New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Strategy
2.2. Eligibility Criteria
- (1)
- Articles published in languages other than English.
- (2)
- Conference or meeting abstracts, unrelated topics, review articles, guidelines, and commentaries.
2.3. Study Selection, Data Extraction, and Definition
2.4. Data Synthesis and Statistical Analysis
3. Results
3.1. Search Results and Study Selection
3.2. Description of the Review Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. CDC’s Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/2019-ar-threats-report-508.pdf?CDC_AAref_Val (accessed on 6 September 2022).
- Davies, O.L.; Bennett, S. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. WHO Newsletters. 2017. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 6 September 2022).
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Q.; Chen, F.; Li, X.; Luo, S.; Fang, H.; Wang, D.; Li, Z.; Hou, X.; Wang, H. Biochemical Characteristics of New Delhi Metallo-β-Lactamase-1 Show Unexpected Difference to Other MBLs. PLoS ONE 2013, 8, e61914. [Google Scholar] [CrossRef]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhu, B.; Wang, W.; Wang, Q.; Cui, X.; Wang, Y.; Dong, X.; Li, X.; Ma, J.; Cheng, F.; et al. Genetic and enzymatic characterization of two novel blaNDM-36, -37 variants in Escherichia coli strains. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 471–480. [Google Scholar] [CrossRef]
- Boyd, S.E.; Livermore, D.M.; Hooper, D.C.; Hope, W.W. Metallo-β-lactamases: Structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob. Agents Chemother. 2020, 64, e00397-20. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Khan, A.U. Current Update on New Delhi Metallo-β-lactamase (NDM) Variants: New Challenges in the Journey of Evolution. Curr. Protein Pept. Sci. 2023, 24, 655–665. [Google Scholar] [CrossRef]
- Mills, M.C.; Lee, J. The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environ. Pollut. 2019, 255, 113143. [Google Scholar] [CrossRef]
- Taggar, G.; Attiq Rheman, M.; Boerlin, P.; Diarra, M.S. Molecular epidemiology of carbapenemases in enterobacteriales from humans, animals, food and the environment. Antibiotics 2020, 9, 693. [Google Scholar] [CrossRef]
- Mellon, G.; Turbett, S.E.; Worby, C.; Oliver, E.; Walker, A.T.; Walters, M.; Kelly, P.; Leung, D.T.; Knouse, M.; Hagmann, S.; et al. Acquisition of antibiotic-resistant bacteria by US international travelers. N. Engl. J. Med. 2020, 382, 1372–1374. [Google Scholar] [CrossRef]
- Theriault, N.; Tillotson, G.; Sandrock, C.E. Global travel and Gram-negative bacterial resistance; implications on clinical management. Expert Rev. Anti-Infect. Ther. 2020, 19, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; De Santis, V.; Agarossi, A.; Prete, A.; Cattaneo, D.; Tomasini, G.; Bonetti, G.; Patroni, A.; Latronico, N. Antibiotic Therapy Strategies for Treating Gram-Negative Severe Infections in the Critically Ill: A Narrative Review. Antibiotics 2023, 12, 1262. [Google Scholar] [CrossRef] [PubMed]
- González-Bello, C.; Rodríguez, D.; Pernas, M.; Rodríguez, A.; Colchón, E. β-Lactamase Inhibitors to Restore the Efficacy of Antibiotics against Superbugs. J. Med. Chem. 2020, 63, 1859–1881. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2021, 34, 2021. [Google Scholar] [CrossRef]
- Olney, K.B.; Thomas, J.K.; Johnson, W.M. Review of novel β-lactams and β-lactam/β-lactamase inhibitor combinations with implications for pediatric use. Pharmacotherapy 2023, 43, 713–731. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, Y.-H.; Schofield, C.J.; McNally, A.; Zong, Z.; Li, G.-B. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol. 2023, 31, 735–748. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, M.; Chen, L.; Li, H. The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol. Res. 2022, 261, 127079. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Horsley, T.; Weeks, L.; Hempel, S.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- McGowan, J.; Straus, S.; Moher, D.; Langlois, E.V.; O’Brien, K.K.; Horsley, T.; Aldcroft, A.; Zarin, W.; Garitty, C.M.; Hempel, S.; et al. Reporting scoping reviews—PRISMA ScR extension. J. Clin. Epidemiol. 2020, 123, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Hollander, J.G.D.; Mouton, J.W.; Verbrugh, H.A. Use of pharmacodynamic parameters to predict efficacy of combination therapy by using fractional inhibitory concentration kinetics. Antimicrob. Agents Chemother. 1998, 42, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Rudresh, S.M.; Ravi, G.S.; Raksha, Y. In Vitro Efficacy of Biocompatible Zinc Ion Chelating Molecules as Metallo-β-Lactamase Inhibitor among NDM Producing Escherichia coli. J. Lab. Physicians 2022, 15, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Legru, A.; Verdirosa, F.; Vo-Hoang, Y.; Tassone, G.; Vascon, F.; Thomas, C.A.; Sannio, F.; Corsica, G.; Benvenuti, M.; Feller, G.; et al. Optimization of 1,2,4-Triazole-3-thiones toward Broad-Spectrum Metallo-β-lactamase Inhibitors Showing Potent Synergistic Activity on VIM- and NDM-1-Producing Clinical Isolates. J. Med. Chem. 2022, 65, 16392–16419. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Xu, C.; Wang, Z.; Liu, W.; Liu, C.; Xu, X.; Xing, Y.; Chen, S.; Li, X.; Wan, S. 1,2-Isoselenazol-3(2H)-one derivatives as NDM-1 inhibitors displaying synergistic antimicrobial effects with meropenem on NDM-1 producing clinical isolates. Bioorganic Chem. 2022, 129, 106153. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xiang, Y.; Yang, K.-W.; Wang, D.; Dan, H.; Wang, N.-N. Discovery of environment-sensitive fluorescent probes for detecting and inhibiting metallo-β-lactamase. Bioorganic Chem. 2022, 128, 106048. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Wang, Y.; Dai, Y.; Mao, A.; Zhou, W.; Cao, X.; Deng, H.; Lu, H.; Ding, L.; Wang, X.; et al. A Cephalosporin-Tripodalamine Conjugate Inhibits Metallo-β-Lactamase with High Efficacy and Low Toxicity. Antimicrob. Agents Chemother. 2022, 66, e0035222. [Google Scholar] [CrossRef]
- Caburet, J.; Boucherle, B.; Bourdillon, S.; Simoncelli, G.; Verdirosa, F.; Docquier, J.-D.; Moreau, Y.; Krimm, I.; Crouzy, S.; Peuchmaur, M. A fragment-based drug discovery strategy applied to the identification of NDM-1 β-lactamase inhibitors. Eur. J. Med. Chem. 2022, 240, 114599. [Google Scholar] [CrossRef] [PubMed]
- Fasim, A.; More, S.S. Identification of a potential inhibitor for New Delhi metallo-β-lactamase 1 (NDM-1) from FDA approved chemical library- a drug repurposing approach to combat carbapenem resistance. J. Biomol. Struct. Dyn. 2022, 41, 7700–7711. [Google Scholar] [CrossRef]
- Zhai, L.; Jiang, Y.; Shi, Y.; Lv, M.; Pu, Y.-L.; Cheng, H.-L.; Zhu, J.-Y.; Yang, K.-W. Aromatic Schiff bases confer inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorganic Chem. 2022, 126, 105910. [Google Scholar] [CrossRef]
- Scaccaglia, M.; Rega, M.; Bacci, C.; Giovanardi, D.; Pinelli, S.; Pelosi, G.; Bisceglie, F. Bismuth complex of quinoline thiosemicarbazone restores carbapenem sensitivity in NDM-1-positive Klebsiella pneumoniae. J. Inorg. Biochem. 2022, 234, 111887. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, Y.; Yuan, J.; Chen, L.; Tong, H.; Huang, T.; Shi, L.; Jiang, Z. Methimazole and α-lipoic acid as metallo-β-lactamases inhibitors. J. Antibiot. 2022, 75, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.W.; Cho, E.J.; Bethel, C.R.; Smisek, T.; Ahn, Y.-C.; Schroeder, J.M.; Thomas, C.A.; Dalby, K.N.; Beckham, J.T.; Crowder, M.W.; et al. Discovery of an Effective Small-Molecule Allosteric Inhibitor of New Delhi Metallo-β-lactamase (NDM). ACS Infect. Dis. 2022, 8, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yang, H.; Yu, T.; Chen, F.; Liu, R.; Xue, S.; Zhang, S.; Mao, W.; Ji, C.; Wang, H.; et al. Stereochemically altered cephalosporins as potent inhibitors of New Delhi metallo-β-lactamases. Eur. J. Med. Chem. 2022, 232, 114174. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, A.; Kesavan, D.K.; Wu, L.; Su, Z.; Wang, S.; Ramasamy, M.K.; Hopper, W.; Xu, H. In Silico and In Vitro Screening of Natural Compounds as Broad-Spectrum β-Lactamase Inhibitors against Acinetobacter baumannii New Delhi Metallo-β-lactamase-1 (NDM-1). BioMed Res. Int. 2022, 2022, 4230788. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yang, Y.; Xu, X.; Li, L.; Zhou, Y.; Jia, G.; Wei, L.; Yu, Q.; Wang, J. Metallo-β-lactamases inhibitor fisetin attenuates meropenem resistance in NDM-1-producing Escherichia coli. Eur. J. Med. Chem. 2022, 231, 114108. [Google Scholar] [CrossRef] [PubMed]
- Chigan, J.-Z.; Hu, Z.; Liu, L.; Xu, Y.-S.; Ding, H.-H.; Yang, K.-W. Quinolinyl sulfonamides and sulphonyl esters exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorganic Chem. 2022, 120, 105654. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhou, S.; Sun, W.; Li, Q.; Wang, J.; Zhang, J. Emerione A, a novel fungal metabolite as an inhibitor of New Delhi metallo-β-lactamase 1, restores carbapenem susceptibility in carbapenem-resistant isolates. J. Glob. Antimicrob. Resist. 2022, 28, 216–222. [Google Scholar] [CrossRef]
- Muteeb, G.; Alsultan, A.; Farhan, M.; Aatif, M. Risedronate and Methotrexate Are High-Affinity Inhibitors of New Delhi Metallo-β-Lactamase-1 (NDM-1): A Drug Repurposing Approach. Molecules 2022, 27, 1283. [Google Scholar] [CrossRef]
- Koteva, K.; Sychantha, D.; Rotondo, C.M.; Hobson, C.; Britten, J.F.; Wright, G.D. Three-Dimensional Structure and Optimization of the Metallo-β-Lactamase Inhibitor Aspergillomarasmine A. ACS Omega 2022, 7, 4170–4184. [Google Scholar] [CrossRef]
- Grigorenko, V.G.; Khrenova, M.G.; Andreeva, I.P.; Rubtsova, M.Y.; Lev, A.I.; Novikova, T.S.; Detusheva, E.V.; Fursova, N.K.; Dyatlov, I.A.; Egorov, A.M. Drug Repurposing of the Unithiol: Inhibition of Metallo-β-Lactamases for the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections. Int. J. Mol. Sci. 2022, 23, 1834. [Google Scholar] [CrossRef]
- Proschak, A.; Martinelli, G.; Frank, D.; Rotter, M.J.; Brunst, S.; Weizel, L.; Burgers, L.D.; Fürst, R.; Proschak, E.; Sosič, I.; et al. Nitroxoline and its derivatives are potent inhibitors of metallo-β-lactamases. Eur. J. Med. Chem. 2022, 228, 113975. [Google Scholar] [CrossRef]
- Brem, J.; Panduwawala, T.; Hansen, J.U.; Hewitt, J.; Liepins, E.; Donets, P.; Espina, L.; Farley, A.J.M.; Shubin, K.; Campillos, G.G.; et al. Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nat. Chem. 2022, 14, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, K.-W.; Zhai, L.; Ding, H.-H.; Chigan, J.-Z. Dithiocarbamates combined with copper for revitalizing meropenem efficacy against NDM-1-producing Carbapenem-resistant Enterobacteriaceae. Bioorganic Chem. 2022, 118, 105474. [Google Scholar] [CrossRef]
- Krasavin, M.; Zhukovsky, D.; Solovyev, I.; Barkhatova, D.; Dar’in, D.; Frank, D.; Martinelli, G.; Weizel, L.; Proschak, A.; Proschak, E.; et al. RhII-Catalyzed De-symmetrization of Ethane-1,2-dithiol and Propane-1,3-dithiol Yields Metallo-β-lactamase Inhibitors. ChemMedChem 2021, 16, 3410–3417. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Bai, M.; Liu, W.; Kong, H.; Zhang, T.; Yao, H.; Zhang, E.; Du, J.; Qin, S. H2dpa derivatives containing pentadentate ligands: An acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales. Eur. J. Med. Chem. 2021, 224, 113702. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.S.; Galvão, D.S.; Xavier, C.F.C.; Cunha, S.; Pita, S.S.d.R.; Reis, J.N.; de Freitas, H.F. Phenotypic and in silico studies for a series of synthetic thiosemicarbazones as New Delhi metallo-beta-lactamase carbapenemase inhibitors. J. Biomol. Struct. Dyn. 2021, 40, 14223–14235. [Google Scholar] [CrossRef]
- Ge, Y.; Kang, P.-W.; Li, J.-Q.; Gao, H.; Zhai, L.; Sun, L.-Y.; Chen, C.; Yang, K.-W. Thiosemicarbazones exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). J. Antibiot. 2021, 74, 574–579. [Google Scholar] [CrossRef]
- Gao, H.; Li, J.Q.; Kang, P.W.; Chigan, J.Z.; Wang, H.; Liu, L.; Xu, Y.; Zhai, L.; Yang, K.W. N-acylhydrazones confer inhibitory efficacy against New Delhi metallo-β-lactamase-1. Bioorganic Chem. 2021, 114, 105138. [Google Scholar] [CrossRef]
- Romero, E.; Oueslati, S.; Benchekroun, M.; D’hollander, A.C.; Ventre, S.; Vijayakumar, K.; Minard, C.; Exilie, C.; Tlili, L.; Cariou, K.; et al. Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). Eur. J. Med. Chem. 2021, 219, 113418. [Google Scholar] [CrossRef]
- Farley, A.J.; Ermolovich, Y.; Calvopiña, K.; Rabe, P.; Panduwawala, T.; Brem, J.; Björkling, F.; Schofield, C.J. Structural Basis of Metallo-β-lactamase Inhibition by N-Sulfamoylpyrrole-2-carboxylates. ACS Infect. Dis. 2021, 7, 1809–1817. [Google Scholar] [CrossRef]
- Wade, N.; Tehrani, K.H.M.E.; Brüchle, N.C.; van Haren, M.J.; Mashayekhi, V.; Martin, N.I. Mechanistic Investigations of Metallo-β-lactamase Inhibitors: Strong Zinc Binding Is Not Required for Potent Enzyme Inhibition**. ChemMedChem 2021, 16, 1651–1659. [Google Scholar] [CrossRef]
- van Haren, M.J.; Tehrani, K.H.; Kotsogianni, I.; Wade, N.; Brüchle, N.C.; Mashayekhi, V.; Martin, N.I. Cephalosporin Prodrug Inhibitors Overcome Metallo-β-Lactamase Driven Antibiotic Resistance. Chem. A Eur. J. 2021, 27, 3806–3811. [Google Scholar] [CrossRef]
- Jackson, A.C.; Pinter, T.B.; Talley, D.C.; Baker-Agha, A.; Patel, D.; Smith, P.J.; Franz, K.J. Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metallo-β-Lactamase NDM-1. ChemMedChem 2021, 16, 654–661. [Google Scholar] [CrossRef]
- Li, J.-Q.; Sun, L.-Y.; Jiang, Z.; Chen, C.; Gao, H.; Chigan, J.-Z.; Ding, H.-H.; Yang, K.-W. Diaryl-substituted thiosemicarbazone: A potent scaffold for the development of New Delhi metallo-β-lactamase-1 inhibitors. Bioorganic Chem. 2021, 107, 104576. [Google Scholar] [CrossRef]
- Ooi, N.; Lee, V.E.; Chalam-Judge, N.; Newman, R.; Wilkinson, A.J.; Cooper, I.R.; Orr, D.; Lee, S.; Savage, V.J. Restoring carbapenem efficacy: A novel carbapenem companion targeting metallo-β-lactamases in carbapenem-resistant Enterobacterales. J. Antimicrob. Chemother. 2021, 76, 460–466. [Google Scholar] [CrossRef]
- Rossi, M.-A.; Martinez, V.; Hinchliffe, P.; Mojica, M.F.; Castillo, V.; Moreno, D.M.; Smith, R.; Spellberg, B.; Drusano, G.L.; Banchio, C.; et al. 2-Mercaptomethyl-thiazolidines use conserved aromatic–S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chem. Sci. 2021, 12, 2898–2908. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Yu, T.; Liu, Y.; Zhang, X.; Yao, Y.; Feng, X.; Liu, H.; Yu, D.; Qin, S.; et al. Discovery of thiosemicarbazone derivatives as effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates. Acta Pharm. Sin. B 2021, 11, 203–221. [Google Scholar] [CrossRef]
- Ma, G.; Wang, S.; Wu, K.; Zhang, W.; Ahmad, A.; Hao, Q.; Lei, X.; Zhang, H. Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors. Bioorganic Med. Chem. 2021, 29, 115902. [Google Scholar] [CrossRef] [PubMed]
- Gavara, L.; Sevaille, L.; De Luca, F.; Mercuri, P.; Bebrone, C.; Feller, G.; Legru, A.; Cerboni, G.; Tanfoni, S.; Hernandez, J.F.; et al. 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors. Eur. J. Med. Chem. 2020, 208, 112720. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y.; Zhou, Y.; Gao, Y.; Wang, X.; Wang, J.; Niu, X. Discovery of a Novel Natural Allosteric Inhibitor That Targets NDM-1 Against Escherichia coli. Front. Pharmacol. 2020, 11, 581001. [Google Scholar] [CrossRef] [PubMed]
- Kazi, M.I.; Perry, B.W.; Card, D.C.; Schargel, R.D.; Ali, H.B.; Obuekwe, V.C.; Sapkota, M.; Kang, K.N.; Pellegrino, M.W.; Boll, J.M.; et al. Discovery and characterization of New Delhi metallo-b-lactamase-1 inhibitor peptides that potentiate meropenem-dependent killing of carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2020, 75, 2843–2851. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Vecchio, G.; Sheehan, G.; Kavanagh, K.; Morroni, G.; Viaggi, V.; di Masi, A.; Giacobbe, D.R.; Luzzaro, F.; Luzzati, R.; et al. Zinc Chelators as Carbapenem Adjuvants for Metallo-β-Lactamase-Producing Bacteria: In Vitro and In Vivo Evaluation. Microb. Drug Resist. 2020, 26, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.T.; Leiris, S.; Sprynski, N.; Castandet, J.; Lozano, C.; Bousquet, J.; Zalacain, M.; Vasa, S.; Dasari, P.K.; Pattipati, R.; et al. ANT2681: SAR Studies Leading to the Identification of a Metallo-β-lactamase Inhibitor with Potential for Clinical Use in Combination with Meropenem for the Treatment of Infections Caused by NDM-Producing Enterobacteriaceae. ACS Infect. Dis. 2020, 6, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.-Y.; Yang, Y.; Bai, M.-M.; Han, J.-X.; Wang, C.-C.; Kong, H.-T.; Shen, B.-Y.; Yan, D.-C.; Xiao, C.-L.; Liu, Y.-S.; et al. Systematic research of H2dedpa derivatives as potent inhibitors of New Delhi Metallo-β-lactamase-1. Bioorganic Chem. 2020, 101, 103965. [Google Scholar] [CrossRef]
- Jin, W.B.; Xu, C.; Cheung, Q.; Gao, W.; Zeng, P.; Liu, J.; Chan, E.; Leung, Y.; Chan, T.H.; Chan, K.F.; et al. Bioisosteric investigation of ebselen: Synthesis and in vitro characterization of 1,2-benzisothiazol-3(2H)-one derivatives as potent New Delhi metallo-β-lactamase inhibitors. Bioorganic Chem. 2020, 100, 103873. [Google Scholar] [CrossRef]
- Tehrani, K.H.M.E.; Brüchle, N.C.; Wade, N.; Mashayekhi, V.; Pesce, D.; van Haren, M.J.; Martin, N.I. Small Molecule Carboxylates Inhibit Metallo-β-lactamases and Resensitize Carbapenem-Resistant Bacteria to Meropenem. ACS Infect. Dis. 2020, 6, 1366–1371. [Google Scholar] [CrossRef]
- Thomas, C.S.; Braun, D.R.; Olmos, J.L., Jr.; Rajski, S.R.; Phillips, G.N., Jr.; Andes, D.; Bugni, T.S. Pyridine-2,6-Dithiocarboxylic Acid and Its Metal Complexes: New Inhibitors of New Delhi Metallo β-Lactamase-1. Mar. Drugs 2020, 18, 295. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Gao, Y.; Niu, X. Discovery of the novel inhibitor against New Delhi metallo-β-lactamase based on virtual screening and molecular modelling. Int. J. Mol. Sci. 2020, 21, 3567. [Google Scholar] [CrossRef]
- Jackson, A.C.; Zaengle-Barone, J.M.; Puccio, E.A.; Franz, K.J. A Cephalosporin Prochelator Inhibits New Delhi Metallo-β-lactamase 1 without Removing Zinc. ACS Infect. Dis. 2020, 6, 1264–1272. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, K.; Gao, Y.; Bai, W.; Wu, C.; He, W.; Li, C.; Li, Z. A novel potent metal-binding NDM-1 inhibitor was identified by fragment virtual, SPR and NMR screening. Bioorganic Med. Chem. 2020, 28, 115437. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Kong, F.; Xia, L.; Deng, X.; Wang, D.; Wang, J. Specific NDM-1 inhibitor of isoliquiritin enhances the activity of meropenem against NDM-1-positive Enterobacteriaceae in vitro. Int. J. Environ. Res. Public Health 2020, 17, 2162. [Google Scholar] [CrossRef]
- Wachino, J.-I.; Jin, W.; Kimura, K.; Kurosaki, H.; Sato, A.; Arakawa, Y. Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-β-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance. mBio 2020, 11, e03144-19. [Google Scholar] [CrossRef]
- Tehrani, K.H.; Fu, H.; Brüchle, N.C.; Mashayekhi, V.; Luján, A.P.; van Haren, M.J.; Poelarends, G.J.; Martin, N.I. Aminocarboxylic acids related to aspergillomarasmine A (AMA) and ethylenediamine-N,N′-disuccinic acid (EDDS) are strong zinc-binders and inhibitors of the metallo-beta-lactamase NDM-1. Chem. Commun. 2020, 56, 3047–3049. [Google Scholar] [CrossRef]
- Chen, C.; Yang, K.-W.; Wu, L.-Y.; Li, J.-Q.; Sun, L.-Y. Disulfiram as a potent metallo-β-lactamase inhibitor with dual functional mechanisms. Chem. Commun. 2020, 56, 2755–2758. [Google Scholar] [CrossRef]
- Hagiya, H.; Sugawara, Y.; Tsutsumi, Y.; Akeda, Y.; Yamamoto, N.; Sakamoto, N.; Shanmugakani, R.K.; Abe, R.; Takeuchi, D.; Nishi, I.; et al. In Vitro Efficacy of Meropenem-Cefmetazole Combination Therapy against New Delhi Metallo-β-lactamase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2020, 55, 105905. [Google Scholar] [CrossRef]
- Kang, P.-W.; Su, J.-P.; Sun, L.-Y.; Gao, H.; Yang, K.-W. 3-Bromopyruvate as a potent covalently reversible inhibitor of New Delhi metallo-β-lactamase-1 (NDM-1). Eur. J. Pharm. Sci. 2020, 142, 105161. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.; Jia, Y.; Wang, Z. Repurposing Peptidomimetic as Potential Inhibitor of New Delhi Metallo-β-lactamases in Gram-Negative Bacteria. ACS Infect. Dis. 2019, 5, 2061–2066. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Zhou, Y.; Hu, N.; Li, J.; Wang, Y.; Niu, X.; Deng, X.; Wang, J. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. Br. J. Pharmacol. 2019, 176, 4548–4557. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Tang, M.-L.; Yu, L.; Liang, Y.; Han, J.; Zhang, C.; Hu, F.; Yu, J.-M.; Sun, X. Novel Mercapto Propionamide Derivatives with Potent New Delhi Metallo-β-Lactamase-1 Inhibitory Activity and Low Toxicity. ACS Infect. Dis. 2019, 5, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Maryam, L.; Khalid, S.; Ali, A.; Khan, A.U. Synergistic effect of doripenem in combination with cefoxitin and tetracycline in inhibiting NDM-1 producing bacteria. Futur. Microbiol. 2019, 14, 671–689. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.G.; Kumar, G.; Mallick, S.; Ghosh, S.K.; Pramanick, P.; Ghosh, A.S. Bio-surfactin stabilised silver nanoparticles exert inhibitory effect over New-Delhi metallo-beta-lactamases (NDMs) and the cells harbouring NDMs. FEMS Microbiol. Lett. 2019, 366, fnz118. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-F.; Wang, M.-M.; Huang, S.-C.; Han, J.-X.; Chu, W.-C.; Xiao, C.; Zhang, E.; Qin, S. H2depda: An acyclic adjuvant potentiates meropenem activity in vitro against metallo-β-lactamase-producing enterobacterales. Eur. J. Med. Chem. 2019, 167, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Sosibo, S.C.; Somboro, A.M.; Amoako, D.G.; Sekyere, J.O.; Bester, L.A.; Ngila, J.C.; Sun, D.D.; Kumalo, H.M. Impact of Pyridyl Moieties on the Inhibitory Properties of Prominent Acyclic Metal Chelators Against Metallo-β-Lactamase-Producing Enterobacteriaceae: Investigating the Molecular Basis of Acyclic Metal Chelators’ Activity. Microb. Drug Resist. 2019, 25, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Liu, J.; Chen, C.; Zhang, Y.; Yang, K. Ebsulfur as a potent scaffold for inhibition and labelling of New Delhi metallo-β-lactamase-1 in vitro and in vivo. Bioorganic Chem. 2019, 84, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Somboro, A.M.; Amoako, D.G.; Sekyere, J.O.; Kumalo, H.M.; Khan, R.; Bester, L.A.; Essack, S.Y. 1,4,7-Triazacyclononane Restores the Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacteriaceae: Exploration of Potential Metallo-β-Lactamase Inhibitors. Appl. Environ. Microbiol. 2019, 85, e02077-18. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-L.; Xiang, Y.; Chen, C.; Yang, K.-W. Azolylthioacetamides as potential inhibitors of New Delhi metallo-β-lactamase-1 (NDM-1). J. Antibiot. 2019, 72, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Somboro, A.M.; Sekyere, J.O.; Amoako, D.G.; Kumalo, H.M.; Khan, R.; Bester, L.A.; Essack, S.Y. In vitro potentiation of carbapenems with tannic acid against carbapenemase-producing enterobacteriaceae: Exploring natural products as potential carbapenemase inhibitors. J. Appl. Microbiol. 2019, 126, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Thomas, P.W.; Stewart, A.C.; Bergstrom, A.; Cheng, Z.; Miller, C.; Bethel, C.R.; Marshall, S.H.; Page, R.C.; Cohen, S.M.; et al. Correction to: Dipicolinic acid derivatives as inhibitors of new delhi metallo-β-lactamase-1. J. Med. Chem. 2018, 61, 6400. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Y.; Niu, X.; Wang, T.; Li, J.; Liu, Z.; Wang, J.; Tang, S.; Wang, Y.; Deng, X. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discov. 2018, 4, 28. [Google Scholar] [CrossRef]
- Wang, M.-M.; Chu, W.-C.; Yang, Y.; Yang, Q.-Q.; Qin, S.-S.; Zhang, E. Dithiocarbamates: Efficient metallo-β-lactamase inhibitors with good antibacterial activity when combined with meropenem. Bioorganic Med. Chem. Lett. 2018, 28, 3436–3440. [Google Scholar] [CrossRef]
- Schnaars, C.; Kildahl-Andersen, G.; Prandina, A.; Popal, R.; Radix, S.L.; Le Borgne, M.; Gjøen, T.; Andresen, A.M.S.; Heikal, A.; Økstad, O.A.; et al. Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors. ACS Infect. Dis. 2018, 4, 1407–1422. [Google Scholar] [CrossRef]
- Jin, W.B.; Xu, C.; Cheng, Q.; Qi, X.L.; Gao, W.; Zheng, Z.; Chan, E.; Leung, Y.; Chan, T.; Chan, K.F.; et al. Investigation of synergistic antimicrobial effects of the drug combinations of meropenem and 1,2-benzisoselenazol-3(2H)-one derivatives on carbapenem-resistant Enterobacteriaceae producing NDM-1. Eur. J. Med. Chem. 2018, 155, 285–302. [Google Scholar] [CrossRef]
- Yarlagadda, V.; Sarkar, P.; Samaddar, S.; Manjunath, G.B.; Das Mitra, S.; Paramanandham, K.; Shome, B.R.; Haldar, J. Vancomycin Analogue Restores Meropenem Activity against NDM-1 Gram-Negative Pathogens. ACS Infect. Dis. 2018, 4, 1093–1101. [Google Scholar] [CrossRef]
- Horie, H.; Chiba, A.; Wada, S. Inhibitory effect of soy saponins on the activity of β-lactamases, including New Delhi metallo-β-lactamase 1. J. Food Sci. Technol. 2018, 55, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; He, Y.; Lu, R.; Wang, W.-M.; Yang, K.-W.; Fan, H.M.; Jin, Y.; Blackburn, G.M. Thermokinetic profile of NDM-1 and its inhibition by small carboxylic acids. Biosci. Rep. 2018, 38, BSR20180244. [Google Scholar] [CrossRef]
- Büttner, D.; Kramer, J.S.; Klingler, F.-M.; Wittmann, S.K.; Hartmann, M.R.; Kurz, C.G.; Kohnhäuser, D.; Weizel, L.; Brüggerhoff, A.; Frank, D.; et al. Challenges in the Development of a Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases. ACS Infect. Dis. 2018, 4, 360–372. [Google Scholar] [CrossRef]
- Cain, R.; Brem, J.; Zollman, D.; McDonough, M.A.; Johnson, R.M.; Spencer, J.; Makena, A.; Abboud, M.I.; Cahill, S.; Lee, S.Y.; et al. In Silico Fragment-Based Design Identifies Subfamily B1 Metallo-β-lactamase Inhibitors. J. Med. Chem. 2018, 61, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Ning, N.-Z.; Liu, X.; Chen, F.; Zhou, P.; Hu, L.; Huang, J.; Li, Z.; Huang, J.; Li, T.; Wang, H. Embelin restores carbapenem efficacy against NDM-1-positive pathogens. Front. Microbiol. 2018, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Wang, M.-M.; Huang, S.-C.; Xu, S.-M.; Cui, D.-Y.; Bo, Y.-L.; Bai, P.-Y.; Hua, Y.-G.; Xiao, C.-L.; Qin, S. NOTA analogue: A first dithiocarbamate inhibitor of metallo-β-lactamases. Bioorganic Med. Chem. Lett. 2018, 28, 214–221. [Google Scholar] [CrossRef]
- Spyrakis, F.; Celenza, G.; Marcoccia, F.; Santucci, M.; Cross, S.; Bellio, P.; Cendron, L.; Perilli, M.; Tondi, D. Structure-based virtual screening for the discovery of novel inhibitors of New Delhi metallo-β-lactamase-1. ACS Med. Chem. Lett. 2017, 9, 45–50. [Google Scholar] [CrossRef]
- Sully, E.K.; Geller, B.L.; Li, L.; Moody, C.M.; Bailey, S.M.; Moore, A.L.; WONG, M.; Nordmann, P.; Daly, S.M.; Greenberg, D.E.; et al. Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo. J. Antimicrob. Chemother. 2017, 72, 782–790. [Google Scholar] [PubMed]
- Tehrani, K.H.M.E.; Martin, N.I. Thiol-Containing Metallo-β-Lactamase Inhibitors Resensitize Resistant Gram-Negative Bacteria to Meropenem. ACS Infect. Dis. 2017, 3, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, S.; Wei, Q.; Guo, Q.; Bai, Y.; Yang, S.; Song, F.; Zhang, L.; Lei, X. Synthesis and biological evaluation of Aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance. Bioorganic Med. Chem. 2017, 25, 5133–5141. [Google Scholar] [CrossRef]
- Khan, A.U.; Ali, A.; Danishuddin; Srivastava, G.; Sharma, A. Potential inhibitors designed against NDM-1 type metallo-β-lactamases: An attempt to enhance efficacies of antibiotics against multi-drug-resistant bacteria. Sci. Rep. 2017, 7, 9207. [Google Scholar] [CrossRef] [PubMed]
- Chandar, B.; Poovitha, S.; Ilango, K.; MohanKumar, R.; Parani, M. Inhibition of New Delhi metallo-β-lactamase 1 (NDM-1) producing Escherichia coli IR-6 by selected plant extracts and their synergistic actions with antibiotics. Front. Microbiol. 2017, 8, 1580. [Google Scholar] [CrossRef]
- Brem, J.; van Berkel, S.S.; Zollman, D.; Lee, S.Y.; Gileadi, O.; McHugh, P.J.; Wash, T.R.; McDonough, M.A.; Schofield, C.J. Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Antimicrob. Agents Chemother. 2016, 60, 142–150. [Google Scholar] [CrossRef]
- Azumah, R.; Dutta, J.; Somboro, A.; Ramtahal, M.; Chonco, L.; Parboosing, R.; Bester, L.; Kruger, H.; Naicker, T.; Essack, S.; et al. In vitro evaluation of metal chelators as potential metallo- β -lactamase inhibitors. J. Appl. Microbiol. 2016, 120, 860–867. [Google Scholar] [CrossRef]
- González, M.M.; Kosmopoulou, M.; Mojica, M.F.; Castillo, V.; Hinchliffe, P.; Pettinati, I.; Brem, J.; Schofield, C.J.; Mahler, G.; Bonomo, R.A.; et al. Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infect. Dis. 2016, 1, 544–554. [Google Scholar] [CrossRef]
- Chiou, J.; Wan, S.; Chan, K.-F.; So, P.-K.; He, D.; Chan, E.W.-C.; Chan, T.-H.; Wong, K.-Y.; Tao, J.; Chen, S. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem. Commun. 2015, 51, 9543–9546. [Google Scholar] [CrossRef]
- King, A.M.; Reid-Yu, S.A.; Wang, W.; King, D.T.; De Pascale, G.; Strynadka, N.C.; Walsh, T.R.; Coombes, B.K.; Wright, G.D. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 2014, 510, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Liu, Y.; Bai, Y.; Guan, Y.; Li, L.; Gao, R.; He, W.; You, X.; Li, Y.; Yu, L.; et al. Polyketides with New Delhi metallo-β-lactamase 1 inhibitory activity from Penicillium sp. J. Nat. Prod. 2013, 76, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Yu, Y.; Chen, H.; Cao, X.; Lao, X.; Fang, Y.; Shi, Y.; Chen, J.; Zheng, H. Inhibitor Discovery of Full-Length New Delhi Metallo-β-Lactamase-1 (NDM-1). PLoS ONE 2013, 8, e62955. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
No. | Year | NDM Inhibitors | CB Assay | TKC Assay | Kinetic Assay | Molecular Methods | In Vivo Study | Toxicity Assay | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 2022 | EDTA, Captopril, Ciprofloxacin | ○ | × | × | × | × | × | [25] |
2 | 2022 | 1,2,4-triazole-3 thiones derivative | ○ | × | ○ | ○ | × | ○ | [26] |
3 | 2022 | 1,2-Isoselenazol-3(2H) derivatives | ○ | × | × | ○ | × | ○ | [27] |
4 | 2022 | Ebselen scaffold | ○ | ○ | × | ○ | × | × | [28] |
5 | 2022 | Cephalosporin-Tripodalamin conjugate | ○ | ○ | × | ○ | ○ | ○ | [29] |
6 | 2022 | Fragment-based compounds | ○ | × | ○ | ○ | × | × | [30] |
7 | 2022 | Adapelen | ○ | ○ | × | ○ | × | × | [31] |
8 | 2022 | Aromatic Schiff bases | ○ | × | × | ○ | × | ○ | [32] |
9 | 2022 | Bismuth dichloride | ○ | × | × | × | × | ○ | [33] |
10 | 2022 | Alpha Lipoic acid, methimazole | ○ | ○ | × | × | × | × | [34] |
11 | 2022 | QDP-1 (Phenyl ring) | ○ | × | ○ | ○ | × | × | [35] |
12 | 2022 | Trans-cephalosporin | ○ | × | ○ | ○ | × | ○ | [36] |
13 | 2022 | Withaferin A | ○ | × | × | ○ | × | × | [37] |
14 | 2022 | Fisetin | ○ | ○ | ○ | ○ | ○ | × | [38] |
15 | 2022 | Quinolinyl-Sulphonamides sulphonyl esters | ○ | × | ○ | ○ | ○ | ○ | [39] |
16 | 2022 | Emerione A, Asperfunolone A | ○ | × | × | ○ | ○ | × | [40] |
17 | 2022 | Risedronate, Methotrexate | ○ | × | ○ | ○ | × | × | [41] |
18 | 2022 | Aspergillomarasmine A analogue | ○ | × | × | ○ | ○ | × | [42] |
19 | 2022 | Unithiole derivative | ○ | × | ○ | ○ | ○ | × | [43] |
20 | 2022 | Nitroxoline derivative | ○ | ○ | × | ○ | × | ○ | [44] |
21 | 2022 | Indole-2-carboxylates derivative | ○ | × | × | ○ | ○ | ○ | [45] |
22 | 2022 | Di-thiocarbamates-copper | ○ | ○ | ○ | ○ | ○ | ○ | [46] |
23 | 2021 | Alkylthio-substituted thiols derivatives | ○ | × | × | ○ | × | × | [47] |
24 | 2021 | H2dpa derivatives | ○ | ○ | ○ | ○ | ○ | ○ | [48] |
25 | 2021 | Thiosemicarbazone derivative | ○ | ○ | ○ | ○ | × | ○ | [49] |
26 | 2021 | Thiosemicarbazones derivative | ○ | × | ○ | ○ | × | × | [50] |
27 | 2021 | N-acylhydrazones derivative | ○ | × | ○ | ○ | ○ | ○ | [51] |
28 | 2021 | Azetidinimines derivatives | ○ | × | ○ | ○ | ○ | ○ | [52] |
29 | 2021 | N-Sulfamoylpyrrole-2-carboxylates derivatives | ○ | × | × | × | ○ | × | [53] |
30 | 2021 | Indole-carboxylate derivative | ○ | × | × | ○ | × | × | [54] |
31 | 2021 | Cephalosporin-prodrug | ○ | × | × | × | × | × | [55] |
32 | 2021 | Benzimidazole and benzoxazole zinc chelator | ○ | × | × | ○ | × | × | [56] |
33 | 2021 | Diaryl-substituted thiosemicarbazone derivative | ○ | ○ | ○ | × | ○ | ○ | [57] |
34 | 2021 | Fragment-based compound | ○ | ○ | × | × | ○ | ○ | [58] |
35 | 2021 | 2-Mercaptomethyl-thiazolidines derivative | ○ | × | ○ | × | × | ○ | [59] |
36 | 2021 | Thiosemicarbazone derivatives | ○ | ○ | ○ | ○ | ○ | ○ | [60] |
37 | 2021 | D-captopril’s derivatives | ○ | × | × | ○ | × | × | [61] |
38 | 2020 | 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases | ○ | × | ○ | ○ | ○ | ○ | [62] |
39 | 2020 | Carnosic acid | ○ | ○ | × | ○ | × | × | [63] |
40 | 2020 | Chemical peptide sequences | ○ | × | × | ○ | × | ○ | [64] |
41 | 2020 | Disulfiram, nitroxoline, 5-amino-8-hydroxyquinoline, DOTA, cyclam, TPEN | ○ | ○ | ○ | × | ○ | ○ | [65] |
42 | 2020 | ANT2681 (thiazolyl acid derivatives) | ○ | × | ○ | ○ | ○ | ○ | [66] |
43 | 2020 | H2dedpa derivatives | ○ | ○ | × | ○ | × | ○ | [67] |
44 | 2020 | 1,2-benzisothiazol-3(2H) derivative | ○ | × | × | ○ | × | ○ | [68] |
45 | 2020 | Carboxylates small molecules | ○ | × | × | × | × | × | [69] |
46 | 2020 | Metal complex scaffold (PDTC2-Fe) | ○ | × | ○ | ○ | × | × | [70] |
47 | 2020 | ZINC05683641 | ○ | × | × | ○ | × | × | [71] |
48 | 2020 | PcephPT (cephalosporin prochelator) | ○ | × | ○ | ○ | × | × | [72] |
49 | 2020 | α-hydrazono carboxylic acid fragments | ○ | × | × | ○ | × | × | [73] |
50 | 2020 | Isoliquiritin | ○ | ○ | × | × | × | × | [74] |
51 | 2020 | Sulfamoyl hetero-arylcarboxylic acids derivatives | ○ | × | ○ | ○ | ○ | ○ | [75] |
52 | 2020 | Amino-carboxylic acid analogues | ○ | × | × | × | × | × | [76] |
53 | 2020 | Disulfiram | ○ | ○ | ○ | ○ | × | × | [77] |
54 | 2020 | Cefmetazole | ○ | ○ | ○ | × | × | × | [78] |
55 | 2020 | 3-bromopyruvate | ○ | × | ○ | ○ | ○ | ○ | [79] |
56 | 2019 | Peptidomimetic 4 (PEP4) | ○ | ○ | ○ | ○ | ○ | ○ | [80] |
57 | 2019 | Pterostilbene | ○ | ○ | × | ○ | ○ | × | [81] |
58 | 2019 | Mercapto propionamide derivatives | ○ | × | × | ○ | ○ | ○ | [82] |
59 | 2019 | Cefoxitin, tetracycline | ○ | × | ○ | × | × | × | [83] |
60 | 2019 | Silver nanoparticles (AgNPs) | ○ | × | × | × | × | ○ | [84] |
61 | 2019 | H2-dedpa derivative | ○ | ○ | ○ | ○ | × | ○ | [85] |
62 | 2019 | Tris-(2-picolyl) amine | ○ | ○ | × | ○ | × | × | [86] |
63 | 2019 | Ebsulfur scaffolds | ○ | × | × | ○ | ○ | ○ | [87] |
64 | 2019 | 1,4,7-Triazacyclononane | ○ | ○ | ○ | ○ | × | ○ | [88] |
65 | 2019 | Azolyl-thio acetamides derivatives | ○ | × | × | ○ | × | ○ | [89] |
66 | 2019 | Tannic acid | ○ | × | × | ○ | × | ○ | [90] |
67 | 2018 | Dipicolinic acid derivative | ○ | × | ○ | ○ | × | ○ | [91] |
68 | 2018 | Magnolol | ○ | ○ | × | ○ | × | × | [92] |
69 | 2018 | Di-thiocarbamate derivatives | ○ | × | × | × | × | ○ | [93] |
70 | 2018 | Tris-picolylamine-based zinc chelators | ○ | × | ○ | × | ○ | ○ | [94] |
71 | 2018 | 1,2-benzisoselenazol-3(2H) derivatives | ○ | × | ○ | ○ | ○ | ○ | [95] |
72 | 2018 | Dipicolyl-vancomycin conjugate | ○ | × | × | × | ○ | ○ | [96] |
73 | 2018 | Crude soy saponins | ○ | × | × | × | × | × | [97] |
74 | 2018 | Small carboxylic acid derivatives | ○ | × | ○ | ○ | × | × | [98] |
75 | 2018 | Thiol based inhibitors | ○ | × | × | ○ | × | ○ | [99] |
76 | 2018 | Fragment-based derivative | ○ | × | × | ○ | × | × | [100] |
77 | 2018 | Embelin | ○ | × | × | ○ | × | × | [101] |
78 | 2018 | Dithiocarbamate derivatives | ○ | ○ | ○ | × | × | ○ | [102] |
79 | 2017 | Triazol-thiol derivatives | ○ | × | ○ | × | × | × | [103] |
80 | 2017 | Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) | ○ | × | × | × | ○ | × | [104] |
81 | 2017 | 2-mercapto-3-phenylpropionic acid derivative | ○ | × | × | ○ | × | × | [105] |
82 | 2017 | Aspergillomarasmine A derivative | ○ | × | × | × | ○ | × | [106] |
83 | 2017 | AW01120, BTB02323 | ○ | × | ○ | ○ | × | ○ | [107] |
84 | 2017 | Hibiscus cannabinus, Tamarindus indica, Combretum albidum, Hibiscus acetosella, Hibiscus furcatus, Punica granatum | ○ | × | × | × | × | × | [108] |
85 | 2016 | Captopril Stereoisomers | ○ | × | × | ○ | × | × | [109] |
86 | 2016 | Metal chelators (1) DPA, (2) TPEN | ○ | × | × | × | × | ○ | [110] |
87 | 2016 | Bisthiazolidines (compound-f L-CS319) | ○ | ○ | ○ | ○ | × | ○ | [111] |
88 | 2015 | Ebselen | ○ | × | ○ | ○ | × | × | [112] |
89 | 2014 | Aspergillomarasmine A | ○ | × | ○ | ○ | ○ | × | [113] |
90 | 2013 | Polyketide compounds | ○ | × | × | ○ | × | × | [114] |
91 | 2013 | Thiophene-carboxylic acid derivatives | ○ | × | ○ | ○ | × | × | [115] |
No. | Year | Tested Compounds [Combined Drugs] (1) | ** FIC Index by CB Assay | TKC Assay | Kinetic Assay | Molecular Investigation (2) | In Vivo Study (Animal) | *** Toxicity Assay (Model) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 2022 | (1) EDTA (2) Captopril (3) Ciprofloxacin [MEPM, IPM] | (1) Synergistic (2) Synergistic and indifferent (3) Synergistic and indifferent | - | - | - | - | - | [25] |
2 | 2022 | 1, 2-Isoselenazol-3(2H) derivatives [MEPM] | Synergistic | - | - | MDS | - | Not toxic (mammalian cell) | [27] |
3 | 2022 | Adapelen [MEPM] | Synergistic and indifferent | Bacteriostatic | - | MDS | - | - | [31] |
4 | 2022 | Bismuth dichloride (C4) [MEPM] | Synergistic | - | - | - | - | Toxic (human embryonic kidney cell) | [33] |
5 | 2022 | (1) Alpha Lipoic acid (2) Methimazole * [MEPM] | All synergistic | Bactericidal | - | - | - | - | [34] |
6 | 2022 | Withaferin A * [IPM] | Synergistic | - | - | MDS | - | - | [37] |
7 | 2022 | Fisetin * [MEPM] | Synergistic and indifferent | Bactericidal | Performed | MDS | Mouse | - | [38] |
8 | 2022 | (1) Emerione A, (2) Asperfunolone A [MEPM, IPM, CTRX, ABPC] | - | - | - | MDS | - | - | [40] |
9 | 2022 | Nitroxoline derivative [IPM] | Synergistic | Bactericidal | - | SAR | - | Non-specific (3) (endothelial cell) | [44] |
10 | 2022 | Di-thiocarbamates-copper (SA09-Cu) [MEPM] | Synergistic | Bacteriostatic | Performed | SAR | Mouse | Less toxic (mouse) | [46] |
11 | 2021 | H2dpa derivatives | All Synergistic | Bactericidal | Performed | MDS | Mouse | Less toxic (mouse) | [48] |
12 | 2021 | Thiosemicarbazone derivative [MEPM] | Synergistic | Bacteriostatic | Performed | MDS | - | - | [49] |
13 | 2021 | Indole-carboxylate derivative [MEPM] | Synergistic | - | - | ITC | - | - | [54] |
14 | 2021 | Cephalosporin-prodrug [MEPM] | Synergistic | - | - | - | - | - | [55] |
15 | 2020 | 1,2-benzisothiazol-3(2H) derivative [MEPM] | Synergistic | - | - | MDS, ESI-MS | - | Acceptable toxicity (human embryonic kidney cell) | [68] |
16 | 2020 | Carboxylates small molecules [MEPM] | Synergistic and indifferent | - | - | - | - | - | [69] |
17 | 2020 | ZINC05683641 [MEPM] | Synergistic | - | - | MDS | - | - | [71] |
18 | 2020 | Isoliquiritin * [MEPM] | Synergistic and indifferent | Bactericidal | - | - | - | - | [74] |
19 | 2020 | Sulfamoyl hetero-arylcarboxylic acid derivatives [MEPM] | All synergistic | - | Performed | Protein Crystallization | Mouse | Less toxic (mouse) | [75] |
20 | 2020 | Aminocarboxylic acid analogues [MEPM] | All synergistic | - | - | - | - | - | [76] |
21 | 2020 | Cefmetazole * [MEPM] | Synergistic | Bactericidal | Performed | - | - | - | [78] |
22 | 2019 | Peptidomimetic 4 (PEP4) [MEPM] | Synergistic and indifferent | Bactericidal | Performed | MDS | Mouse | Non-specific (3) (mammalian cell) | [80] |
23 | 2019 | Pterostilbene * [MEPM] | Synergistic and indifferent | Bacteriostatic | - | MDS | Mouse | - | [81] |
24 | 2019 | Mercapto propionamide derivative [MEPM] | All synergistic | - | - | X-ray crystallography | Mouse | Non-specific (3) (mouse) | [82] |
25 | 2019 | (1) Cefoxitin * (2) Tetracycline * [DRPM] | All Synergistic | - | Performed | - | - | [83] | |
26 | 2019 | Tris-(2-picolyl) amine (TPA) [MEPM] | Synergistic | Bactericidal | - | MDS | - | - | [86] |
27 | 2019 | 1,4,7-Triazacyclononane [MEPM] | Synergistic | Bactericidal | Performed | MDS | - | Non-specific (3) (immortalized liver carcinoma cells) | [88] |
28 | 2018 | Magnolol [MEPM] | Synergistic | Bactericidal | - | MDS | - | - | [92] |
29 | 2018 | 1,2-benzisoselenazol-3(2H) derivatives [MEPM] | Synergistic and indifferent | - | Performed | ESI-MS | Mouse | Less toxic (larvae) | [95] |
30 | 2018 | Vancomycin analogue (dipicolyl-vancomycin conjugate) [MEPM] | Synergistic | - | - | - | Mouse | Non-specific (3) (mouse model, mammalian cell) | [96] |
31 | 2018 | Crude soy saponins [PIPC, ABPC, MPIPC, PCG] | Synergistic | - | - | - | - | - | [97] |
32 | 2018 | Embelin [IPM] | Synergistic | - | - | MDS | - | - | [101] |
33 | 2017 | Triazol-thiol derivatives [CTX, MEPM] | All synergistic | - | Performed | - | - | - | [103] |
34 | 2017 | 2- mercapto-3-phenylpropionic acid derivative [MEPM] | Synergistic | - | - | ITC | - | - | [105] |
35 | 2017 | Aspergillomarasmine A derivatives [MEPM] | All synergistic | - | - | - | - | - | [106] |
36 | 2017 | (1) Hibiscus cannabinus (2) Tamarindus indica (3) Combretum albidum (4) Hibiscus acetosella (5) Hibiscus furcatus (6) Punica granatum [MEPM] | All synergistic | - | - | - | - | - | [108] |
37 | 2014 | Aspergillomarasmine A [MEPM] | Synergistic | - | Performed | ICP-MS | Mouse | - | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahar, L.; Hagiya, H.; Gotoh, K.; Asaduzzaman, M.; Otsuka, F. New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. J. Clin. Med. 2024, 13, 4199. https://doi.org/10.3390/jcm13144199
Nahar L, Hagiya H, Gotoh K, Asaduzzaman M, Otsuka F. New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. Journal of Clinical Medicine. 2024; 13(14):4199. https://doi.org/10.3390/jcm13144199
Chicago/Turabian StyleNahar, Lutfun, Hideharu Hagiya, Kazuyoshi Gotoh, Md Asaduzzaman, and Fumio Otsuka. 2024. "New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review" Journal of Clinical Medicine 13, no. 14: 4199. https://doi.org/10.3390/jcm13144199
APA StyleNahar, L., Hagiya, H., Gotoh, K., Asaduzzaman, M., & Otsuka, F. (2024). New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review. Journal of Clinical Medicine, 13(14), 4199. https://doi.org/10.3390/jcm13144199