3.8.19) with the scikit-learn (version
1.3.2), scipy (version 1.10.1), statsmodels (version 0.14.1), and pingouin (version 0.5.4) libraries.

3. Results

Based on the procedure described in Figure 2, 250 valid curvatures with correspond-
ing Cobb angle measurements remained for the reference standard (RS). IB Lab SQUIR-
REL provided 572 spinal curvatures with corresponding Cobb angle measurements for
200 AP/PA full-spine radiographs. IB Lab SQUIRREL failed to process one image due to
the presence of metalwork.
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Performance was determined by comparing the RS to IB Lab SQUIRREL’s measure-
ments, vertebral labeling, Cobb angle end vertebrae selection, and Cobb angle curvature
laterality (see right side of Figure 2). Results are shown in Table 1 below.

Table 1. Performance of IB Lab SQUIRREL compared to the RS.

Measurement Accuracy (%)

Vertebral labeling 83.13

End vertebrae 88.58

Curvature laterality 100.00

Note that vertebral labeling performance is based on a total of 28 images that would
have been excluded due to a vertebral labeling mismatch between the reference standard
and IB Lab SQUIRREL prior to end vertebrae matching. This means 138 of 166 images
would have remained in the image dataset.

After excluding curvatures that did not match between the RS and IB Lab SQUIRREL,
194 curvatures remained for the final dataset. These curvatures originated from 108 AP/PA
full-spine radiographs of 101 unique patients (29.3 ± 17.5 years (11–64); 81 female, 27 male).
The statistics provided in Table 2 are based on the final dataset. If not explicitly labeled, the
statistic is based on the comparison between IB Lab SQUIRREL and the RS.

Table 2. Detailed statistics of IB Lab SQUIRREL’s performance in relation to the RS. CI = confidence
interval, ICC = intraclass correlation coefficient, OLR = orthogonal linear regression.

Statistic Result

Mean Difference [95% CI] 0.16◦ [−0.31◦; 0.64◦]

Standard Deviation [95% CI] 3.35◦ [2.86◦; 3.87◦]

Mean Absolute Deviation [95% CI] 2.47◦ [2.17◦; 2.81◦]

Median Absolute Deviation [95% CI] 1.89◦ [1.58◦; 2.21◦]

Root Mean Square Error (RMSE) [95% CI] 3.35◦ [2.86◦; 3.87◦]

ICC (inter-reader) [95% CI] (Two-way mixed, single measure, agreement) 0.94 [0.89; 0.96]

ICC (all reads) [95% CI] (Two-way mixed, single measure, agreement) 0.94 [0.92; 0.96]

ICC (SQUIRREL vs. Median Reader) [95% CI]
(Two-way mixed, single measure, agreement) 0.97 [0.96; 0.98]

Equivalence index
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[95% CI] (Interchangeability) −2.05◦ [−3.36◦; −1.35◦]

OLR Intercept [95% CI] −1.64◦ [−2.46◦; −0.83◦]

OLR Slope [95% CI] 1.08 [1.04; 1.11]

Bland–Altman 95% Limits of Agreement (LoA) [95% CI]
Lower: −6.41◦ [−7.22◦; −5.59◦]

Upper: 6.73◦ [5.91◦; 7.54◦]

Additionally, the difference between the IB Lab SQUIRREL Cobb angle measurements
and the Cobb angle measurements of the individual most similar reader was assessed. The
median of the difference was 0.72◦ and was smaller than 3◦ in 90.2% of all cases.

A graphical report visualizing the measurements by IB Lab SQUIRREL can be found
in Figure 4.
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3.1. Density Plots

To visualize IB Lab SQUIRREL’s results in comparison to the human expert readers, we
show density plots of the measured Cobb angles as well as the individual differences to the
RS (median reader). The probability density function is plotted over the Cobb angle values
(Figure 5a) and Cobb angle differences to the RS (Figure 5b), respectively. An analysis of
the plots can be found in the discussion.
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3.2. Bland–Altman and Regression Plots 
In Figure 6a, we display a Bland–Altman plot with 95% Limits of Agreement (LoA), 

while in Figure 6b, a Regression plot is depicted, visualizing the agreement and correla-
tion between the AI model and the median reader for Cobb angle measurements, respec-
tively. 
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Figure 5. (a) Density plot visualizing the distribution of Cobb angle measurements for the four
human expert readers and IB Lab SQUIRREL. (b) Density plot visualizing the distribution of Cobb
angle difference to the median reader.

3.2. Bland–Altman and Regression Plots

In Figure 6a, we display a Bland–Altman plot with 95% Limits of Agreement (LoA),
while in Figure 6b, a Regression plot is depicted, visualizing the agreement and correlation
between the AI model and the median reader for Cobb angle measurements, respectively.

3.3. Intrarater Agreement IB Lab SQUIRREL

Repeating IB Lab SQUIRREL analysis on the same radiograph resulted in an intrarater
agreement of 100%.

3.4. Outliers

Based on our outlier criterion of z-score >3.5, three Cobb angle measurements were
classified as outliers, shown in Table 3 with their respective scores.
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Figure 6. (a) Bland–Altman plot with 95% Limits of Agreement (LoA). The red bar indicates the 95%
confidence interval of the mean difference between IB Lab SQUIRREL and the reference standard.
The gray bars show the 95% confidence interval of the Bland–Altman Limits of Agreement. (b) Scatter
plot visualizing orthogonal linear regression (OLR, solid line) of IB Lab SQUIRREL and median
expert reader Cobb angle (CA) outputs.

Table 3. Outlier measurements and their z-score.

Outlier ID Measurement z-Score

1 Cobb angle 5.84

2 Cobb angle 3.70

3 Cobb angle −3.81

Visual inspection did not reveal any obvious explanation for outliers 1 and 2. The
cause of outlier 3, which had the largest z-score of 5.84, could be traced to an error in IB
Lab SQUIRREL’s estimation of the lower vertebral endplate (see Figure 7).

Coronal balance results are presented in the Supplementary Materials.
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4. Discussion

The main finding of this study is that AI, specifically IB Lab SQUIRREL, can accurately
identify anatomical landmarks and measure Cobb angles, quantifying scoliosis effectively.

The measurement of Cobb angles in coronal spine radiographs is the gold standard
for scoliosis assessment, though it is time-consuming and subject to high rates of inter-
rater/intrarater variability [15,17,19,43]. Previous studies have shown promising results
using AI for automated Cobb angle measurements on AP radiographs. These studies
have reported ICC values associated with good to excellent agreement, with mean abso-
lute errors ranging from 1◦ to 8◦ [7,22–28]. Comparisons, however, are challenging, due
to a lack of external validation, varying statistical quality, and significant differences in
the quality and size of the datasets used for training and validation. Unlike earlier re-
search, our study is externally validated and features a substantially larger training dataset,
with over 17,000 images. Previous studies utilized training datasets ranging from 1000 to
1500 images [7,22,23], and some even fewer than 500 [24–28]. For instance, Ha et al. utilized
a smaller dataset of 1500 images and reported a mean difference of 7.34◦, but their study
lacked external validation [7]. Similarly, Liu et al. used a dataset of fewer than 200 images
and achieved very good agreement, but their training and testing were conducted on data
from the same institution [24].

The increased size and diversity of our training dataset offer the promise of a more
robust performance, as the AI model is strongly influenced by the quality and variability of
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the task-specific training data. A larger dataset provides distinct advantages; specifically,
the diverse manifestation of the same pathology across different patients might challenge
an AI model trained on smaller datasets.

When comparing internally and externally validated models, a significant complica-
tion arises due to biases. AI models that are not externally validated tend to perform better
on paper, as their training and testing data are drawn from the same dataset of the same
institution [21]. Moreover, the distribution and modality of the test data of comparable
studies might differ significantly, adding another layer of complexity to comparisons. For
instance, the study conducted by Berlin et al. exclusively considered EOS images [28].

Our results exhibit excellent agreement [44] with the reference standard, with an
absolute bias (mean difference) of 0.16◦ and a mean absolute deviation of 2.47◦, consistent
with previous studies [7,22–28].

The Bland–Altman LoAs and corresponding 95% confidence intervals (−6.41◦ [−7.22◦;
−5.59◦], 6.73◦ [5.91◦; 7.54◦]) were within the expected interrater variability of 10◦.

Despite a slight positive proportional bias (OLR slope [95% CI] of 1.08 [1.04; 1.11]), the
measurement error remains within 10% for Cobb angles below 100◦.

Interchangeability of IB Lab SQUIRREL with expert readers was demonstrated by a
negative equivalence index
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[95% CI] of −2.05◦ [−3.36◦; −1.35◦]. Thus, the inclusion
of the AI model in a group of expert readers is not expected to have a negative effect on
agreement within the group.

The ICC indicates excellent reliability for IB Lab SQUIRREL’s Cobb angle measure-
ments, both when compared to the RS (SQUIRREL vs. Median Reader [95% CI]: 0.97
[0.96; 0.98]) and when calculating the ICC between the model and separate expert reader
measurements (all reads [95% CI]: 0.94 [0.92; 0.96]).

The density plot of Figure 5a illustrates that the AI model agrees well with the human
readers on the full spectrum of Cobb angle values, where the model’s measurements lie
between the human readers in the bulk of all Cobb angle values. The plot of Figure 5b
illustrates good agreement of the model with the median reader. Note that the compari-
son between IB Lab SQUIRREL and the human readers is biased as each median reader
measurement is based on the measurement of two human readers.

4.1. Issues Comparing Human and AI-Based Measurements

As mentioned above, the end vertebrae are defined as the most tilted vertebral end-
plates of a spinal curve. Although the amount of tilt can be objectively quantified and
compared for each vertebral body, 50% of the curvatures in this study had to be excluded
because of discrepancies in identifying end vertebrae by the four readers. This is consistent
with the literature, as the determination of end vertebrae was identified to be the largest
source of error, with interobserver variability ranging from 0.3 to 3.0 levels [15,17]. The
decision for strict inclusion criteria, specifically that all readers had to agree on the end ver-
tebrae, was required to ensure a stable RS. IB Lab SQUIRREL showed agreement of 88.58%
in end vertebrae determination when compared to the remaining curvatures that were
previously agreed on by readers, leading to an additional exclusion of 11% of curvatures.

The current clinical gold standard of scoliosis assessment by using manual measure-
ments demonstrates low interrater/intrarater agreement. Beauchamp et al. reported that
the assessment of Cobb angles performed by the same orthopedic surgeons at 8:00 AM and
8:00 PM resulted in an increased Cobb angle measurement by an average of 5◦ [43]. As we
further develop and validate AI models, we should be aware of the limitations of these
gold standards and consider strategies for improving them.

The perfect repeatability in AI measurement highlights the potential advantage of
automated AI applications over manual reads. However, the AI’s current limitation of
not being able to independently assess outliers and suspicious measurements remains a
challenge that needs addressing. This is illustrated by the outlier measurement depicted in
Figure 7, where the AI model failed to position the line of the inferior endplate correctly.
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Graphical reports, as available for IB Lab SQUIRREL, can be a valid solution, allowing
doctors or researchers to identify nonsensical predictions easily.

4.2. Limitations

One major limitation of this study lies in establishing the ground truth for compar-
isons, as manual measurements can be significantly variable. As shown before, those
measurements can vary considerably, with differences of up to 10◦ for Cobb angle measure-
ments [16]. To resolve this issue, we applied strict exclusion criteria, which in turn involves
the risk of potentially introducing bias towards unambiguous cases.

Currently, IB Lab SQUIRREL does not support images with implants/spinal metal-
work present. Although initial internal tests have yielded promising results, additional
validation is required to assess this capability.

Another notable limitation is that the AI algorithm was trained on data from a single
site, potentially impacting its generalizability. However, the present study mitigates this
concern by conducting external validation using data from two independent sites, unrelated
to the source of the training data. Thus, the reliable applicability of the model is validated
across a wide range of images.

5. Conclusions

IB Lab SQUIRREL demonstrates excellent and repeatable results in fully automated
Cobb angle measurement. It holds promising potential in the field of scoliosis assessment.
However, it is important to remember that AI models should be utilized as adjunctive tools
that enhance, rather than replace, human spinal deformity assessments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm13144122/s1, Figure S1: Flowchart depicting exclusions based
on the Reference standard Quality Assurance (QA) process (left) and mismatches between the
reference standard and IB Lab SQUIRREL (right) for Coronal balance (CB). Figure S2: (a) Density
plot visualizing the distribution of Coronal balance measurements for the four human expert readers
and IB Lab SQUIRREL. (b) Density plot visualizing the distribution of Coronal balance difference
to median reader. Figure S3: (a) Bland-Altman plot with 95% Limits of Agreement (LoA). The red
bar indicates the 95% confidence interval of the mean difference between IB Lab SQUIRREL and the
reference standard. The gray bars show the 95% confidence interval of the Bland-Altman Limits of
Agreement. (b) Scatter plot visualizing Orthogonal Linear Regression (OLR, solid line) of IB Lab
SQUIRREL and median expert reader Coronal balance outputs. Table S1: Detailed statistics of IB
Lab SQUIRREL’s Coronal balance measurement performance in relation to the RS. CI = Confidence
Interval, ICC = Intraclass Correlation Coefficient, OLR = Orthogonal Linear Regression. Table S2:
Outlier measurements and their z-score.
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Appendix A. Auxiliary Tables

Table A1. Image quality assurance. Images were excluded based on IB Lab SQUIRREL’s image requirements.

Quality Assurance Criteria
Initial Quality

Assurance
(Images Excluded)

Reader Quality
Assurance

(Images Excluded)
Total

PixelSpacing DICOM header tag missing 12 0 12

Implants/spinal metalwork are present in the image 10 1 11

Bone contours of the vertebrae are not fully visible and/or overlapped
(e.g., by calibration devices, radiographic protections, or image artifacts) 6 1 7

Calibration device is not positioned properly 6 0 6

Image is not cropped to the region of interest 4 0 4

Image stitching-related issues
(e.g., stitching is not continuous, image stitching artifacts obscure

anatomical features, or contrast of stitched images differs too greatly
between sub-parts)

3 1 4

Image is of poor radiographic image quality
(e.g., noisy images, poor contrast on all or part of the image) 0 1 1

Image is no AP/PA full-spine radiograph 0 0 0

Other (burnt in clinical reads) 0 1 1

Total 41 5 46

Table A2. Distribution of manufacturer, model, and modality of the radiography systems of the
sampled dataset.

Manufacturer Model Modality Number of Images

Siemens Fluorospot Compact FD CR 18

Siemens Fluorospot Compact FD DX 71

Siemens syngoMMWP CR 84

Siemens Healthineers YSIO X.pree DX 23
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