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Abstract: Background/Objectives: The rising prevalence of musculoskeletal (MSK) conditions has
not been balanced by a sufficient increase in healthcare providers. Scalability challenges are being
addressed through the use of artificial intelligence (AI) in some healthcare sectors, with this showing
potential to also improve MSK care. Digital care programs (DCP) generate automatically collected
data, thus making them ideal candidates for AI implementation into workflows, with the potential
to unlock care scalability. In this study, we aimed to assess the impact of scaling care through AI
in patient outcomes, engagement, satisfaction, and adverse events. Methods: Post hoc analysis
of a prospective, pre-post cohort study assessing the impact on outcomes after a 2.3-fold increase
in PT-to-patient ratio, supported by the implementation of a machine learning-based tool to assist
physical therapists (PTs) in patient care management. The intervention group (IG) consisted of
a DCP supported by an AI tool, while the comparison group (CG) consisted of the DCP alone.
The primary outcome concerned the pain response rate (reaching a minimal clinically important
change of 30%). Other outcomes included mental health, program engagement, satisfaction, and the
adverse event rate. Results: Similar improvements in pain response were observed, regardless of the
group (response rate: 64% vs. 63%; p = 0.399). Equivalent recoveries were also reported in mental
health outcomes, specifically in anxiety (p = 0.928) and depression (p = 0.187). Higher completion
rates were observed in the IG (79.9% (N = 19,252) vs. CG 70.1% (N = 8489); p < 0.001). Patient
engagement remained consistent in both groups, as well as high satisfaction (IG: 8.76/10, SD 1.75
vs. CG: 8.60/10, SD 1.76; p = 0.021). Intervention-related adverse events were rare and even across
groups (IG: 0.58% and CG 0.69%; p = 0.231). Conclusions: The study underscores the potential
of scaling MSK care that is supported by AI without compromising patient outcomes, despite the
increase in PT-to-patient ratios.

Keywords: musculoskeletal pain; physical therapy; telerehabilitation; eHealth; artificial intelligence;
workflow; clinical decision support

1. Introduction

Musculoskeletal (MSK) pain affects approximately 1.71 billion people worldwide [1],
imposing a substantial societal and economic burden, which is reflected by USD 380.9 billion
of yearly medical expenditure in the United States alone [2].

The urge to improve patient access to care has precipitated a transformative shift in
MSK management towards digital rehabilitation [3,4] as a way to address geographical
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barriers [5,6]. However, beyond the unbalanced geographical distribution of healthcare
providers, there is also an insufficient number of trained clinicians to meet the rising
demand caused by a continuous increase in the prevalence of MSK conditions [1,7]. This has
resulted in persistent access barriers and delayed care, resulting in costly care escalations,
as well as a significant prevalence of clinician burnout in recent years [8]. These factors
demand a new wave of innovation that can address care access issues in a broad, scalable,
and sustainable manner.

In this setting, artificial intelligence (AI) has emerged as a powerful tool in health-
care [9]. Examples include the use of AI assistants to significantly reduce the documentation
burden and physician burnout [8], and inpatient hospital surveillance systems to assist
nurses by providing automatic alarms for patient monitoring [10].

Digital care programs (DCP) benefit from the automatic and centralized collection of
data, making them well-suited for the integration of AI. AI systems can help scale MSK
care by supporting monitoring and decision-making with data-driven insights, thereby
reducing the workload and optimizing outcomes and efficiency, and reaching a higher
number of patients in a sustainable way.

Research on AI tools in the context of MSK rehabilitation is still in its early stages.
Current studies focus on initial stages of patient treatment, including the triaging [11] and
phenotyping of patients [12], and predicting prognosis [13,14]. So far, however, research
has not been focused on the impact of the introduction of scalability approaches in clinical
outcomes. With this in mind, in this study, we aimed to evaluate whether AI-assisted care
scalability compromises care delivery or if patients benefit similarly from high-quality care.
To this end, we compared the clinical outcomes, as well as the engagement, satisfaction,
and adverse events, of two cohorts with different physical therapists (PT)-to-patient ratios,
whereby the cohort with the highest ratio was supported by a machine learning-based tool
to enhance workflows and decision-making on patient progression. We hypothesized that
patient outcomes would not be significantly different between cohorts, given the potentially
optimized workflows obtained by the AI tool’s introduction on the increased-ratio cohort.

2. Materials and Methods
2.1. Study Design

This is a post hoc analysis of two prospective, single-arm, IRB-approved studies
(New England IRB: 120190313 and Advarra IRB: Pro00063337), which were prospectively
registered on ClinicalTrials.gov (NCT04092946, NCT05417685) on 17 September 2019 and
14 June 2022, respectively.

Both cohorts were recruited with the intent to investigate the clinical and engagement-
related outcomes of patients with MSK undergoing a DCP. The comparison cohort (PT-to-
patient ratio: 1:57 (SD 36), with no assisting AI tool) had patients enrolled between 18 June
2020 and 13 June 2022, whereas the intervention cohort (PT-to-patient ratio: 1:129 (SD 27),
with AI tool assistance) enrollment period occurred from 21 November 2022 to 8 July 2023.
A washout period was considered, to avoid hybrid situations with pilot testing (between
14 June 2022 and 20 November 2022).

2.2. Population

The beneficiaries of employer health plans who reported chronic musculoskeletal
(MSK) pain (defined as persistent or recurrent pain lasting ≥ 12 weeks) in the ankle, elbow,
hip, knee, low back, neck, shoulder, wrist, or hand were invited to participate in the study
through a dedicated enrollment website.

Exclusion criteria included: (1) health conditions that were incompatible with at least
20 min of light to moderate exercise; (2) ongoing cancer treatment; and (3) the presence of
signs or symptoms indicative of serious pathology (e.g., rapid progressive motor weak-
ness, sensory alterations, or bowel or bladder dysfunction). All participants provided
informed consent.
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2.3. Intervention
2.3.1. Digital Care Program

Both groups received a DCP (Sword Health Inc., Draper, UT, USA) consisting of exer-
cise, education, and cognitive behavioral therapy (CBT) (as described elsewhere [15–17]),
lasting up to 12 weeks according to each patient’s condition.

During onboarding, patients chose a PT who would be responsible for prescribing,
monitoring, and adjusting the program according to the patient’s condition and goals,
providing continuous support throughout the program. All PTs included in the study had
a Doctor of Physical Therapy degree and a minimum of 3 years of experience.

Patients performed the exercise sessions independently at their convenience, using
an FDA-listed class II medical device (Sword Health Inc., Draper, UT, USA) consisting
of a dedicated tablet (software version 1.0 in the comparison group and 2.4 in the inter-
vention group), motion tracking, a mobile app, and a cloud-based portal (Supplementary
Figure S1). The exercise sessions were displayed on the tablet with real-time video and
audio biofeedback on the patient’s execution. Data related to sessions, including exercise
performance (correct and incorrect movements), range of motion, the number of sets and
repetitions completed, and self-reported pain and fatigue levels felt during exercise were
automatically collected and stored in the cloud-based portal. This information was accessed
by the assigned PT, enabling remote and asynchronous monitoring and adjustments to the
prescription whenever needed.

Tailored education and CBT components were delivered through a smartphone app in
the form of written articles, videos, audio content, and interactive modules, as described
elsewhere [15]. Bidirectional communication was ensured through a built-in secure chat
system within the smartphone app and video calls.

2.3.2. Workflow-Related AI Tool

Tasks involving data monitoring to stratify patients based on their need for clini-
cal attention and program adjustments were deemed to be time-consuming by PTs and
were, therefore, prioritized for a machine learning (ML)-based system. Subsequently, a
multidisciplinary team combining data engineers, computer scientists, and PTs followed
a human-in-the-loop framework [18] to develop a ML-based tool focused on streamlin-
ing adjustments to care programs (e.g., the introduction of new exercises or increasing
exercise dosage). This tool provides recommendations to the PTs, as well as giving the
reasons behind the suggestions, through the PT portal, enabling a more efficient revi-
sion of the patients’ clinical status and supporting the PT’s final decision (Figure 1 and
Supplementary Table S1). The tool was primarily trained using previous PT decisions and
fed with automatically collected data during each session (e.g., exercise performance and
self-reported pain and fatigue during sessions; a detailed description of the input data can
be found in Supplementary Table S2). Additionally, through a dynamic/iterative learning
loop, the algorithm adapted and refined the recommendations, consequently improving
its performance.

Algorithm performance was routinely tested against PTs’ manual decisions. In in-
stances where the AI tool could not provide a recommendation (insufficient accuracy), a
notification prompted the PT to resort directly to a manual decision.

The AI tool was deployed in sequential pilot tests (between 14 June 2022 and 20 Novem-
ber 2022) before broad deployment that reflected the increase in the PT-to-patient ratio.
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trained with previous physical therapist (PT) decisions, generates a recommendation about the 
possible adjustments to the patient’s care program (example: introduction of new exercises, 
increasing exercise dosage). (3) The recommendation is then displayed on the PT portal, along with 
the reasons behind the suggestions, enabling a more efficient revision of the patient’s clinical status 
to support the PT’s final decision. (4) The PT analyzes the recommendation, accepting or rejecting 
it, to support the final decision. Finally, a re-tailored intervention plan is sent to the patient’s tablet 
with a new updated session. This loop framework allows for streamlining adjustments to care 
programs to facilitate PT workflow. 

2.3.3. Comparison Group (CG) 
This cohort benefited from the standard DCP described above, wherein the 

information stored in the portal was manually managed and prioritized by the PT, and 
where the PT-to-patient ratio was 1:57 (SD 36), which is in line with the 1:60 ratio for in-
person therapies[19]. 

2.3.4. Intervention Group: PT Portal Powered by AI Tool 
The AI-intervention group (IG) received the same standard DCP as previously 

described, with a PT-to-patient ratio of 1:129 (SD 27), wherein the PTs were assisted by an 
AI tool integrated into the web portal. 

  

Figure 1. Schematic diagram of the AI tool. (1) Automatically collected data of a patient’s session
are stored in the cloud and fed into an artificial intelligence (AI) model. (2) The AI model, primarily
trained with previous physical therapist (PT) decisions, generates a recommendation about the
possible adjustments to the patient’s care program (example: introduction of new exercises, increasing
exercise dosage). (3) The recommendation is then displayed on the PT portal, along with the reasons
behind the suggestions, enabling a more efficient revision of the patient’s clinical status to support
the PT’s final decision. (4) The PT analyzes the recommendation, accepting or rejecting it, to support
the final decision. Finally, a re-tailored intervention plan is sent to the patient’s tablet with a new
updated session. This loop framework allows for streamlining adjustments to care programs to
facilitate PT workflow.

2.3.3. Comparison Group (CG)

This cohort benefited from the standard DCP described above, wherein the information
stored in the portal was manually managed and prioritized by the PT, and where the PT-to-
patient ratio was 1:57 (SD 36), which is in line with the 1:60 ratio for in-person therapies [19].

2.3.4. Intervention Group: PT Portal Powered by AI Tool

The AI-intervention group (IG) received the same standard DCP as previously de-
scribed, with a PT-to-patient ratio of 1:129 (SD 27), wherein the PTs were assisted by an AI
tool integrated into the web portal.

2.4. Outcomes

Patient assessment was performed at baseline and at the 9th, 18th, and 27th sessions
(according to the discharge time point) to analyze longitudinal changes between the baseline
and program-end results.
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PT-to-patient ratios were calculated month over month by averaging the number of
patients being supported by the number of PTs available for a given month, regardless of
the patient treatment stage.

Outcome measures comprised:
(1) Pain intensity, as measured by the Numerical Pain Rating Scale (NPRS) that is

specific for the symptomatic body region: “Please rate your average pain over the last
7 days, from 0 (no pain at all) to 10 (worst pain imaginable)”. The response rate was
calculated considering a minimum clinically important change (MCIC) of 30%. This
threshold was defined based on the recommendations from the IMMPACT guidelines for
clinical trials assessing chronic pain interventions [20];

(2) Mental health, with anxiety assessed by the 7-item Generalized Anxiety Disorder
(GAD-7) scale (range 0–21) [21,22], and depression being assessed by the 9-item Patient
Health Questionnaire (PHQ-9) (range 0–27) [22,23]. Higher scores denote worse symptoma-
tology in both scales;

(3) Safety, which is assessed by the adverse event rate;
(4) Engagement, which is assessed by completion of the program (completion rate),

average sessions per week, and communication between the PT and the patient;
(5) Satisfaction, which is assessed through the question “On a scale from 0 to 10, how

likely is it that you would recommend this intervention to a friend or neighbor?”.

2.5. Safety and Adverse Events

Routine internal quality checks of the AI tool were conducted by comparing the
algorithm’s recommendations against the manual decisions made by PTs to continuously
assess its performance.

Patients were advised to report any adverse events (e.g., worsening of symptomatol-
ogy, new symptoms, or other events that could interfere with the patient’s condition or
the execution of the program) to the dedicated PT through the available communication
channels for further assessment. These reports were documented and addressed using an
internal software system, in accordance with internal quality and safety protocols. Addi-
tionally, the patient’s pain and fatigue levels during the exercise sessions (assessed by NRS;
range 0–10) were collected at the end of each session.

2.6. Sample Size

The sample size estimation was based on the primary outcome—pain level—wherein
a MCIC of 30% was selected, based on the psychometric properties of the scale [24].
Considering a power of 80%, a one-sided 0.05 significance-level non-inferiority study, and
a 20% dropout rate [15,25], 2702 patients (1351 per group) would be necessary to detect a
difference between the two groups.

2.7. Statistical Analysis

Descriptives were used to depict the patients’ demographic and clinical characteristics
at baseline, along with engagement metrics. Comparisons between groups were performed
using an independent samples t-test or the Mann–Whitney U test for continuous variables
(with Bonferroni correction), or a chi-squared test for categorical variables. Both cohort
reassessments were pivoted to 9, 18, and 27 sessions to ensure standardization of the
reassessment timeframe.

Inverse probability weighting (IPW) was applied to control for confounding effects
between groups [26] by differentially weighting each participant’s baseline characteristics
using demographics that have previously been found to be meaningfully different: age,
body mass index (BMI), and employment status. These weights were included in the data
analysis to strengthen causal inference and were calculated for the whole cohort or for those
with clinically relevant baseline scores (i.e., ≥5, to further compute any changes in the GAD-
7 and PHQ-9 outcomes). Multiple-group latent growth curve analysis (LGCA) was used to
estimate the overall changes for each outcome, based on trajectories across time, and to per-
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form comparisons between groups following an intention-to-treat analysis. LGCA, which
applies a structural equation model, recognizes correlations between repeated measures
for the same individual, provides model fit measures, and incorporates full information
maximum likelihood (FIML) to handle missing data [27]. FIML uses all available data
at each time point from all participants to calculate the maximum likelihood estimates,
outperforming multiple imputation by chained equations or listwise deletion [28]. The
model was adjusted for each individual discharge time point. Cohen’s d effect sizes were
calculated for all clinical outcomes by comparing changes between the groups, considering
the following thresholds: 0.2—small, 0.5—medium, 0.8—large, and 1.3—very large [29].

The odds of being a responder for pain was calculated using logistic regression analy-
sis, considering an MCIC of 30% [20].

A robust sandwich estimator was used in all models for standard errors. All statistical
analyses were conducted using R (version 4.2.2; R Foundation for Statistical Computing)
and Python (version 3.11.4, Python Software Foundation, Wilmington, DE, USA), and the
level of significance was set at p < 0.05 for all tests.

3. Results

From a total of 41,993 participants screened for eligibility, 36,186 patients started the
study, of which 12,103 participants were in the CG and 24,083 in the IG cohorts (Figure 2).
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Figure 2. Study flow chart showing the number of participants who were screened and allocated to
the comparison group (CG) and AI-intervention group (IG). Exclusions by clinical criteria consist
of: (1) new symptoms that demand clearance by another healthcare provider who is not a physical
therapist; (2) insufficient improvement or worsening of the condition, suggestive of the need for
care escalation.

The defined cohorts were assisted by PTs with a difference in workload (PT-to-patient
ratio: IG: 1:129 SD 27 vs. CG 1:57, SD 36) of 2.3× times.

3.1. Baseline Characteristics

Both groups exhibited a similar proportion of women (58%, p = 0.414) (Table 1).
Statistically significant differences between groups were observed in BMI, albeit to a small
extent (IG: 39.6%, CG: 37.9%, and p < 0.001). On average, the IG cohort was younger,
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having a lower proportion of patients aged 60 years or older than the CG cohort (16.7%
vs. 21.6%, and p < 0.001). Racial diversity was observed regardless of the group, with the
highest proportion of patients identifying as non-Hispanic whites in both groups (IG: 67.9%
and CG: 66.3%). Both groups were composed predominantly of individuals with higher
education (considering a bachelor’s or graduate degree: IG: 64.1%; CG: 66.2%). Participants
predominantly resided in urban areas, with no significant differences between groups
(p = 0.077). The IG cohort reported a higher percentage of full-time employment (87.5% vs.
75.7%), while the CG cohort had a greater proportion of part-time workers (16.1% vs. 4.2%
in the IG; p < 0.001).

Table 1. Baseline characteristics for the AI-intervention group (IG) and comparison group (CG),
following an intention-to-treat analysis. Filtered cases correspond to participants who presented with
clinically relevant baseline scores (≥5) in terms of mental health variables.

IG (N = 24,083) CG (N = 12,103) p-Value

Age (years), mean (SD) 48.5 (11.6) 50.0 (11.7) <0.001
Age categories (years), N (%):

<25 342 (1.4) 72 (0.6)

<0.001
25–40 6099 (25.3) 2795 (23.1)
41–60 13,615 (56.5) 6623 (54.7)
>60 4027 (16.7) 2613 (21.6)

Gender, N (%) a:
Woman 14,126 (58.7) 6984 (57.9)

0.414
Man 9849 (41.0) 5044 (41.8)

Non-binary 67 (0.3) 35 (0.3)
Other 4 (0.0) 1 (0.0)

BMI (kg/m2), mean (SD) b 29.7 (7.0) 29.3 (6.7) <0.001
BMI categories (kg/m2), N (%) b:

Underweight (<18.5) 199 (0.8) 102 (0.8)

0.001
Normal (18.5–25) 6223 (25.9) 3349 (27.7)

Overweight (≥25–30) 8100 (33.7) 4051 (33.5)
Obese (≥30) 9528 (39.6) 4584 (37.9)

Race/ethnicity, N (%) c:
Asian 2311 (9.8) 928 (10.2)

0.017
Black 2297 (9.8) 982 (10.8)

Hispanic 2268 (9.6) 890 (9.8)
Non-Hispanic White 15,991(67.9) 6013 (66.3)

Other 690 (2.9) 250 (2.8)
Education level, N (%) d:

Less than high school diploma 219 (0.9) 74 (0.7)

0.001
High school diploma 2172 (9.1) 823 (8.1)

Some college 6133 (25.8) 2528 (25.0)
Bachelor’s degree 9397 (39.5) 4162 (41.2)
Graduate degree 5846 (24.6) 2523 (25.0)

Geographic location, N (%) e:
Urban 21,321 (88.8) 10,767 (89.4)

0.077Rural 2693 (11.2) 1276 (10.6)
Employment status, N (%) f:

Full-time job 20,807 (87.5) 8987 (75.7)

<0.001
Part-time job 997 (4.2) 1908 (16.1)

Retired 991 (4.2) 608 (5.1)
Not employed 990 (4.2) 376 (3.2)
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Table 1. Cont.

IG (N = 24,083) CG (N = 12,103) p-Value

Clinical data, mean (SD)
Analgesic intake, N (%) 5580 (23.2) 2850 (23.6) 0.423

Symptomatic anatomical area:
Ankle 1395 (5.8) 482 (4.0)

<0.001

Elbow 523 (2.2) 262 (2.2)
Hip 2592 (10.8) 1267 (10.5)

Knee 3633 (15.1) 1832 (15.1)
Low back 8589 (35.7) 4590 (37.9)

Neck 2601 (10.8) 1304 (10.8)
Shoulder 3730 (15.5) 1928 (15.9)

Wrist 1020 (4.2) 438 (3.6)
Pain intensity c, mean (SD) 4.73 (1.9) 4.84 (1.9) <0.001

Mental health ≥ 5, mean (SD):
GAD-7 g 8.72 (3.94) 8.81 (4.06) 0.083
PHQ-5 h 9.52 (4.20) 9.23 (4.27) 0.688

Data represent the mean ± standard deviation or the number of patients and the percentage of the total where
listed. Missing values or prefer not to answer: a 76, b 50, c 3566, d 2309, e 129, f 522. g GAD-7 ≥ 5: IG = 3645
(30.2%) and CG = 8347 (34.7%); h PHQ-9 ≥ 5: IG = 2803 (23.2%) and CG = 6192 (25.7%). Abbreviations: BMI, body
mass index; GAD-7 generalized anxiety disorder 7-item scale; PHQ-9 patient health 9-item questionnaire.

Pain level differences between groups were not clinically meaningful [24] (IG: 4.84,
SD 1.9 and CG: 4.73, SD 1.9; p < 0.001), and no significant differences were observed in
terms of anxiety (IG: 8.72, SD 3.94 and CG 8.81, SD 4.06; p = 0.083) and depression (IG: 9.52,
SD 4.20 and CG: 9.23, SD 4.27; p = 0.688).

3.2. Outcomes
3.2.1. Clinical Outcomes

Outcome model estimates for the IG and CG groups, adjusted with inverse prob-
ability weighting to balance the groups, and respective model fitness are presented in
Supplementary Tables S3 and S4, respectively.

Significant improvements in pain were observed in both groups (Supplementary
Table S3), as reflected by similar response rates [20]: 64% (95%CI 62–65%) for the IG cohort
and 63% (95%CI 61–64%) for the CG cohort (difference between groups: p = 0.399; effect
size 0.01).

Additionally, significant improvements in the mental health domain were observed
similarly in both groups. The anxiety mean change was −4.0 (95%CI −4.2; −3.7) in the
IG cohort and −4.1 (95%CI −4.4; −3.9) in the CG cohort, with no significant differences
between groups (0.002 (95%CI −0.03; 0.03), p = 0.928; effect size: −0.04). Similarly, the de-
pression mean change was −4.0 (95%CI −4.3; −3.7) in the IG cohort and −4.7 (95%CI −5.1;
−4.3), in the CG cohort (both p < 0.001), regardless of the group (a very small effect size of
−0.30; differences between groups: −0.03 (95%CI −0.07; 0.01), p = 0.187).

3.2.2. Engagement and Satisfaction

A higher completion rate was observed in the IG cohort (79.9% (N = 19,252)) than
in the CG cohort (70.1% (N = 8489), p < 0.001). No meaningful differences in the average
sessions performed per week were observed between groups, albeit being statistically
significant (IG: 2.09, SD 1.03 vs. CG: 2.06, SD 1.16, p < 0.001).

There were significantly more reach-outs to patients in the IG cohort (25.11, SD 18.54 vs.
17.33, SD 21.88, in the CG cohort; p < 0.001). However, the number of messages initiated by
patients remained similar, with the IG cohort sending, on average, 14.6 messages (SD 17.9)
compared to 13.9 messages (SD 25.87) in the CG cohort (despite a significance of p = 0.018).

High and similar satisfaction with the program was observed in both groups (IG: 8.76
out of 10, SD 1.75, vs. CG: 8.60, SD 1.76, p = 0.021), despite the statistical difference.
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3.2.3. Adverse Events

Intervention-related adverse events were rare and were evenly distributed across the
groups, with the IG cohort reporting 140 (0.58%) and the CG cohort 83 (0.69%) (p = 0.231),
detailed description in Supplementary Table S5. Condition-related (e.g., surgery) and
condition/intervention-unrelated adverse events (e.g., respiratory infections, allergic reac-
tions, falls outside intervention, cancer onset, etc.) accounted for the majority of the total
adverse events (89.8%; N = 1963/2186).

4. Discussion
4.1. Main Findings

In this study, patient engagement, satisfaction, clinical outcomes, and adverse events
were evaluated before and after a 2.3-fold increase in PT-to-patient ratio, supported by
an AI tool integrated in the PT clinical portal. Similar clinical outcomes (pain, anxiety,
and depression) were observed across both groups (denoted by very small effect sizes:
−0.30–0.01, p = 0.187–0.928).

Engagement was not negatively affected, with both groups presenting a similar fre-
quency of sessions per week (IG: 2.09, SD 1.03 vs. CG: 2.06, SD 1.16, p < 0.001) and with
the IG cohort reporting higher completion rates (79.9% (N = 19,252) vs. 70.1% (N = 8489),
p < 0.001). Reach-outs initiated by the PT were more frequent in the IG (25.1 SD 18.5 vs.
17.3 SD 21.9, p < 0.001), while communication initiated by the members remained stable
between groups (IG: 14.6, SD 17.9 vs. CG: 13.9, SD 25.9, p = 0.018). Satisfaction with the
program was consistently high for both groups (IG: 8.76 out of 10, SD 1.75 vs. CG: 8.60,
SD 1.76; p = 0.021). Crucially, the rate of adverse events remained consistently low across
both groups.

All the above seem to suggest that care scalability is possible through the integration
of AI tools in the workflow, without compromising clinical outcomes or program safety.

4.2. Comparison with Previous Studies

System sustainability promotion [30] and improvement in care delivery efficiency [8,10]
have been fostered by AI transformational force in several healthcare sectors [31–35]. How-
ever, the application of AI in MSK care is still in its early stages.

Safety, interpretability, and transparency are key factors when developing AI tools.
Many guidelines and research are now available to guide AI tool design following respon-
sible AI principles [18,36,37]. Herein, we used a human-in-the-loop approach [38] where
the final decision always rests with the healthcare provider. Clinicians can then validate AI-
generated recommendations, correct errors, and provide additional insights based on their
experience and expertise. Additionally, interpretability and transparency can be fostered
by a more complete interface where the rationale supporting a given recommendation is
provided [36,39], as was the case with the described AI tool.

To our knowledge, this is the first study assessing the outcomes after scaling an MSK
management program leveraging the implementation of an AI-based system to streamline
PT workflow. An encouraging finding of the present study was that neither engagement
nor patient satisfaction was negatively impacted following scaling. This contrasts with the
concerns expressed by both clinicians and patients that remote interventions, especially
those operating at scale, might lead to reduced patient accountability, motivation, and
adherence [40,41]. Completion rate was increased in the IG, reinforcing the lack of negative
outcome from the scale context. The higher number of PT reach-outs in the IG may have
contributed to increased engagement. This could be associated with streamlined workflows
and the reduced burden of administrative tasks, diverting more time to patient contact.
Additionally, a higher number of dropouts and unrelated medical exclusions were reported
in the CG, which was possibly associated with the particular timeframe of the cohort in
question (including the COVID-19 pandemic), which may have also contributed to a lower
completion rate.
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Importantly, clinical outcomes remained fairly stable between cohorts, as testified
by the similar response rate for pain (64% vs. 63%, p = 0.399), and also in the mental
health domain (anxiety change difference: 0.002 (95%CI −0.03; 0.03), p = 0.928, effect
size: −0.04, and depression change difference: −0.03 (95%CI −0.07; 0.01), p = 0.187, effect
size: −0.30). The feedback loop between pain intensity and mental health issues is well
known [42], as is the impact of a proper therapeutic alliance to address these intricacies
and to effectively support condition management [43]. At the same time, and despite the
increase in the PT-to-patient ratio, the patients’ ability to communicate with their assigned
PT was not affected, as evidenced by the similar number of communications initiated
by the patients themselves in both groups (IG: 14.6 SD 17.9 vs. CG: 13.9 SD 25.9). As
explored in other digital interventions, the ability to reach the clinician when needed has
been reported as pivotal in initiating and maintaining a trust relationship that fosters better
outcomes [40,44,45].

The stability of clinical outcomes between groups seems to advocate for care scalability
and the use of technology to support PTs’ clinical work, which follows the trend reported
previously for AI tools developed for other healthcare professionals [10,46]. Crucially, the
adverse event rate remained low and consistent despite the increase in the PT-to-patient
ratio, underscoring the priority given to safety throughout the design, development, and
implementation of this AI tool into the PTs’ workflow. The adverse event rate herein
reported was lower than that described in in-person interventions [47,48]. Specifically, in
real-world digital settings, adverse events are scarcely reported, with a large retrospective
study also reporting a low adverse event rate following the use of a self-supporting app [49].
This scarcity could be associated with the lack of the systematic collection and reporting
of adverse events, particularly when considering that most digital interventions are self-
managed without the support of a healthcare professional [50].

Overall, the findings of this study support the feasibility and safety of scaling remote
care, utilizing AI-based tools to expand the outreach of healthcare professionals. These
results align with a recent study that surveyed the perspectives of physical therapists
regarding AI in healthcare, wherein 78.2% of participants agreed or strongly agreed that
implementing AI in healthcare could increase work productivity [51,52].

4.3. Strengths and Limitations

The primary strength of the current study lies in its novelty, as it directly evaluates
the scalability of MSK care that is supported by an AI-based system, using a large and
diverse sample from a real-world context. Importantly, with the rise of AI tool develop-
ment and adoption, concerns and awareness have been raised about the risks of poor AI
conceptualization/design [53]. Therefore, the WHO guidelines [18] stress the importance
of preserving the epistemic authority of healthcare providers in medical decision-making
over the influence of automated (and sometimes biased and/or black-boxed) AI systems.
Following WHO best practice, the AI tool herein described adopted a human-in-the-loop
framework, not only to develop the tool itself but also to guarantee that all final decisions
were made after critical reasoning and assessment by PTs. Moreover, the continuous in-
ternal quality check of the AI tool’s performance against PT manual decisions safeguards
against the possibility of poor recommendations.

However, there are limitations to consider. This non-randomized, controlled before-
and-after study lacks randomization between groups, which was mitigated through the
application of inverse probability weighting during statistical analysis. Additionally, the
absence of an additional control group undergoing PT-to-patient ratio scaling without the
implementation of an AI tool could have helped mitigate the influence of unaccounted con-
founding variables. However, ethical considerations prevented the pursuit of this strategy
as safety and effectiveness concerns outweighed the potential additional insights that it
could have provided. Consequently, there remains the possibility of other confounding
variables that are not addressed in the study influencing outcomes, such as the cohort’s
timeframe or the potential use of complementary treatments. While the study addresses
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a large sample size, the study population included the beneficiaries of employer health
plans; therefore, further investigation in other cohorts should be carried out. Finally, future
research should consider an evaluation of workflow time savings and qualitative analysis
of the providers’ perceptions of the tool for further workflow sustainability and increased
workforce wellbeing.

5. Conclusions

This is the first study demonstrating that similar clinical outcomes (pain, anxiety, and
depression) can be attained after an increase in the PT-to-patient ratio that is supported by
the implementation of an AI-based system to streamline PT workflow. Moreover, patient
engagement was not impacted, as evidenced by higher completion rates and a consistent
level of satisfaction with the program. The stable adverse event rate across groups further
supports the safety of scaling care through AI. The study advances current knowledge
by underscoring the potential of AI technology in MSK management, particularly to
enhance PT workflows. Future research should aim to clarify and quantify the gains in
workflow efficiency and the associated cost-effectiveness of such approaches, as well as the
perceptions of providers regarding the impact of such tools on their work.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm13154366/s1, Figure S1: Participants performing exercise
sessions of their digital care pro-gram for (a) wrist/hand, and (b) low back conditions; Table S1.
Description of the exercise prescription; Table S2. Input variables feeding the AI tool and example
of the AI model output to the physical therapist; Table S3: Model estimates of clinical outcomes for
each group, following an intent-to-treat analysis; Table S4: Latent growth curve model fit; Table S5:
Adverse events related to the intervention registered for both I-intervention group (IG) and control
group (CG).
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