The Role of Glucose, Insulin and Body Fat in Assessment of Bone Mineral Density and Trabecular Bone Score in Women with Functional Hypothalamic Amenorrhea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participation in the Study
2.2. Research Methodology
2.2.1. Anthropometric Measurements and Gynaecological Examination
2.2.2. Laboratory Parameters
2.2.3. Bone Mineral Density Assessment
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Group
3.1.1. Factors Affecting Bone Mineral Density and Values of the Trabecular Bone Score in the Lumbar Spine—Results of Unidimensional Analysis
3.1.2. Factors Affecting Bone Mineral Density in the Lumbar Spine—Results of Multivariate Analysis
3.2. Summary of Results
4. Discussion
5. Conclusions
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chun, K.J. Bone Densitometry. Semin. Nucl. Med. 2011, 41, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO Study Group—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/7941614/ (accessed on 18 December 2023).
- Miller, P.D.; Siris, E.S.; Barrett-Connor, E.; Faulkner, K.G.; Wehren, L.E.; Abbott, T.A.; Chen, Y.-T.; Berger, M.L.; Santora, A.C.; Sherwood, L.M. Prediction of Fracture Risk in Postmenopausal White Women with Peripheral Bone Densitometry: Evidence From the National Osteoporosis Risk Assessment. J. Bone Miner. Res. 2002, 17, 2222–2230. [Google Scholar] [CrossRef] [PubMed]
- Desentis-Desentis, M.F.; Rivas-Carrillo, J.D.; Sánchez-Enríquez, S. Protective role of osteocalcin in diabetes pathogenesis. J. Bone Miner. Metab. 2020, 38, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Compston, J. Type 2 diabetes mellitus and bone. J. Intern. Med. 2018, 283, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.C.; Leslie, W.D.; Resch, H.; Lamy, O.; Lesnyak, O.; Binkley, N.; McCloskey, E.V.; A Kanis, J.; Bilezikian, J.P. Trabecular Bone Score: A Noninvasive Analytical Method Based Upon the DXA Image. J. Bone Miner. Res. 2014, 29, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Bréban, S.; Briot, K.; Kolta, S.; Paternotte, S.; Ghazi, M.; Fechtenbaum, J.; Roux, C. Identification of Rheumatoid Arthritis Patients with Vertebral Fractures Using Bone Mineral Density and Trabecular Bone Score. J. Clin. Densitom. 2012, 15, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, E.; Cipriani, C.; Nofroni, I.; Castro, C.; Angelozzi, M.; Scarpiello, A.; Pepe, J.; Diacinti, D.; Piemonte, S.; Carnevale, V.; et al. “Trabecular Bone Score” (TBS): An indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone 2013, 53, 154–159. [Google Scholar] [CrossRef]
- Leslie, W.D.; Aubry-Rozier, B.; Lamy, O.; Hans, D.; Manitoba Bone Density Program. TBS (Trabecular Bone Score) and Diabetes-Related Fracture Risk. J. Clin. Endocrinol. Metab. 2013, 98, 602–609. [Google Scholar] [CrossRef]
- Silva, B.C.; Boutroy, S.; Zhang, C.; McMahon, D.J.; Zhou, B.; Wang, J.; Udesky, J.; Cremers, S.; Sarquis, M.; Guo, X.-D.E.; et al. Trabecular Bone Score (TBS)—A Novel Method to Evaluate Bone Microarchitectural Texture in Patients with Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2013, 98, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Palomo, T.; Muszkat, P.; Weiler, F.G.; Dreyer, P.; Brandão, C.M.A.; Silva, B.C. Update on trabecular bone score. Arch. Endocrinol. Metab. 2022, 66, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Li, X.; Nussler, A.K.; Zhu, S. The relationship between healthy lifestyles and bone health. Medicine 2021, 100, e24684. [Google Scholar] [CrossRef]
- Al-Bashaireh, A.M.; Haddad, L.G.; Weaver, M.; Kelly, D.L.; Chengguo, X.; Yoon, S. The Effect of Tobacco Smoking on Musculoskeletal Health: A Systematic Review. J. Environ. Public Health 2018, 2018, 4184190. [Google Scholar] [CrossRef]
- Falbová, D.; Kovalčíková, V.; Beňuš, R.; Sulis, S.; Vorobeľová, L. Effect of COVID-19 pandemic on lifestyle and bone mineral density in young adults. Am. J. Hum. Biol. 2023, 36, e24009. [Google Scholar] [CrossRef] [PubMed]
- Boutroy, S.; Hans, D.; Sornay-Rendu, E.; Vilayphiou, N.; Winzenrieth, R.; Chapurlat, R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: The OFELY study. Osteoporos. Int. 2013, 24, 77–85. [Google Scholar] [CrossRef]
- Rabier, B.; Héraud, A.; Grand-Lenoir, C.; Winzenrieth, R.; Hans, D. A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone 2009, 46, 176–181. [Google Scholar] [CrossRef]
- Hans, D.; Goertzen, A.L.; Krieg, M.-A.; Leslie, W.D. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: The manitoba study. J. Bone Miner. Res. 2011, 26, 2762–2769. [Google Scholar] [CrossRef]
- Gordon, C.M.; Ackerman, K.E.; Berga, S.L.; Kaplan, J.R.; Mastorakos, G.; Misra, M.; Murad, M.H.; Santoro, N.F.; Warren, M.P. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 1413–1439. [Google Scholar] [CrossRef]
- Gibson, M.E.S.; Fleming, N.; Zuijdwijk, C.; Dumont, T. Where Have the Periods Gone? The Evaluation and Management of Functional Hypothalamic Amenorrhea. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 18–27. [Google Scholar] [CrossRef]
- Little-Letsinger, S.E.; Pagnotti, G.M.; McGrath, C.; Styner, M. Exercise and Diet: Uncovering Prospective Mediators of Skeletal Fragility in Bone and Marrow Adipose Tissue. Curr. Osteoporos. Rep. 2020, 18, 774–789. [Google Scholar] [CrossRef]
- Conway, B.; Rene, A. Obesity as a disease: No lightweight matter. Obes. Rev. 2004, 5, 145–151. [Google Scholar] [CrossRef]
- De Laet, C.; Kanis, J.A.; Odén, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.J.; Lanyon, L.E. Mechanical Strain and Bone Cell Function: A Review. Osteoporos. Int. 2002, 13, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Bonewald, L.F.; Johnson, M.L. Osteocytes, mechanosensing and Wnt signaling. Bone 2008, 42, 606–615. [Google Scholar] [CrossRef]
- Sawakami, K.; Robling, A.G.; Ai, M.; Pitner, N.D.; Liu, D.; Warden, S.J.; Li, J.; Maye, P.; Rowe, D.W.; Duncan, R.L.; et al. The Wnt Co-receptor LRP5 Is Essential for Skeletal Mechanotransduction but Not for the Anabolic Bone Response to Parathyroid Hormone Treatment. J. Biol. Chem. 2006, 281, 23698–23711. [Google Scholar] [CrossRef]
- Reid, I.R.; Plank, L.D.; Evans, M.C. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J. Clin. Endocrinol. Metab. 1992, 75, 779–782. [Google Scholar] [CrossRef]
- Felson, D.T.; Zhang, Y.; Hannan, M.T.; Anderson, J.J. Effects of weight and body mass index on bone mineral density in men and women: The framingham study. J. Bone Miner. Res. 1993, 8, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Ames, R.; Clearwater, J.; Evans, M.C.; Gamble, G.; Reid, I.R. Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clin. Endocrinol. 2002, 56, 703–711. [Google Scholar] [CrossRef]
- Syrenicz, J.; Krzyscin, M.; Sowinska-Przepiera, E. Relationships between hormonal parameters, body fat distribution and bone mineral density in women with functional menstrual disorders. Ginekol. Polska 2021, 92, 753–759. [Google Scholar] [CrossRef]
- Gonnelli, S. Obesity and fracture risk. Bone Abstr. 2014, 11, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Sheu, A.; Blank, R.D.; Tran, T.; Bliuc, D.; Greenfield, J.R.; White, C.P.; Center, J.R. Associations of Type 2 Diabetes, Body Composition, and Insulin Resistance with Bone Parameters: The Dubbo Osteoporosis Epidemiology Study. JBMR Plus 2023, 7, e10780. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.-Y.; Chan, C.Y.; Subramaniam, S.; Muhammad, N.; Fairus, A.; Ng, P.Y.; Jamil, N.A.; Aziz, N.A.; Ima-Nirwana, S.; Mohamed, N. Positive association between metabolic syndrome and bone mineral density among Malaysians. Int. J. Med. Sci. 2020, 17, 2585–2593. [Google Scholar] [CrossRef] [PubMed]
- Gkastaris, K.; Goulis, D.G.; Potoupnis, M.; Anastasilakis, A.D.; Kapetanos, G. Obesity, osteoporosis and bone metabolism. J. Musculoskelet. Neuronal Interact. 2020, 20, 372. [Google Scholar] [PubMed]
- Sultan, I.; Taha, I.; El Tarhouny, S.; Mohammed, R.A.; Allah, A.M.A.; Al Nozha, O.; Desouky, M.; Ghonimy, A.; Elmehallawy, Y.; Aldeeb, N.; et al. Determinants of Z-Score of Bone Mineral Density among Premenopausal Saudi Females in Different Age Groups: A Cross Sectional Study. Nutrients 2023, 15, 4280. [Google Scholar] [CrossRef] [PubMed]
- Indirli, R.; Lanzi, V.; Mantovani, G.; Arosio, M.; Ferrante, E. Bone health in functional hypothalamic amenorrhea: What the endocrinologist needs to know. Front. Endocrinol. 2022, 13, 946695. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, K.E.; Putman, M.; Guereca, G.; Taylor, A.P.; Pierce, L.; Herzog, D.B.; Klibanski, A.; Bouxsein, M.; Misra, M. Cortical microstructure and estimated bone strength in young amenorrheic athletes, eumenorrheic athletes and non-athletes. Bone 2012, 51, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Kawana, T. Oral glucose challenge effects on growth and sex steroid hormones in normal women and women with hypothalamic amenorrhea. Int. J. Gynecol. Obstet. 1998, 61, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Singhal, V.; Maffazioli, G.D.; Sokoloff, N.C.; Ackerman, K.E.; Lee, H.; Gupta, N.; Clarke, H.; Slattery, M.; Bredella, M.A.; Misra, M. Regional fat depots and their relationship to bone density and microarchitecture in young oligo-amenorrheic athletes. Bone 2015, 77, 83–90. [Google Scholar] [CrossRef]
- Sowińska-Przepiera, E.; Syrenicz, M.; Andrysiak-Mamos, E.; Niedzielska, M.; Przepiera, A.; Soszka, E.; Korabiusz, K.; Syrenicz, A. Factors determining bone mineral density and trabecular bone score in young women with hyperandrogenism. J. Educ. Health Sport 2017, 7, 190–202. [Google Scholar]
- Jürimäe, J.; Jürimäe, T.; Leppik, A.; Kums, T. The influence of ghrelin, adiponectin, and leptin on bone mineral density in healthy postmenopausal women. J. Bone Miner. Metab. 2008, 26, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J.; Bouxsein, M.L. Mechanisms of Disease: Is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2006, 2, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Cartier, A.; Lemieux, I.; Alméras, N.; Tremblay, A.; Bergeron, J.; Després, J.-P. Visceral Obesity and Plasma Glucose-Insulin Homeostasis: Contributions of Interleukin-6 and Tumor Necrosis Factor-α in Men. J. Clin. Endocrinol. Metab. 2008, 93, 1931–1938. [Google Scholar] [CrossRef] [PubMed]
- Pou, K.M.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; Maurovich-Horvat, P.; Larson, M.G.; Keaney, J.J.F.; Meigs, J.B.; Lipinska, I.; Kathiresan, S.; et al. Visceral and Subcutaneous Adipose Tissue Volumes Are Cross-Sectionally Related to Markers of Inflammation and Oxidative Stress. Circulation 2007, 116, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Dolinková, M.; Dostálová, I.; Lacinová, Z.; Michalský, D.; Haluzíková, D.; Mráz, M.; Kasalický, M.; Haluzík, M. The endocrine profile of subcutaneous and visceral adipose tissue of obese patients. Mol. Cell. Endocrinol. 2008, 291, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Sam, S.; Haffner, S.; Davidson, M.H.; D’Agostino, R.B.; Feinstein, S.; Kondos, G.; Perez, A.; Mazzone, T. Relation of Abdominal Fat Depots to Systemic Markers of Inflammation in Type 2 Diabetes. Diabetes Care 2009, 32, 932–937. [Google Scholar] [CrossRef]
- Julian, V.; O’Malley, G.; Metz, L.; Weghuber, D.; Courteix, D.; Fillon, A.; Boirie, Y.; Duclos, M.; Pereira, B.; Thivel, D. Does the severity of obesity influence bone density, geometry and strength in adolescents? Pediatr. Obes. 2021, 16, e12826. [Google Scholar] [CrossRef] [PubMed]
- Levy-Shraga, Y.; Tripto-Shkolnik, L.; David, D.; Vered, I.; Stein, D.; Modan-Moses, D. Low trabecular bone score in adolescent female inpatients with anorexia nervosa. Clin. Nutr. 2018, 38, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, A.A.; Feldman, H.A.; O’Donnell, J.M.; Gopalakrishnan, G.; Gordon, C.M. Spinal Bone Texture Assessed by Trabecular Bone Score in Adolescent Girls with Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2015, 100, 3436–3442. [Google Scholar] [CrossRef]
- Bone Mineral Density and Trabecular Bone Score in Postmenopausal Women with Knee Osteoarthritis and Obesity—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32285828/ (accessed on 20 December 2023).
- Mihai, G.; Gasparik, A.I.; Pascanu, I.M.; Cevei, M.; Hutanu, A.; Pop, R.-M. The influence of Visfatin, RBP-4 and insulin resistance on bone mineral density in women with treated primary osteoporosis. Aging Clin. Exp. Res. 2019, 31, 889–895. [Google Scholar] [CrossRef]
- Wei, J.; Hanna, T.; Suda, N.; Karsenty, G.; Ducy, P. Osteocalcin Promotes β-Cell Proliferation During Development and Adulthood Through Gprc6a. Diabetes 2014, 63, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.N.; Sippl, R.; Joshee, P.; Pyle, L.; Kohrt, W.M.; Schauer, I.E.; Snell-Bergeon, J.K. Trabecular bone quality is lower in adults with type 1 diabetes and is negatively associated with insulin resistance. Osteoporos. Int. 2018, 29, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Koromani, F.; Oei, L.; Shevroja, E.; Trajanoska, K.; Schoufour, J.; Muka, T.; Franco, O.H.; Ikram, M.A.; Zillikens, M.C.; Uitterlinden, A.G.; et al. Vertebral Fractures in Individuals with Type 2 Diabetes: More Than Skeletal Complications Alone. Diabetes Care 2020, 43, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, H.J.; Ku, E.J.; Kim, K.M.; Kim, S.W.; Cho, N.H.; Shin, C.S. Trabecular Bone Score as an Indicator for Skeletal Deterioration in Diabetes. J. Clin. Endocrinol. Metab. 2015, 100, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Goel, H.; Binkley, N.; Hans, D.; Leslie, W.D. Bone density and trabecular bone score to predict fractures in adults aged 20–39 years: A registry-based study. Osteoporos. Int. 2023, 34, 1085–1091. [Google Scholar] [CrossRef]
- Jose, A.; Cherian, K.E.; Nandyal, M.B.; Jiwanmall, S.A.; Kattula, D.; Paul, T.V.; Kapoor, N. Trabecular Bone Score and Bone Mineral Density in Postmenopausal Women with Morbid Obesity—A Clinical Paradox. Med. Sci. 2021, 9, 69. [Google Scholar] [CrossRef]
Variable | n | Mean | SD | Min. | Max. | Median | Q1 | Q3 |
---|---|---|---|---|---|---|---|---|
BMI (kg/m2) | 213 | 25.60 | 5.82 | 16.22 | 45.50 | 23.80 | 20.90 | 30.00 |
Age (years) | 213 | 27.08 | 4.33 | 20.00 | 33.00 | 27.00 | 24.00 | 30.00 |
Variable | n | Mean | SD | Min. | Max. | Median | Q1 | Q3 |
---|---|---|---|---|---|---|---|---|
BMD z L1–L4 Z-score | 213 | 0.23 | 0.98 | −2.80 | 2.50 | 0.30 | −0.40 | 1.00 |
BMD L1–L4 (g/cm2) | 213 | 1.23 | 0.13 | 0.83 | 1.58 | 1.24 | 1.15 | 1.32 |
TBS L1–L4 | 213 | 1.38 | 0.09 | 1.18 | 1.70 | 1.38 | 1.32 | 1.43 |
Variable n = 213 | Mean | SD | Min. | Max. | Median | Q1 | Q3 |
---|---|---|---|---|---|---|---|
Glucose 0′ | 86.65 | 9.72 | 18.70 | 122.71 | 87.00 | 81.00 | 92.00 |
Glucose 60′ | 114.43 | 36.21 | 11.00 | 256.00 | 112.90 | 87.20 | 134.20 |
Insulin 60′ | 88.28 | 72.79 | 2.35 | 494.40 | 65.78 | 42.22 | 106.40 |
Glucose 120′ | 93.69 | 28.53 | 10.00 | 203.70 | 92.00 | 73.00 | 109.00 |
Insulin 120′ | 58.78 | 60.80 | 4.10 | 396.60 | 37.05 | 24.22 | 66.20 |
Variable n = 213 | Beta | Standard Error of Beta | p |
---|---|---|---|
TBS L1–L4 | 0.290 | 0.076 | <0.001 |
Age (years) | 0.132 | 0.071 | 0.066 |
Fat Tissue (%) | −0.040 | 0.338 | 0.905 |
BMI (kg/m2) | 0.212 | 0.140 | 0.130 |
Insulin 0′ | −0.057 | 0.086 | 0.505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowińska-Przepiera, E.; Krzyścin, M.; Syrenicz, I.; Orlińska, A.; Ćwiertnia, A.; Przepiera, A.; Jezierska, K.; Cymbaluk-Płoska, A.; Bumbulienė, Ž.; Syrenicz, A. The Role of Glucose, Insulin and Body Fat in Assessment of Bone Mineral Density and Trabecular Bone Score in Women with Functional Hypothalamic Amenorrhea. J. Clin. Med. 2024, 13, 4388. https://doi.org/10.3390/jcm13154388
Sowińska-Przepiera E, Krzyścin M, Syrenicz I, Orlińska A, Ćwiertnia A, Przepiera A, Jezierska K, Cymbaluk-Płoska A, Bumbulienė Ž, Syrenicz A. The Role of Glucose, Insulin and Body Fat in Assessment of Bone Mineral Density and Trabecular Bone Score in Women with Functional Hypothalamic Amenorrhea. Journal of Clinical Medicine. 2024; 13(15):4388. https://doi.org/10.3390/jcm13154388
Chicago/Turabian StyleSowińska-Przepiera, Elżbieta, Mariola Krzyścin, Igor Syrenicz, Adrianna Orlińska, Adrianna Ćwiertnia, Adam Przepiera, Karolina Jezierska, Aneta Cymbaluk-Płoska, Žana Bumbulienė, and Anheli Syrenicz. 2024. "The Role of Glucose, Insulin and Body Fat in Assessment of Bone Mineral Density and Trabecular Bone Score in Women with Functional Hypothalamic Amenorrhea" Journal of Clinical Medicine 13, no. 15: 4388. https://doi.org/10.3390/jcm13154388
APA StyleSowińska-Przepiera, E., Krzyścin, M., Syrenicz, I., Orlińska, A., Ćwiertnia, A., Przepiera, A., Jezierska, K., Cymbaluk-Płoska, A., Bumbulienė, Ž., & Syrenicz, A. (2024). The Role of Glucose, Insulin and Body Fat in Assessment of Bone Mineral Density and Trabecular Bone Score in Women with Functional Hypothalamic Amenorrhea. Journal of Clinical Medicine, 13(15), 4388. https://doi.org/10.3390/jcm13154388