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Abstract: Background/Objectives: Among various carbapenemases, New Delhi metallo-beta-
lactamases (NDMs) are recognized as the most powerful type capable of hydrolyzing all beta-lactam
antibiotics, often conferring multi-drug resistance to the microorganism. The objective of this review
is to synthesize current scientific data on NDM inhibitors to facilitate the development of future
therapeutics for challenging-to-treat pathogens. Methods: Following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews, we conducted
a MEDLINE search for articles with relevant keywords from the beginning of 2009 to December 2022.
We employed various generic terms to encompass all the literature ever published on potential NDM
inhibitors. Results: Out of the 1760 articles identified through the database search, 91 met the eligi-
bility criteria and were included in our analysis. The fractional inhibitory concentration index was
assessed using the checkerboard assay for 47 compounds in 37 articles, which included 8 compounds
already approved by the Food and Drug Administration (FDA) of the United States. Time-killing
curve assays (14 studies, 25%), kinetic assays (15 studies, 40.5%), molecular investigations (25 studies,
67.6%), in vivo studies (14 studies, 37.8%), and toxicity assays (13 studies, 35.1%) were also conducted
to strengthen the laboratory-level evidence of the potential inhibitors. None of them appeared to have
been applied to human infections. Conclusions: Ongoing research efforts have identified several
potential NDM inhibitors; however, there are currently no clinically applicable drugs. To address this,
we must foster interdisciplinary and multifaceted collaborations by broadening our own horizons.

Keywords: antimicrobial resistance; carbapenemase-producing Enterobacterales; carbapenem-resistant
Enterobacterales; metallo-beta-lactamase; synergy; combination

1. Introduction

Antimicrobial resistance (AMR) is a pressing global issue that requires collaborative
efforts from nations and foundations worldwide [1]. Clinical and public health challenges
posed by emerging AMR pathogens are particularly pronounced in low-resource settings,
where enhanced laboratory capabilities and robust data collection systems are needed to
fully address this health threat. Until recently, carbapenems served as last-resort treatments
for Gram-negative bacterial infections [2]. However, the global emergence and rapid spread
of carbapenem-resistant organisms present a significant risk of high mortality across diverse
populations due to limited treatment options [3,4]. Carbapenem resistance can develop
through various mechanisms, including (i) structural modifications of penicillin-binding
proteins, (ii) reductions in outer-membrane porins, (iii) activation of efflux pumps, and (iv)
production of β-lactamases (carbapenemases) that degrade or hydrolyze carbapenems [5].
Among these, the producibility of carbapenemases is particularly noteworthy in terms of
its impact on infection prevention and treatment.
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A wide range of carbapenemases are classified into Ambler Classes based on their
hydrolytic profiles and catalytic substrates [6]. Class B enzymes, also known as metallo-
β-lactamases (MBLs), employ zinc as a cofactor at the active site of the β-lactam ring.
This class mainly includes New Delhi metallo-beta-lactamase (NDM), Verona Integron-
encoded metallo-beta-lactamase (VIM), and imipenemase (IMP). Among these, NDM is the
most prominent genotype capable of catalyzing a range of β-lactam antibiotics, including
carbapenems, and is resistant to various β-lactamase inhibitors [7]. Since the first detection
of the NDM-1 gene in Enterobacterales isolated from a patient traveling from India to
Sweden in 2008 [8], a total of 41 NDM variants have been identified in clinically significant
pathogens such as Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii complex,
and Pseudomonas aeruginosa, of which 40 variants have been deposited in the GenBank
database [9–11]. Due to its high-level and multi-drug resistance nature, only a limited
number of treatment options are available for NDM-producing bacterial infections. The
endemic regions of these NDM producers have rapidly expanded worldwide, affecting
communities, animals, agricultural products, and the environment [12,13], exposing an
increasing number of people to untreatable infections. In the era of international travel and
medical tourism, this unfavorable situation is accelerating globally [14,15].

In light of these challenges, there is significant value in promoting the development
of therapeutic agents against NDM-producing bacteria. However, due to the limited
research efforts in this field, progress has been modest. Nonetheless, novel antibiotics
with activity against NDM producers, such as ceftazidime/avibactam plus aztreonam,
aztreonam/avibactam, cefiderocol, plazomicin, and eravacycline, have recently received
approval in American and European countries [16]. However, these new drugs are not yet
available globally due to issues related to drug availability and cost. Combination therapy
with currently available antibiotics is one approach to combat severe NDM-producing
infections [16], though these strategies have not fully addressed the menace. Many studies
have focused on combinatory tactics to enhance antibiotic efficacy, utilizing various com-
pounds such as β-lactamase inhibitors, outer-membrane permeabilizers, and efflux pump
inhibitors [17]. Among these, experimental and clinical investigations of combination
therapy with β-lactam and β-lactamase inhibitors have been particularly explored. As a
result, avibactam, relebactam, and vaborbactam have been developed and introduced to
the market as serin-β-lactamase inhibitors [18,19]. However, no specific NDM inhibitors
have been discovered. A recent literature review on progress in the development of MBL
inhibitors summarized the molecular profiles and inhibitory mechanisms of MBLs [20]. Gu
et al. have concentrated on NDM-1 inhibitors and reviewed relevant articles published
after 2018, indicating chemical complexity and inconsistency [21].

Given this context, a more comprehensive evaluation of published data and a deeper
discussion from a clinical applicability perspective, especially focusing on NDM inhibitors,
are necessary to prepare for future crises. Therefore, our aim is to conduct a comprehensive
research review of existing data on NDM inhibitors to identify promising candidates for
further development.

2. Materials and Methods
2.1. Study Design and Strategy

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) Extension for Scoping Reviews [22,23]. After a pilot search, we conducted
a systematic scoping review with the following search phrases to overview MEDLINE
for all peer-reviewed publications published between 1 January 2009 and 31 December
2022: “NDM inhibitor” [All Fields] OR “NDM-1 inhibitor” [All Fields] OR “NDM-1 pro-
ducing bacteria” [All Fields] OR “NDM-1-producing Escherichia coli” [All Fields] OR
“beta-lactamase NDM-1” [All Fields] OR “New Delhi Metallo-β-lactamase-producing En-
terobacteriaceae” [All Fields] OR “New Delhi Metallo-β-lactamase-1” [All Fields] OR “New
Delhi Metallo-β-lactamases” [All Fields] OR “MBL inhibitors” [All Fields] OR “Meropenem
resistance” [All Fields] OR “In vitro Meropenem” [All Fields] OR “Overcome antibiotic
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resistance” [All Fields] OR “Synergistic antibacterial effects” [All Fields]. There were no
language or research design filters used.

2.2. Eligibility Criteria

The inclusion criteria were as follows:
Peer-reviewed articles reporting results of in vitro combination tests for potential

NDM inhibitors, such as checkerboard (CB) assays, time-killing assays, kinetic assays
(enzyme inhibition assays using kinetic parameters such as Ki, Km, Kcat, and Kcat/Km
values), molecular studies, in vivo animal studies, and toxicity assays.

The exclusion criteria were as follows:

(1) Articles published in languages other than English.
(2) Conference or meeting abstracts, unrelated topics, review articles, guidelines, and

commentaries.

2.3. Study Selection, Data Extraction, and Definition

LN and MA collected, analyzed, and assessed the selected full-text articles. Articles
that met the criteria for inclusion in this study underwent a comprehensive review. We ex-
tracted information regarding the inhibiting compounds, as well as the in vitro and in vivo
methods employed to confirm the combination effects and safety data from each study.

In this study, we focused on the results of the fractional inhibitory concentration (FIC)
index based on the checkerboard (CB) assay to quantitatively measure the synergistic effects
of the inhibitors. Generally, the FIC of an agent is calculated by dividing the minimum
inhibitory concentration (MIC) of the agent when used in combination by the MIC of the
agent when used alone. The FIC index is the sum of the FICs of the combined drugs.
Interactions between the combined drugs were quantified using the FIC index as follows:
an FIC index of ≤0.5 was defined as synergistic, and an FIC index of ≥0.5 to ≤4.0 was
considered indifferent [24].

The time-killing curve assay is also a fundamental approach to confirm the synergistic
efficacy of two or more agents. In this study, we defined a bactericidal effect as a bacterial
volume reduction of 3 log10 CFU/mL or more at any time during incubation when the
drugs were combined. Conversely, bacteriostatic activity was characterized by a reduction
of less than 3 log10 CFU/mL compared to the initial inoculum.

2.4. Data Synthesis and Statistical Analysis

Data processing and aggregation were performed using Microsoft Excel® software
version 2021 (Microsoft Corporation, Redmond, WA, USA). We did not perform any
statistical analysis since this is a descriptive study.

3. Results
3.1. Search Results and Study Selection

The flowchart depicting the stages of article collection is presented in Figure 1, illus-
trating the process of identifying relevant reports, screening records, evaluating eligibility,
and making final determinations for inclusion or exclusion in accordance with the PRISMA
flow diagram. The initial search of MEDLINE databases yielded 1760 articles, which under-
went further eligibility screening, resulting in the exclusion of 1628 articles. Subsequently,
132 full-text articles were assessed, and 39 articles lacking experimental data and 2 arti-
cles related to triplet agent therapy were excluded. Ultimately, 91 articles (comprising
89 original articles and 2 letter-type articles) were selected for the review.
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Figure 1. Flowchart of the study process.

3.2. Description of the Review Results

The number of articles has significantly increased, especially in the last five years: 12 in
2018, 11 in 2019, 18 in 2020, 15 in 2021, and 22 in 2022 (Figure 2). A summary of 91 articles
reporting 154 potential NDM inhibitors is provided in Table 1 [25–115]. All 91 studies were
found to have conducted CB assays. Time-killing curve assays, kinetic assays, molecular
investigations, in vivo (animal- or cell-based) combination studies, and toxicity assays were
carried out in 26 (28.6%), 41 (45.1%), 66 (72.5%), 30 (33.0%), and 44 (48.4%) of the studies,
respectively. Various strains of NDM-producing bacteria were used in both in vitro and
in vivo studies (Supplementary Table S1). The two most common isolates employed were
Escherichia coli and Klebsiella pneumoniae, followed by other Enterobacterales species, Pseu-
domonas aeruginosa, and Acinetobacter baumanii. Clinical, recombinant, standard, reference,
and wild strains were used in 57 (62.6%), 27 (29.7%), 25 (27.5%), 3 (3.3%), and 2 (2.2%) of
the studies, respectively, including some duplications.
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Table 1. A summary of 91 articles reporting the 154 potential NDM inhibitors.

No. Year NDM Inhibitors CB
Assay

TKC
Assay

Kinetic
Assay

Molecular
Methods

In Vivo
Study

Toxicity
Assay Ref.

1 2022 EDTA, Captopril, Ciprofloxacin # × × × × × [25]
2 2022 1,2,4-triazole-3 thiones derivative # × # # × # [26]
3 2022 1,2-Isoselenazol-3(2H) derivatives # × × # × # [27]
4 2022 Ebselen scaffold # # × # × × [28]
5 2022 Cephalosporin-Tripodalamin conjugate # # × # # # [29]
6 2022 Fragment-based compounds # × # # × × [30]
7 2022 Adapelen # # × # × × [31]
8 2022 Aromatic Schiff bases # × × # × # [32]
9 2022 Bismuth dichloride # × × × × # [33]

10 2022 Alpha Lipoic acid, methimazole # # × × × × [34]
11 2022 QDP-1 (Phenyl ring) # × # # × × [35]
12 2022 Trans-cephalosporin # × # # × # [36]
13 2022 Withaferin A # × × # × × [37]
14 2022 Fisetin # # # # # × [38]

15 2022 Quinolinyl-Sulphonamides
sulphonyl esters # × # # # # [39]

16 2022 Emerione A, Asperfunolone A # × × # # × [40]
17 2022 Risedronate, Methotrexate # × # # × × [41]
18 2022 Aspergillomarasmine A analogue # × × # # × [42]
19 2022 Unithiole derivative # × # # # × [43]
20 2022 Nitroxoline derivative # # × # × # [44]
21 2022 Indole-2-carboxylates derivative # × × # # # [45]
22 2022 Di-thiocarbamates-copper # # # # # # [46]
23 2021 Alkylthio-substituted thiols derivatives # × × # × × [47]
24 2021 H2dpa derivatives # # # # # # [48]
25 2021 Thiosemicarbazone derivative # # # # × # [49]
26 2021 Thiosemicarbazones derivative # × # # × × [50]
27 2021 N-acylhydrazones derivative # × # # # # [51]
28 2021 Azetidinimines derivatives # × # # # # [52]

29 2021 N-Sulfamoylpyrrole-2-carboxylates
derivatives # × × × # × [53]

30 2021 Indole-carboxylate derivative # × × # × × [54]
31 2021 Cephalosporin-prodrug # × × × × × [55]

32 2021 Benzimidazole and benzoxazole zinc
chelator # × × # × × [56]

33 2021 Diaryl-substituted thiosemicarbazone
derivative # # # × # # [57]

34 2021 Fragment-based compound # # × × # # [58]

35 2021 2-Mercaptomethyl-thiazolidines
derivative # × # × × # [59]

36 2021 Thiosemicarbazone derivatives # # # # # # [60]
37 2021 D-captopril’s derivatives # × × # × × [61]

38 2020 4-Amino-1,2,4-triazole-3-thione-derived
Schiff bases # × # # # # [62]

39 2020 Carnosic acid # # × # × × [63]
40 2020 Chemical peptide sequences # × × # × # [64]

41 2020 Disulfiram, nitroxoline, 5-amino-8-
hydroxyquinoline, DOTA, cyclam, TPEN # # # × # # [65]

42 2020 ANT2681 (thiazolyl acid derivatives) # × # # # # [66]
43 2020 H2dedpa derivatives # # × # × # [67]
44 2020 1,2-benzisothiazol-3(2H) derivative # × × # × # [68]
45 2020 Carboxylates small molecules # × × × × × [69]
46 2020 Metal complex scaffold (PDTC2-Fe) # × # # × × [70]
47 2020 ZINC05683641 # × × # × × [71]
48 2020 PcephPT (cephalosporin prochelator) # × # # × × [72]
49 2020 α-hydrazono carboxylic acid fragments # × × # × × [73]
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Table 1. Cont.

No. Year NDM Inhibitors CB
Assay

TKC
Assay

Kinetic
Assay

Molecular
Methods

In Vivo
Study

Toxicity
Assay Ref.

50 2020 Isoliquiritin # # × × × × [74]

51 2020 Sulfamoyl hetero-arylcarboxylic
acids derivatives # × # # # # [75]

52 2020 Amino-carboxylic acid analogues # × × × × × [76]
53 2020 Disulfiram # # # # × × [77]
54 2020 Cefmetazole # # # × × × [78]
55 2020 3-bromopyruvate # × # # # # [79]
56 2019 Peptidomimetic 4 (PEP4) # # # # # # [80]
57 2019 Pterostilbene # # × # # × [81]
58 2019 Mercapto propionamide derivatives # × × # # # [82]
59 2019 Cefoxitin, tetracycline # × # × × × [83]
60 2019 Silver nanoparticles (AgNPs) # × × × × # [84]
61 2019 H2-dedpa derivative # # # # × # [85]
62 2019 Tris-(2-picolyl) amine # # × # × × [86]
63 2019 Ebsulfur scaffolds # × × # # # [87]
64 2019 1,4,7-Triazacyclononane # # # # × # [88]
65 2019 Azolyl-thio acetamides derivatives # × × # × # [89]
66 2019 Tannic acid # × × # × # [90]
67 2018 Dipicolinic acid derivative # × # # × # [91]
68 2018 Magnolol # # × # × × [92]
69 2018 Di-thiocarbamate derivatives # × × × × # [93]
70 2018 Tris-picolylamine-based zinc chelators # × # × # # [94]
71 2018 1,2-benzisoselenazol-3(2H) derivatives # × # # # # [95]
72 2018 Dipicolyl-vancomycin conjugate # × × × # # [96]
73 2018 Crude soy saponins # × × × × × [97]
74 2018 Small carboxylic acid derivatives # × # # × × [98]
75 2018 Thiol based inhibitors # × × # × # [99]
76 2018 Fragment-based derivative # × × # × × [100]
77 2018 Embelin # × × # × × [101]
78 2018 Dithiocarbamate derivatives # # # × × # [102]
79 2017 Triazol-thiol derivatives # × # × × × [103]

80 2017 Peptide-conjugated phosphorodiamidate
morpholino oligomer (PPMO) # × × × # × [104]

81 2017 2-mercapto-3-phenylpropionic
acid derivative # × × # × × [105]

82 2017 Aspergillomarasmine A derivative # × × × # × [106]
83 2017 AW01120, BTB02323 # × # # × # [107]

84 2017
Hibiscus cannabinus, Tamarindus indica,
Combretum albidum, Hibiscus acetosella,
Hibiscus furcatus, Punica granatum

# × × × × × [108]

85 2016 Captopril Stereoisomers # × × # × × [109]
86 2016 Metal chelators (1) DPA, (2) TPEN # × × × × # [110]
87 2016 Bisthiazolidines (compound-f L-CS319) # # # # × # [111]
88 2015 Ebselen # × # # × × [112]
89 2014 Aspergillomarasmine A # × # # # × [113]
90 2013 Polyketide compounds # × × # × × [114]
91 2013 Thiophene-carboxylic acid derivatives # × # # × × [115]

CB, checkerboard; TKC, time-killing curve; # indicates a conducted assay, while × indicates that assay was not
performed. Various assays were adopted for each compound.

Out of the 154 NDM inhibitors extracted from 91 eligible articles, we specifically
identified 47 potential inhibitors in 37 articles, where the FIC index was determined based
on the CB assay (Table 2). Among these, eight compounds had already received approval
from the United States FDA. Almost all of these compounds exhibited synergistic effects
with an FIC index of less than 0.5. However, some cases of indifferent results were identified
when various bacterial strains were tested. Out of these, 14 (37.8%) studies included data
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on the time-killing curve assay. Bacteriostatic effects were reported in 4 studies, while 10
studies (involving 11 inhibitors) demonstrated bactericidal effects.

Table 2. Detailed summary of 37 articles reporting the 47 NDM inhibitors with data for the fractional
inhibitory concentration (FIC) index.

No. Year Tested Compounds
[Combined Drugs] (1)

** FIC Index by
CB Assay TKC Assay Kinetic

Assay
Molecular

Investigation (2)
In Vivo Study

(Animal)
*** Toxicity

Assay (Model) Ref.

1 2022

(1) EDTA
(2) Captopril
(3) Ciprofloxacin
[MEPM, IPM]

(1) Synergistic
(2) Synergistic and
indifferent
(3) Synergistic and
indifferent

- - - - - [25]

2 2022
1, 2-Isoselenazol-3(2H)
derivatives
[MEPM]

Synergistic - - MDS -
Not toxic

(mammalian
cell)

[27]

3 2022 Adapelen
[MEPM]

Synergistic and
indifferent Bacteriostatic - MDS - - [31]

4 2022
Bismuth dichloride
(C4)
[MEPM]

Synergistic - - - -
Toxic (human

embryonic
kidney cell)

[33]

5 2022
(1) Alpha Lipoic acid
(2) Methimazole *
[MEPM]

All synergistic Bactericidal - - - - [34]

6 2022 Withaferin A *
[IPM] Synergistic - - MDS - - [37]

7 2022 Fisetin *
[MEPM]

Synergistic and
indifferent Bactericidal Performed MDS Mouse - [38]

8 2022

(1) Emerione A,
(2) Asperfunolone A
[MEPM, IPM,
CTRX, ABPC]

- - - MDS - - [40]

9 2022 Nitroxoline derivative
[IPM] Synergistic Bactericidal - SAR - Non-specific (3)

(endothelial cell) [44]

10 2022
Di-thiocarbamates-
copper (SA09-Cu)
[MEPM]

Synergistic Bacteriostatic Performed SAR Mouse Less toxic
(mouse) [46]

11 2021 H2dpa derivatives All Synergistic Bactericidal Performed MDS Mouse Less toxic
(mouse) [48]

12 2021 Thiosemicarbazone
derivative [MEPM] Synergistic Bacteriostatic Performed MDS - - [49]

13 2021
Indole-carboxylate
derivative
[MEPM]

Synergistic - - ITC - - [54]

14 2021
Cephalosporin-
prodrug
[MEPM]

Synergistic - - - - - [55]

15 2020
1,2-benzisothiazol-
3(2H) derivative
[MEPM]

Synergistic - - MDS, ESI-MS -

Acceptable
toxicity
(human

embryonic
kidney cell)

[68]

16 2020
Carboxylates small
molecules
[MEPM]

Synergistic and
indifferent - - - - - [69]

17 2020 ZINC05683641
[MEPM] Synergistic - - MDS - - [71]

18 2020 Isoliquiritin *
[MEPM]

Synergistic and
indifferent Bactericidal - - - - [74]

19 2020

Sulfamoyl hetero-
arylcarboxylic acid
derivatives
[MEPM]

All synergistic - Performed Protein
Crystallization Mouse Less toxic

(mouse) [75]

20 2020
Aminocarboxylic
acid analogues
[MEPM]

All synergistic - - - - - [76]

21 2020 Cefmetazole *
[MEPM] Synergistic Bactericidal Performed - - - [78]

22 2019
Peptidomimetic 4
(PEP4)
[MEPM]

Synergistic and
indifferent Bactericidal Performed MDS Mouse

Non-specific (3)

(mammalian
cell)

[80]

23 2019 Pterostilbene *
[MEPM]

Synergistic and
indifferent Bacteriostatic - MDS Mouse - [81]
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Table 2. Cont.

No. Year Tested Compounds
[Combined Drugs] (1)

** FIC Index by
CB Assay TKC Assay Kinetic

Assay
Molecular

Investigation (2)
In Vivo Study

(Animal)
*** Toxicity

Assay (Model) Ref.

24 2019

Mercapto
propionamide
derivative
[MEPM]

All synergistic - - X-ray
crystallography Mouse Non-specific (3)

(mouse) [82]

25 2019
(1) Cefoxitin *
(2) Tetracycline *
[DRPM]

All Synergistic - Performed - - [83]

26 2019
Tris-(2-picolyl) amine
(TPA)
[MEPM]

Synergistic Bactericidal - MDS - - [86]

27 2019
1,4,7-
Triazacyclononane
[MEPM]

Synergistic Bactericidal Performed MDS -

Non-specific (3)

(immortalized
liver carcinoma

cells)

[88]

28 2018 Magnolol
[MEPM] Synergistic Bactericidal - MDS - - [92]

29 2018
1,2-benzisoselenazol-
3(2H) derivatives
[MEPM]

Synergistic and
indifferent - Performed ESI-MS Mouse Less toxic

(larvae) [95]

30 2018

Vancomycin analogue
(dipicolyl-
vancomycin conjugate)
[MEPM]

Synergistic - - - Mouse

Non-specific (3)

(mouse model,
mammalian

cell)

[96]

31 2018
Crude soy saponins
[PIPC, ABPC, MPIPC,
PCG]

Synergistic - - - - - [97]

32 2018 Embelin
[IPM] Synergistic - - MDS - - [101]

33 2017
Triazol-thiol
derivatives
[CTX, MEPM]

All synergistic - Performed - - - [103]

34 2017

2- mercapto-3-
phenylpropionic acid
derivative
[MEPM]

Synergistic - - ITC - - [105]

35 2017
Aspergillomarasmine
A derivatives
[MEPM]

All synergistic - - - - - [106]

36 2017

(1) Hibiscus cannabinus
(2) Tamarindus indica
(3) Combretum
albidum
(4) Hibiscus acetosella
(5) Hibiscus furcatus
(6) Punica granatum
[MEPM]

All synergistic - - - - - [108]

37 2014 Aspergillomarasmine A
[MEPM] Synergistic - Performed ICP-MS Mouse - [113]

CB, checkerboard; TKC, time-killing curve. (1) Abbreviations of combined drugs: MEPM, meropenem; IPM,
imipenem; CTRX, ceftriaxone; ABPC, ampicillin; DRPM, doripenem; PIPC, piperacillin; MPIPC, oxacillin; PCG,
benzylpenicillin; CTX, cefotaxime. (2) Abbreviations of methods: MDS, molecular docking and molecular dynamic
simulation; SAR, structural activity relationship analysis; ESI-MS, electrospray ionization mass spectrometry;
ITC, isothermal titration assay; ICP-MS, inductively coupled mass spectrometry. (3) Non-lethal doses were used.
* FDA-approved drug. ** Synergistic effect was determined as that with an FIC index of ≤0.5. *** “Not toxic” was
defined as those without any side effects shown in the experimental model. “Less toxic” was defined as when any
signs of drug-associated adverse effects were observed.

Additionally, 12 studies (32.4%) conducted kinetic assays, in which kinetic parameters
were calculated. Molecular investigations were conducted in 23 (62.2%) studies, with
molecular docking and molecular dynamic simulations being commonly employed (15 out
of 25 studies, 60%). To validate the efficacy of combination therapy, 10 studies (27%)
presented in vivo animal data, all of which used mouse models. To assess the safety of the
inhibitory drugs used, 13 (35.1%) studies reported results of toxicity assays using in vivo
models. Notably, none of the compounds exhibited apparent toxic effects.

4. Discussion

In this scoping review, we have compiled the presently available data on NDM
inhibitors published in MEDLINE. Among the various experimental methods used to
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evaluate the efficacy of drug combinations, we specifically focused on the FIC index cal-
culated through the CB assay, which serves as a fundamental approach to determine
the synergistic effects of two distinct drugs. Since 2014, a total of 47 compounds have
been investigated as potential NDM inhibitors, with 8 of them having received approval
from the United States FDA. These FDA-approved drugs include various substances such
as methimazole, withaferin A, fisetin, isoliquiritin, cefmetazole, pterostilbene, cefoxitin,
and tetracycline [34,37,38,74,78,81,83]. In addition to the CB assay, bactericidal effects
were observed in 10 compounds through time-killing curve assays, of which 4 substances
(methimazole, fisetin, isoliquiritin, and cefmetazole) had already received FDA endorse-
ment [34,38,74,78]. No further investigations had been conducted for methimazole and
cefmetazole [34,78], whereas the effectiveness and safety of combining fisetin or isoliquiritin
were additionally confirmed through other approaches [38,74]. Regrettably, there were no
inhibiting agents that seemed readily available for clinical use, and none of these are within
the reach of clinicians.

Kinetic assays and molecular investigations represent more advanced methods for
ascertaining combination efficacy. Comparing molecular affinities among compounds of
interest using kinetic parameters such as Ki, Km, Kcat, and Kcat/Km can provide insights
into inhibitory activity from an enzymatic perspective. Molecular docking simulations
of potential inhibitors are well-established computational methods for analyzing molec-
ular binding modes. Among these two elaborated approaches, molecular docking and
molecular dynamic simulations were more frequently performed (62.2% vs. 32.4%). Eleven
studies did not conduct either of these methods [25,33,34,55,69,74,76,96,97,106,108], while
nine studies evaluated both [38,46,48,49,75,80,88,95,113]. Additionally, in vivo animal stud-
ies were performed in 10 studies [38,46,48,75,80–82,95,96,113], suggesting that the tested
compounds, including H2dpa derivatives, sulfamoylfuran-3-carboxylic acid derivatives,
peptidomimetic 4, pterostilbene, and aspergillomarasmine A, may hold promise as inhibitors.

For unapproved compounds, ensuring their safety is essential for potential future
clinical use. In this sense, toxicity assays provide particularly important data. In our
review, 13 out of 37 studies (35.1%) conducted these assays, primarily using a mouse model.
Notably, no inhibitors with apparent toxicity were reported. However, it is essential to
mention that zinc-chelating agents may not be suitable for therapeutic use due to their
well-documented toxicity to human cells [25,44,49,56,82,88].

Our study has a few limitations that should be acknowledged. First, we conducted
our search exclusively on MEDLINE due to the unavailability of access to other databases.
This could potentially lead to an underestimation of relevant articles. In fact, our search
approach failed to include boron-based inhibitors, such as taniborbactam, xeruborbactam,
and zidebactam, which have the potential to be available in clinical settings. Possibilities of
reporting bias should also be considered. Second, we only included articles in the English
language, which may restrict comprehensiveness and affect generalizability. Third, our
search period was up to the end of December 2022, which should have been extended to
the time of drafting, because an increasing number of relevant articles have been reported
in the literature. Due to time constraints, we could not afford to do so. Fourth, the presence
of publication bias should be taken into consideration. Data that could be unfavorable
for the inhibitors might not have been included in the articles. Fifth, clinical strains may
possess various antimicrobial resistance mechanisms, and, therefore, the combination of
NDM inhibitors may not necessarily exhibit synergistic effects in clinical settings. Finally,
the assessment of the quality of the included studies was not fully performed, although it is
a crucial aspect of the review study to ensure the validity and reliability of the conclusion.

5. Conclusions

In summary, there are currently no NDM inhibitors available for therapeutic use.
While previous efforts have borne fruit in identifying some potential compounds, there is
still a long road ahead to discover clinically applicable and outstanding NDM inhibitors.
Just as the development of serine-β-lactamase inhibitors has set an example, it is time for
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NDM inhibitor research to follow suit. For this purpose, the establishment of a laboratory
and clinical research platform under interdisciplinary collaborations is necessary. We
believe that our review work will contribute to advancing this challenging journey.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcm13144199/s1, Table S1: Species and types of NDM-producing bacteria
used in each study [116].
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