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Abstract: Objectives: The purpose of this study is to evaluate the performance of our deep learning
algorithm in calculating cardiothoracic ratio (CTR) and thus in the assessment of cardiomegaly
or pericardial effusion occurrences on chest radiography (CXR). Methods: From a database of
8000 CXRs, 13 folders with a comparable number of images were created. Then, 1020 images
were chosen randomly, in proportion to the number of images in each folder. Afterward, CTR
was calculated using RadiAnt Digital Imaging and Communications in Medicine (DICOM) Viewer
software (2023.1). Next, heart and lung anatomical areas were marked in 3D Slicer. From these
data, we trained an AI model which segmented heart and lung anatomy and determined the CTR
value. Results: Our model achieved an Intersection over Union metric of 88.28% for the augmented
training subset and 83.06% for the validation subset. F1-score for subsets were accordingly 90.22%
and 90.67%. In the comparative analysis of artificial intelligence (AI) vs. humans, significantly lower
transverse thoracic diameter (TTD) (p < 0.001), transverse cardiac diameter (TCD) (p < 0.001), and CTR
(p < 0.001) values obtained using the neural network were observed. Conclusions: Results confirm
that there is a significant correlation between the measurements made by human observers and
the neural network. After validation in clinical conditions, our method may be used as a screening
test or advisory tool when a specialist is not available, especially on Intensive Care Units (ICUs) or
Emergency Departments (ERs) where time plays a key role.

Keywords: chest radiograph; cardiothoracic ratio; cardiomegaly; convolutional neural network;
segmentation

1. Introduction

Chest radiography (CXR) is one of the most frequently performed imaging procedures
in clinical diagnosis, representing 40% of the 3.6 billion imaging procedures performed
worldwide every year [1]. The National Health Service (NHS) of the United Kingdom
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(UK) reports that around 2.2 million CXRs are ordered by general practitioners performed
each year [2]. According to the Federal Office for Radiation Protection in Germany, CXR
accounted for about 13 million X-ray examinations in 2018 [3]. Its main advantage is
high availability (regardless of the size and location of the medical facility), low cost, and
wide diagnostic use in many diseases, including lung and heart diseases. One useful
measurement determined on CXR is the cardiothoracic ratio (CTR), which is the ratio of the
width of the heart silhouette (TCD—transverse cardiac diameter) to the widest dimension
of the chest (TTD—transverse thoracic diameter). CTR helps in detecting enlargement
of the heart silhouette, which usually indicates cardiomegaly, but can also be the result
of pericardial effusion [4]. A value greater than 0.50 (normal: 0.42–0.50) in an adult
who is considered pathological [5]. Although the diagnostic and predictive value of this
parameter is losing importance in relation to modern methods such as echocardiography
of determining the size of the heart, CXR and CTR are still valuable in the assessment of
heart size in the hospital emergency room (ER) or intensive care unit (ICU) [6].

According to literature reports, the CTR should be determined in the posteroanterior
(PA) projection [7,8], even though there are also studies containing appropriate values
for CTR in the anteroposterior (AP) projection [5]. The cut-off value for CTR may vary,
depending on the projection of the study and the group of patients in whom the study is
performed. The PA projection is preferred because the silhouette of the heart is closest to its
true dimensions. In the case of the AP projection, the heart is closer to the cassette, which
makes its silhouette enlarged. Even so, AP is indispensable in the diagnosis of bedridden
patients and small children.

Cardiomegaly is a broad term for various conditions that cause the heart’s enlargement,
often going undiagnosed until symptoms appear. It affects nearly 5.8 million people in
the United States. There are many reasons for the development of cardiomegaly—from
coronary artery disease and myocardial infarction, through valvular regurgitation, various
cardiomyopathies, to physiological conditions such as the athlete’s heart or pregnancy [9].
Many of these are pathological conditions, which may lead to heart failure, resulting in
up to a 50% five-year survival rate [10]. Considering the potential risk underlying this
pathology, CTR should be assessed in each chest X-ray examination. However, it is a
time-consuming process. Artificial intelligence (AI) and its subset, deep learning (DL),
have proven to be helpful in improving the effectiveness of diagnostic imaging in medicine.
Thanks to the use of convolutional neural networks (CNNs), the diagnosis of pathology on
CXR has reached a level comparable to the effectiveness of trained radiologists [11,12].

This article focuses on the possibility of more effective usage of deep learning in clinical
diagnostics. To conduct the study, the standardized digital imaging and communications in
medicine (DICOM) format was used, which enables efficient distribution of datasets. The
aim was to evaluate the performance of our deep learning algorithm in calculating CTR,
and thus predict the possibility of such diseases as cardiomegaly or pericardial effusion on
chest X-rays. The algorithm was compared with physicians, whose assessment was used
as a reference method. The correctness of anatomical segmentation of the heart and lungs
performed by physicians and artificial intelligence (AI) was also analyzed.

2. Materials and Methods
2.1. Radiological Phase

To ensure the highest possible standard of this study, a preliminary analysis and
selection of images was carried out from a database of about 8000 anonymized CXRs. The
patients from whom the images were taken during their admission to the clinical hospital
gave their consent to the collection and processing of their data. The exclusion criteria for
CXR images were as follows: images were not of the chest; images with an abnormal range
not covering all chest structures; rotated images; incorrectly exposed images; images with
movement artifacts; and images of children.

The entire dataset was divided into 13 folders containing a comparable number of
CXRs. In total, 4 investigators (3 doctor interns and 1 radiology resident doctor) pre-
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analyzed the contents of the folders to determine the projection in which the images were
taken: standing (PA), or prone (AP). A total of 1020 CXRs were randomly selected from all
analyzed images proportionally from each of the 13 folders. Because CXR images of both
PA and AP were included in this study, different CTR threshold values were set depending
on the position of the patient: >0.55 for the standing position, >0.58 for the supine position,
based on previous studies [5,13–15].

Afterward, the same four investigators independently calculated the CTR by measur-
ing the width of the heart and lungs separately. The CTR was calculated for all eligible
studies using the freely available RadiAnt DICOM Viewer software (2023.1). The chest
width was measured at the widest point, usually at the height of the diaphragm domes.
Heart width measurements were made with respect to a vertical line drawn along the
spinous processes of the vertebrae.

An orthogonal line segment was then drawn from the vertical line to the farthest
border of the heart separately on the left and right sides. The sum of the left and right
segments determined the measurement of the width of the heart silhouette (Figure 1).
During CTR calculations, the time needed to estimate TCD and TTD was measured each
time for all four researchers. A table containing the individual results of the measurements
(TCD, TTD, CTR, measurement time) made by the researchers and AI can be found in the
Supplementary Materials (Table S1).
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Then, the four investigators independently marked a total of 1059 CXR anatomical
areas of the heart and lungs in the 3D Slicer program, which is used to make annotations on
radiological images. The masks were used in subsequent stages to train the artificial neural
network model. The finished markings were re-checked by another two independent
researchers with the most experience to eliminate potential errors. Both lungs were marked
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with the same color as mask #1. The lung mask covered the area from the inner surfaces of
the ribs, including the shadow of the mediastinum, bilaterally to the paraspinal line. The
heart has been marked with a separate color as mask #2 (Figure 2), excluding trunks of
large venous and arterial vessels. It was decided to overlap the masks in the areas where
the shadows of the heart overlap with the areas of the lungs to increase the accuracy of
measurements and receive the most accurate mapping of anatomical structures.
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2.2. Technical Materials

To conduct machine learning experiments in the radiological domain, usually non-
standard software is required to combat such aspects as overlapping annotations, annotation
management, annotation storage, versioning, and verification of resulting segmentations.

2.3. Slicer and Custom Workflow

We decided to use industry standard medical annotation software, 3D Slicer (5.1.0-2022-
11-16) [16]. It supports DICOM files [17] as well as standard non-overlapping segmentations
and plugins which can be developed in the Python 3.10 programming language [18].

The plugin was developed to improve and enable multi-class overlapping segmenta-
tion with minimal effort from the radiological team.

The label list can be updated from a remote server and users can select, visualize,
annotate, load, and save segmentation classes. To standardize the format for saving
segmentations in a replicable and robust way, the zarr library [19] was used. Annotations
were uploaded to the Google Drive cloud, where each annotator had their own folder in
which the annotations were saved. This allowed for rapid collaboration between team
members of different specializations.
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2.4. Data Preparation and Dataset

We sourced about 8000 images in total, out of which 1059 were segmented with the
heart and lungs label and 4072 had their CTR measured, which we used for comparison.
Segmented images were split into two subsets: training (80%—847 images), used for fitting
the U-Net model; and validation (20%—212 images) used for monitoring and validation of
the training process. Image preparation consisted of the following steps:

1. Inversion of values of Monochrome1 to Monochrome2 images.
2. Scaling to Hounsfield units (HU).
3. Downsampling to 256 × 256.
4. Standardization to zero mean and unit variance (computed with training dataset).

In order to increase robustness of the model, the training data were augmented by ran-
domly flipping images vertically and horizontally, as well as rotating by −0.2:+0.2 radians
and −20:+20% horizontal and vertical random shift.

2.5. Semantic Segmentation—U-Net

Semantic segmentation is a supervised task in which each pixel has a class label as-
signed to it according to a predicted object type. It usually forms clusters which can be
grouped into objects. One of the models which has been successfully applied to segmen-
tation tasks, especially medical segmentation, is U-Net [20]. U-Net combines down/up-
sampling paths and skip connections, with activation maps from different stages of forward
propagation. The resolution of activation maps decreases with the combination of convolu-
tional and pooling layers until the middle of the network and then is gradually increased
by transposed convolution layers.

2.6. Model—Training Details

U-net can be adjusted to one’s hardware and time resources by adjusting the number
of layers and filters. We have trained a 32-layer neural network with 1.94 M parameters.
An Adam optimizer with learning rate 0.001 with lr reduction on plateau was used. The
network was trained for 56 epochs. A combination of focal and dice loss was used as a loss
function. Using Google Colab Pro (Tesla A100) training took 9.33 min total, with each step
with a batch size of 64 taking 0.8 s.

2.7. Postprocessing and CTR Calculation

CTR was computed with a non-AI algorithm, utilizing standard computer vision
operations. The goal was not only to compute the width of the object(s), but also eliminate
any remaining artifacts that may be the result of AI-based segmentation.

3. Results

A total of 1059 hearts and 2118 lungs were segmented on 1059 chest radiographs.
Metrics were observed during and at the end of training for both augmented training

and validation subsets. Results were saved after each completed epoch. The model achieved
an Intersection over Union (IoU) metric of 88.28% for the augmented training subset and
83.06% for the validation subset. F1 scores for each subset were 90.22% and 90.67%. Higher
validation metrics were recorded due to data augmentation technique, which regularizes
the training-reducing factor model of previously seen data (Figure 3).

We also measured the average inference time (1.839 ms; P100 GPU) while total time,
including segmentation post-processing and CTR calculation (4.706 ms).

A Lilliefors test (p < 0.01) and Kolmogorov–Smirnov test (p < 0.05) were used to assess
the normality of the distribution of quantitative variables.
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3.1. Comparative Analysis AI vs. Humans

The average combined measurement time for TCD, TTD, and CRT in the entire dataset
was 17.00 s for the researchers and 0.004706 s for AI.

A U-Mann–Whitney test was used to assess the differences between the observers and
the neural network. The results of all four observers were averaged. Extremes and outliers
were discarded before comparison. Significantly lower TTD (p < 0.001), TCD (p < 0.001),
and CTR (p < 0.001) values obtained using the neural network were observed (Figure 4).
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3.2. Comparative Analysis of the Observer vs. Observer

A Kruskal–Wallis test was used to assess differences between observers. There were no
significant differences in TTD (p = 0.823), TCD (p = 0.455), and CTR (p = 0.533) measurements
(Figure 5).
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3.3. Correlation Strength Analysis (CTR_AI vs. CTR_Human)

To assess the strength of the correlation between the observers and the neural network,
a Spearman rank correlation test was used, obtaining significant, positive, and strong
correlations between TTD (p < 0.01, r2 = 0.875), TCD (p < 0.01, r2 = 0.815), and CTR (p < 0.01,
r2 = 0.781) (Figure 6).
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4. Discussion

The CTR derived from CXR is an important tool for the assessment of heart diseases,
such as cardiomegaly and pleural effusion [21,22]. However, because it requires manual
measurement, is time consuming and is subject to error. The method of automatic determi-
nation of CTR has been technically validated in several studies [23,24]. However, there are
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few studies with clinical evaluation of this solution. Saiviroonporn et al., which validated
manual CTR measurements and measurements performed with the use of artificial intelli-
gence, rated AI assistance in diagnosing cardiomegaly at 40% as excellent, 56% as good and
4% as poor [25]. The authors of Arsalam et al. point out the time-consuming nature and the
need to involve experienced medical experts in performing CTR measurements, who could
be replaced by artificial intelligence and point out that cardiomegaly and related diseases
have been successfully diagnosed with the use of artificial intelligence [26]. Ajmera et al.
showed that the artificial intelligence model they used for CTR measurements not only
achieved high specificity (>99%) and sensitivity (80%), but also contributed to increasing
the efficiency of the radiologist assessing X-ray images. However, these studies concerned
the comparison of CXR mainly unchanged and only in the standing position in the PA
projection [27].

In our work, a broader dataset was used to train and validate a deep learning model.
We are the first to include CXR in both PA and AP projections, which reflects the reality
of working in a hospital with patients in various conditions. We are also the first to
use a segmentation method in which anatomical areas overlap, which contributes to a
better representation of these structures. All CXRs came from a hospital database, which
contained many diseases and artifacts, such as drains, cables, and clothing. Our dataset
thus represents conditions found in real clinical practice.

The trained model, based on the determinations carried out by our doctors, performed
segmentation of the heart and lungs which were later used to calculate the CTR. The
test set demonstrated high efficiency and accuracy of deep learning model segmentation,
supported by qualitative (IoU, F1) and quantitative methods, comparing them with expert
segmentations. The CTR values derived from the model correlated significantly with the
average of the values obtained by four independent observers. The visible significant
difference between the observers and AI in terms of the obtained CTR values, as well
as TCD and TTD, suggests that the model underevaluates measurement values. In the
retrospective analysis of some significantly underevaluated cases, it was noted that the
discrepancies between the determined TCD and TTD resulted from significant scoliosis,
asymmetry in the AP projection, or consolidation in the lung field projection. These factors
did not significantly affect the values obtained by four independent observers, as the results
of their measurements (CTR, TCD, TTD) did not significantly differ from each other. In
our analysis, we decided to include studies that are difficult to assess due to our desire to
reproduce the real work environment, realizing that this will affect the results. Therefore,
CXR in the AP projection in bedridden patients, including ICU patients, was included in
the study group.

The advantage of our tool is the fact that it allows you to shorten the interpretation time
of CXR (17.00 s for researchers, 0.004706 s for AI). The radiologist usually must manually
mark the segments on the image and calculate the index using the formula. Our tool takes
only a few milliseconds to calculate CTR, freeing the radiologist to focus on interpreting
other pathologies. Ajmera et al. obtained a CXR interpretation time of 2 s for the DL model
they described [27]. Saiviroonporn et al. showed that the use of AI even as a supporting tool
during manual determination of CTR values speeds up the performance of measurements
almost five times (manual method—t 10.6 ± 1.5 s per case vs. manual + AI 2.2 ± 2.4 s) [25].

The application of AI in medical visualization, focusing on its role in medical imaging
and image processing. AI, in particular machine learning and deep learning techniques, are
being used to improve image quality, automate analysis, and support diagnosis. With AI, it
is possible to detect subtle pathological changes, which contributes to early diagnosis and
more precise treatment. In addition, AI plays a key role in the personalization of healthcare,
providing doctors with advanced tools to interpret images and make clinical decisions [28].

5. Conclusions

To improve our model, it is necessary to train the neural network model on a larger
amount of data. Moreover, CXRs should be used both in AP and PA positions with various
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pathologies so that they best reflect the working conditions in the hospital. In the future,
after validation in clinical conditions, it will be able to provide an advisory tool for doctors
to improve their work and act as a quick screening test when a specialist doctor is not
available. Use can be made during chest screening, e.g., periodic examinations of employees
or admission to a new job. The algorithm could have a significant impact on shortening the
time of the diagnostic process (by three orders of magnitude), as well as extending CXR
examination descriptions by automatically marked CTR each time. During this time, the
physician describing the image could focus on the analysis of other pathologies visible in
the examination. The results presented in this paper are very promising and confirm that
there is a significant, positive, and strong correlation between the measurement results
marked by the observers and the neural network model, which proves the great potential
of using our tool to work in clinical conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm13144180/s1. Table S1: Measurements.

Author Contributions: Conceptualization, J.K.; Data curation, A.L., Ł.C., and W.B.; Formal analysis,
I.P.; Funding acquisition, K.G.; Investigation, P.D., Ł.C., M.J., and W.B.; Methodology, J.K.; Software,
S.K.; Supervision, M.C., K.G., and Z.N.; Validation, I.P.; Visualization, S.K. and Ł.C.; Writing—original
draft, I.P., P.D., Ł.C., M.J., K.B.-Ł., W.B., M.K., and M.C.; Writing—review and editing, K.B.-Ł. and
M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Bioethical
Committee of the Medical University of Silesia (PCN/0022/KB/195/20, 21 January 2021).

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/Supplementary Material; further inquiries can be directed to the corresponding author/s.

Acknowledgments: This research was supported in part by PLGrid Infrastructure. Medical Univer-
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