The Sensitivity and Specificity of Multiparametric Magnetic Resonance Imaging and Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Predicting Seminal Vesicle Invasion in Clinically Significant Prostate Cancer: A Multicenter Retrospective Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Outcome Measures
2.3. Multiparametric Magnetic Resonance Imaging
2.4. Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography
2.5. Robotic Prostatectomy and Histopathology
2.6. Data Analysis
3. Results
3.1. Diagnostic Performance of mpMRI and PSMA PET/CT
3.2. Univariate and Multivariate Analysis of Clinicopathological Factors
4. Discussion
4.1. Summary of Findings
4.2. Strengths and Weaknesses
4.3. Implications of Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ISUP Grade Group | Gleason Score |
---|---|
Grade Group 1 | Gleason score ≤ 6 |
Grade Group 2 | Gleason score 7 (3 + 4) |
Grade Group 3 | Gleason score 7 (4 + 3) |
Grade Group 4 | Gleason score 8 |
Grade Group 5 | Gleason score 9–10 |
References
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Berney, D.M.; Wheeler, T.M.; Grignon, D.J.; Epstein, J.I.; Griffiths, D.F.; Humphrey, P.A.; van der Kwast, T.; Montironi, R.; Delahunt, B.; Egevad, L.; et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 4: Seminal vesicles and lymph nodes. Mod. Pathol. 2011, 24, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, A.; Wiklund, F.; Wiklund, P.; Egevad, L. Prognostic significance of patterns of seminal vesicle invasion in prostate cancer. Histopathology 2013, 62, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.; Hamoen, E.H.; Witjes, J.A.; Barentsz, J.O.; Rovers, M.M. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur. Urol. 2016, 70, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Giganti, F.; Rosenkrantz, A.B.; Villeirs, G.; Panebianco, V.; Stabile, A.; Emberton, M.; Moore, C.M. The Evolution of MRI of the Prostate: The Past, the Present, and the Future. Am. J. Roentgenol. 2019, 213, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Steiger, P.; Thoeny, H.C. Prostate MRI based on PI-RADS version 2: How we review and report. Cancer Imaging 2016, 16, 9. [Google Scholar] [CrossRef]
- Prostate Imaging-Reporting and Data System Version 2.1. Available online: https://www.acr.org/-/media/ACR/Files/RADS/Pi-RADS/PIRADS-v2-1.pdf (accessed on 23 May 2023).
- Purysko, A.S.; Baroni, R.H.; Giganti, F.; Costa, D.; Renard-Penna, R.; Kim, C.K.; Raman, S.S. PI-RADS Version 2.1: A Critical Review, From the AJR Special Series on Radiology Reporting and Data Systems. Am. J. Roentgenol. 2020, 216, 20–32. [Google Scholar] [CrossRef]
- Heidenreich, A.; Bastian, P.J.; Bellmunt, J.; Bolla, M.; Joniau, S.; van der Kwast, T.; Mason, M.; Matveev, V.; Wiegel, T.; Zattoni, F.; et al. EAU guidelines on prostate cancer. part 1: Screening, diagnosis, and local treatment with curative intent-update 2013. Eur. Urol. 2014, 65, 124–137. [Google Scholar] [CrossRef]
- Arun, G.; Chakraborti, S.; Rai, S.; Prabhu, G.G. Seminal vesicle schwannoma presenting with left hydroureteronephrosis. Urol. Ann. 2014, 6, 363–365. [Google Scholar] [CrossRef]
- Dell’Atti, L. Importance of an Early Diagnosis in Primary Adenocarcinoma of the Seminal Vesicle. Rare Tumors 2016, 8, 36–38. [Google Scholar] [CrossRef]
- Halpern, J.A.; Oromendia, C.; Shoag, J.E.; Mittal, S.; Cosiano, M.F.; Ballman, K.V.; Vickers, A.J.; Hu, J.C. Use of Digital Rectal Examination as an Adjunct to Prostate Specific Antigen in the Detection of Clinically Significant Prostate Cancer. J. Urol. 2018, 199, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Budäus, L.; Leyh-Bannurah, S.R.; Salomon, G.; Michl, U.; Heinzer, H.; Huland, H.; Graefen, M.; Steuber, T.; Rosenbaum, C. Initial Experience of (68)Ga-PSMA PET/CT Imaging in High-risk Prostate Cancer Patients Prior to Radical Prostatectomy. Eur. Urol. 2016, 69, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Çelen, S.; Gültekin, A.; Özlülerden, Y.; Mete, A.; Sağtaş, E.; Ufuk, F.; Yüksel, D.; Yağcı, B.; Zümrütbaş, A.E. Comparison of 68Ga-PSMA-I/T PET-CT and Multiparametric MRI for Locoregional Staging of Prostate Cancer Patients: A Pilot Study. Urol. Int. 2020, 104, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, Q.; Zhang, C.; Zhou, Y.H.; Zhao, X.; Fu, Y.; Gao, J.; Zhang, B.; Wang, F.; Qiu, X.; et al. Comparison of (68)Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) and multi-parametric magnetic resonance imaging (MRI) in the evaluation of tumor extension of primary prostate cancer. Transl. Androl. Urol. 2020, 9, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Sonni, I.; Felker, E.R.; Lenis, A.T.; Sisk, A.E.; Bahri, S.; Allen-Auerbach, M.; Armstrong, W.R.; Suvannarerg, V.; Tubtawee, T.; Grogan, T.; et al. Head-to-Head Comparison of (68)Ga-PSMA-11 PET/CT and mpMRI with a Histopathology Gold Standard in the Detection, Intraprostatic Localization, and Determination of Local Extension of Primary Prostate Cancer: Results from a Prospective Single-Center Imaging Trial. J. Nucl. Med. 2022, 63, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Ucar, T.; Gunduz, N.; Demirci, E.; Culpan, M.; Gunel, H.; Kir, G.; Atis, R.G.; Yildirim, A. Comparison of 68Ga-PSMA PET/CT and mp-MRI in regard to local staging for prostate cancer with histopathological results: A retrospective study. Prostate 2022, 82, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Abrams-Pompe, R.S.; Fanti, S.; Schoots, I.G.; Moore, C.M.; Turkbey, B.; Vickers, A.J.; Walz, J.; Steuber, T.; Eastham, J.A. The Role of Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography in the Primary Staging of Newly Diagnosed Prostate Cancer: A Systematic Review of the Literature. Eur. Urol. Oncol. 2021, 4, 370–395. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Silva, R.C.; Sasse, A.D.; Matheus, W.E.; Ferreira, U. Magnetic resonance image in the diagnosis and evaluation of extra-prostatic extension and involvement of seminal vesicles of prostate cancer: A systematic review of literature and meta-analysis. Int. Braz. J. Urol. 2013, 39, 155–166. [Google Scholar] [CrossRef]
- Woo, S.; Ghafoor, S.; Becker, A.S.; Han, S.; Wibmer, A.G.; Hricak, H.; Burger, I.A.; Schöder, H.; Vargas, H.A. Prostate-specific membrane antigen positron emission tomography (PSMA-PET) for local staging of prostate cancer: A systematic review and meta-analysis. Eur. J. Hybrid. Imaging 2020, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yoon, J.; You, D.; Jeong, I.; Song, C.; Hong, J.; Ahn, H.; Kim, C.-S. 861 THE ROLE OF PREOPERATIVE MR IMAGING FOR RISK STRATIFICATION OF PATIENTS WITH HIGH RISK PROSTATE CANCER. Eur. Urol. Suppl. 2011, 10, 271–272. [Google Scholar] [CrossRef]
- Lee, Z.; Sehgal, S.; Graves, R.; Su, Y.K.; Llukani, E.; Monahan, K.; McGill, A.; Lee, D. Does strength of mri scanner and time between biopsy and eMRI significantly influence the ability of endorectal magnetic resonance imaging (eMRI) to predict extracapsular extension (ECE) and seminal vesicle invasion (SVI) in patients with clinically localized prostatic cancer? J. Endourol. 2013, 1, A163. [Google Scholar]
- Jeong, I.G.; Lim, J.H.; You, D.; Kim, M.H.; Choi, H.J.; Kim, J.K.; Cho, K.S.; Hong, J.H.; Ahn, H.; Kim, C.S. Incremental value of magnetic resonance imaging for clinically high risk prostate cancer in 922 radical prostatectomies. J. Urol. 2013, 190, 2054–2060. [Google Scholar] [CrossRef]
- Caldas, M.E.; Miranda, L.C.; Bittencourt, L.K. Magnetic resonance imaging in staging of locoregional prostate cancer: Comparison of results with analysis post-surgical histopathology. Rev. Col. Bras. Cir. 2010, 37, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Bates, T.S.; Gillatt, D.A.; Cavanagh, P.M.; Speakman, M. A comparison of endorectal magnetic resonance imaging and transrectal ultrasonography in the local staging of prostate cancer with histopathological correlation. Br. J. Urol. 1997, 79, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Simpson, B.S.; Morka, N.; Freeman, A.; Kirkham, A.; Kelly, D.; Whitaker, H.C.; Emberton, M.; Norris, J.M. Comparison of Multiparametric Magnetic Resonance Imaging with Prostate-Specific Membrane Antigen Positron-Emission Tomography Imaging in Primary Prostate Cancer Diagnosis: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3497. [Google Scholar] [CrossRef] [PubMed]
- Sapre, N.; Pedersen, J.; Hong, M.K.; Harewood, L.; Peters, J.; Costello, A.J.; Hovens, C.M.; Corcoran, N.M. Re-evaluating the biological significance of seminal vesicle invasion (SVI) in locally advanced prostate cancer. BJU Int. 2012, 110 (Suppl. 4), 58–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ruan, M.; Wang, H.; Li, X.; Hu, X.; Liu, H.; Zhou, B.; Song, G. Predictive model containing PI-RADS v2 score for postoperative seminal vesicle invasion among prostate cancer patients. Transl. Androl. Urol. 2021, 10, 584–593. [Google Scholar] [CrossRef]
- von Klot, C.J.; Merseburger, A.S.; Böker, A.; Schmuck, S.; Ross, T.L.; Bengel, F.M.; Kuczyk, M.A.; Henkenberens, C.; Christiansen, H.; Wester, H.J.; et al. (68)Ga-PSMA PET/CT Imaging Predicting Intraprostatic Tumor Extent, Extracapsular Extension and Seminal Vesicle Invasion Prior to Radical Prostatectomy in Patients with Prostate Cancer. Nucl. Med. Mol. Imaging 2017, 51, 314–322. [Google Scholar] [CrossRef]
- Lee, Y.I.; Lee, H.M.; Jo, J.K.; Lee, S.; Hong, S.K.; Byun, S.S.; Lee, S.E.; Oh, J.J. Association between Seminal Vesicle Invasion and Prostate Cancer Detection Location after Transrectal Systemic Biopsy among Men Who Underwent Radical Prostatectomy. PLoS ONE 2016, 11, e0148690. [Google Scholar] [CrossRef]
- Yiakoumos, T.; Kälble, T.; Rausch, S. Prostate-specific antigen density as a parameter for the prediction of positive lymph nodes at radical prostatectomy. Urol. Ann. 2015, 7, 433–437. [Google Scholar] [CrossRef]
- Merriel, S.W.D.; Pocock, L.; Gilbert, E.; Creavin, S.; Walter, F.M.; Spencer, A.; Hamilton, W. Systematic review and meta-analysis of the diagnostic accuracy of prostate-specific antigen (PSA) for the detection of prostate cancer in symptomatic patients. BMC Med. 2022, 20, 54. [Google Scholar] [CrossRef]
- Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann. Fam. Med. 2018, 16, 149–154. [Google Scholar] [CrossRef]
- Galić, J.; Karner, I.; Cenan, L.; Tucak, A.; Hegedus, I.; Pasini, J.; Bilandzija-Peranović, M.; Mihaljević, S. Comparison of digital rectal examination and prostate specific antigen in early detection of prostate cancer. Coll. Antropol. 2003, 27 (Suppl. 1), 61–66. [Google Scholar] [PubMed]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef]
- Wei, J.T. Limitations of a contemporary prostate biopsy: The blind march forward. Urol. Oncol. 2010, 28, 546–549. [Google Scholar] [CrossRef]
- Claps, F.; Ramírez-Backhaus, M.; Mir Maresma, M.C.; Gómez-Ferrer, Á.; Mascarós, J.M.; Marenco, J.; Collado Serra, A.; Casanova Ramón-Borja, J.; Calatrava Fons, A.; Trombetta, C.; et al. Indocyanine green guidance improves the efficiency of extended pelvic lymph node dissection during laparoscopic radical prostatectomy. Int. J. Urol. 2021, 28, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Michalik, B.; Engels, S.; Otterbach, M.C.; Frerichs, J.; Suhrhoff, P.E.; van Oosterom, M.N.; Maurer, M.H.; Wawroschek, F.; Winter, A. A new bimodal approach for sentinel lymph node imaging in prostate cancer using a magnetic and fluorescent hybrid tracer. Eur. J. Nucl. Med. Mol. Imaging 2023, 1–7. [Google Scholar] [CrossRef]
- Pessoa, R.R.; Maroni, P.; Kukreja, J.; Kim, S.P. Comparative effectiveness of robotic and open radical prostatectomy. Transl. Androl. Urol. 2021, 10, 2158–2170. [Google Scholar] [CrossRef]
- Flammia, R.S.; Hoeh, B.; Sorce, G.; Chierigo, F.; Hohenhorst, L.; Tian, Z.; Goyal, J.A.; Leonardo, C.; Briganti, A.; Graefen, M.; et al. Contemporary seminal vesicle invasion rates in NCCN high-risk prostate cancer patients. Prostate 2022, 82, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Fanti, S.; Goffin, K.; Hadaschik, B.A.; Herrmann, K.; Maurer, T.; MacLennan, S.; Oprea-Lager, D.E.; Oyen, W.J.; Rouvière, O.; Mottet, N.; et al. Consensus statements on PSMA PET/CT response assessment criteria in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 469–476. [Google Scholar] [CrossRef]
- Grivas, N.; Hinnen, K.; de Jong, J.; Heemsbergen, W.; Moonen, L.; Witteveen, T.; van der Poel, H.; Heijmink, S. Seminal vesicle invasion on multi-parametric magnetic resonance imaging: Correlation with histopathology. Eur. J. Radiol. 2018, 98, 107–112. [Google Scholar] [CrossRef]
- Roethke, M.; Kaufmann, S.; Kniess, M.; Ketelsen, D.; Claussen, C.D.; Schlemmer, H.P.; Stenzl, A.; Schilling, D. Seminal vesicle invasion: Accuracy and analysis of infiltration patterns with high-spatial resolution T2-weighted sequences on endorectal magnetic resonance imaging. Urol. Int. 2014, 92, 294–299. [Google Scholar] [CrossRef]
- Smith, C.P.; Türkbey, B. PI-RADS v2: Current standing and future outlook. Turk. J. Urol. 2018, 44, 189–194. [Google Scholar] [CrossRef]
- Marra, G.; van Leenders, G.J.L.H.; Zattoni, F.; Kesch, C.; Rajwa, P.; Cornford, P.; van der Kwast, T.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; et al. Impact of Epithelial Histological Types, Subtypes, and Growth Patterns on Oncological Outcomes for Patients with Nonmetastatic Prostate Cancer Treated with Curative Intent: A Systematic Review. Eur. Urol. 2023, 84, 65–85. [Google Scholar] [CrossRef]
- Berger, I.; Annabattula, C.; Lewis, J.; Shetty, D.V.; Kam, J.; Maclean, F.; Arianayagam, M.; Canagasingham, B.; Ferguson, R.; Khadra, M.; et al. (68)Ga-PSMA PET/CT vs. mpMRI for locoregional prostate cancer staging: Correlation with final histopathology. Prostate Cancer Prostatic Dis. 2018, 21, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Tang, Y.; Deng, Z.; Yang, J.; Zhou, M.; Wang, L.; Hu, S. Comparison of (68)Ga-PSMA PET/CT and multiparametric MRI for the detection of low- and intermediate-risk prostate cancer. EJNMMI Res. 2022, 12, 10. [Google Scholar] [CrossRef]
- Caglic, I.; Kovac, V.; Barrett, T. Multiparametric MRI—Local staging of prostate cancer and beyond. Radiol. Oncol. 2019, 53, 159–170. [Google Scholar] [CrossRef]
- Xia, H.Z.; Bi, H.; Yan, Y.; Yang, B.; Ma, R.Z.; He, W.; Zhu, X.H.; Zhang, Z.Y.; Zhang, Y.T.; Ma, L.L.; et al. A novel nomogram provides improved accuracy for predicting biochemical recurrence after radical prostatectomy. Chin. Med. J. 2021, 134, 1576–1583. [Google Scholar] [CrossRef]
- Martini, A.; Wagaskar, V.G.; Dell’Oglio, P.; Rastinehad, A.R.; Sfakianos, J.P.; Tewari, A.K. Image guidance in robot-assisted radical prostatectomy: How far do we stand? Curr. Opin. Urol. 2019, 29, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Hensbergen, A.W.; van Willigen, D.M.; van Beurden, F.; van Leeuwen, P.J.; Buckle, T.; Schottelius, M.; Maurer, T.; Wester, H.J.; van Leeuwen, F.W.B. Image-Guided Surgery: Are We Getting the Most Out of Small-Molecule Prostate-Specific-Membrane-Antigen-Targeted Tracers? Bioconjug. Chem. 2020, 31, 375–395. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (528) | Multiparametric MRI (439) | PSMA PET/CT (161) | Combined MRI and PSMA PET/CT (151) | |
---|---|---|---|---|---|
Age, y, mean (±SD) | 65.35 ± 8.47 | 64.78 ± 8.73 | 65.80 ± 7.85 | 65.52 ± 7.90 | |
BMI, kg/m2, mean (±SD) | 27.25 ± 4.94 | 27.21 ± 4.72 | 27.22 ± 4.74 | 27.07 ± 3.87 | |
PSA, ng/mL, mean (±SD) | 8.09 ± 6.70 | 7.97 ± 7.18 | 9.24 ± 8.48 | 9.06 ± 8.56 | |
PSA density, ng/mL2, mean (±SD) | 0.25 ± 0.28 | 0.25 ± 0.28 | 0.33 ± 0.43 | 0.32 ± 0.45 | |
Biopsy ISUP grade group, n (%) | |||||
1 | 21 (4.04) | 19 (4.38) | 2 (1.26) | 2 (1.34) | |
2 | 242 (46.90) | 201 (46.31) | 41 (25.79) | 40 (26.85) | |
3 | 129 (25.00) | 109 (25.12) | 42 (26.42) | 39 (26.17) | |
4 | 46 (8.91) | 34 (7.83) | 19 (11.95) | 19 (12.75) | |
5 | 82 (15.89) | 71 (16.36) | 55 (34.59) | 49 (32.89) | |
MRI PIRADS score, mean (±SD) | 4.07 ± 0.83 | 4.07 ± 0.83 | 4.18 ± 0.84 | 4.18 ± 0.84 | |
MRI SVI, n (%) | |||||
Yes | 25 (5.69) | 25 (5.69) | 17 (11.26) | 17 (11.26) | |
No | 414 (94.30) | 414 (94.31) | 134 (88.74) | 134 (88.74) | |
MRI ECE, n (%) | |||||
Yes | 125 (28.47) | 125 (28.47) | 55 (36.42) | 55 (36.42) | |
No | 314 (71.53) | 314 (71.53) | 96 (63.58) | 96 (63.58) | |
PSMA PET/CT SVI, n (%) | |||||
Yes | 26 (16.15) | 25 (16.56) | 26 (16.15) | 25 (16.56) | |
No | 135 (83.85) | 126 (83.44) | 135 (83.85) | 126 (83.44) | |
Pathological ISUP grade group, n (%) | |||||
1 | 19 (3.60) | 15 (3.42) | 3 (1.86) | 3 (1.99) | |
2 | 263 (49.81) | 216 (49.20) | 52 (32.30) | 50 (33.11) | |
3 | 130 (24.62) | 110 (25.06) | 39 (24.22) | 38 (25.17) | |
4 | 24 (4.55) | 19 (4.33) | 15 (9.32) | 14 (9.27) | |
5 | 92 (17.42) | 79 (18.00) | 52 (32.30) | 46 (30.46) | |
Pathological stage, n (%) | |||||
<T2c | 231 (43.75) | 193 (43.96) | 57 (35.40) | 54 (35.76) | |
T3a | 210 (39.77) | 176 (40.09) | 62 (38.51) | 60 (39.74) | |
T3b | 87 (16.48) | 70 (15.95) | 42 (26.09 | 37 (24.50) | |
Histological ECE, n (%) | |||||
Yes | 296 (56.06) | 193 (43.96) | 103 (63.98) | 96 (63.58) | |
No | 232 (43.94) | 246 (56.04) | 58 (36.02) | 55 (36.42) | |
Histological SVI, n (%) | |||||
Yes | 86 (16.29) | 70 (15.95) | 42 (26.09) | 37 (24.50) | |
No | 442 (83.71) | 369 (84.05) | 119 (73.91) | 114 (75.50) |
SVI | Multiparametric MRI | PSMA PET/CT | Combined MRI and PSMA PET/CT | |||
---|---|---|---|---|---|---|
B (95% CI) | p Value | B (95% CI) | p Value | B (95% CI) | p Value | |
Sensitivity (%) | 0.162 (0.088–0.261) | - | 0.439 (0.294–0.591) | - | 0.514 (0.356–0.670) | - |
Specificity (%) | 0.963 (0.940–0.979) | - | 0.933 (0.849–0.969) | - | 0.880 (0.813–0.931) | - |
NPV (%) | 0.863 (0.828–0.894) | - | 0.830 (0.760–0.887) | - | 0.851 (0.781–0.907) | - |
PPV (%) | 0.440 (0.258–0.633) | - | 0.692 (0.503–0.846) | - | 0.576 (0.406–0.734) | - |
Accuracy, AUC (%) | 0.562 (0.483–0.641) | 0.103 | 0.682 (0.578–0.786) | <0.001 | 0.697 (0.590–0.804) | <0.001 |
ECE | Multiparametric MRI | |
---|---|---|
B (95% CI) | p Value | |
Sensitivity (%) | 0.291 (0.217–0.374) | - |
Specificity (%) | 0.902 (0.865–0.931) | - |
NPV (%) | 0.759 (0.714–0.801) | - |
PPV (%) | 0.544 (0.426–0.659) | - |
Accuracy, AUC (%) | 0.622 (0.570–0.674) | <0.001 |
Variable | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Odds Ratio (95% CI) | p Value | Odds Ratio (95% CI) | p Value | ||
Age at surgery, y | 1.059 (1.023–1.096) | 0.001 | 1.072 (1.028–1.119) | 0.001 | |
BMI, Kg/m2 | 0.955 (0.894–1.020) | 0.172 | - | - | |
PSA, ng/mL | 1.063 (1.028–1.099) | <0.001 | 1.069 (1.032–1.107) | <0.001 | |
PSA density, ng/mL2 | 3.034 (1.210–7.611) | 0.018 | - | - | |
DRE | 0.904 (0.682–1.199) | 0.484 | - | - | |
Biopsy Gleason score | 1.010 (1.000–1.021) | 0.060 | 1.008 (0.991–1.026) | 0.033 | |
Biopsy positive cores | 0.991 (0.946–1.038) | 0.667 | - | - | |
PIRADS v2.1 score | 1.073 (0.771–1.494) | 0.677 | - | - | |
PSMA PET/CT SUV max | 1.010 (0.967–1.055) | 0.644 | - | - | |
MRI prostate volume, cc | 0.882 (0.651–1.194) | 0.415 | - | - | |
MRI lesion size, mm | 1.004 (0.965–1.045) | 0.835 | - | - | |
MRI lesion location | |||||
Left base | 2.344 (1.294–4.245) | 0.005 | - | - | |
Left mid | 1.016 (0.594–1.738) | 0.953 | - | - | |
Left apex | 0.995 (0.560–1.771) | 0.988 | - | - | |
Left anterior | 0.274 (0.064–1.163) | 0.079 | - | - | |
Left peripheral zone | 1.353 (0.806–2.272) | 0.252 | - | - | |
Left transitional zone | 1.281 (0.611–2.689) | 0.512 | - | - | |
Right base | 2.411 (1.342–4.332) | 0.003 | 2.720 (1.403–5.273) | 0.003 | |
Right mid | 1.231 (0.718–2.111) | 0.449 | - | - | |
Right apex | 0.942 (0.519–1.708) | 0.843 | - | - | |
Right anterior | 0.198 (0.026–1.485) | 0.115 | - | - | |
Right peripheral zone | 1.394 (0.830–2.340) | 0.209 | - | - | |
Right transitional zone | 1.134 (0.526–2.445) | 0.749 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitharthan, D.; Kang, S.; Treacy, P.-J.; Bird, J.; Alexander, K.; Karunaratne, S.; Leslie, S.; Chan, L.; Steffens, D.; Thanigasalam, R. The Sensitivity and Specificity of Multiparametric Magnetic Resonance Imaging and Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Predicting Seminal Vesicle Invasion in Clinically Significant Prostate Cancer: A Multicenter Retrospective Study. J. Clin. Med. 2024, 13, 4424. https://doi.org/10.3390/jcm13154424
Sitharthan D, Kang S, Treacy P-J, Bird J, Alexander K, Karunaratne S, Leslie S, Chan L, Steffens D, Thanigasalam R. The Sensitivity and Specificity of Multiparametric Magnetic Resonance Imaging and Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Predicting Seminal Vesicle Invasion in Clinically Significant Prostate Cancer: A Multicenter Retrospective Study. Journal of Clinical Medicine. 2024; 13(15):4424. https://doi.org/10.3390/jcm13154424
Chicago/Turabian StyleSitharthan, Darshan, Song Kang, Patrick-Julien Treacy, Jacob Bird, Kate Alexander, Sascha Karunaratne, Scott Leslie, Lewis Chan, Daniel Steffens, and Ruban Thanigasalam. 2024. "The Sensitivity and Specificity of Multiparametric Magnetic Resonance Imaging and Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Predicting Seminal Vesicle Invasion in Clinically Significant Prostate Cancer: A Multicenter Retrospective Study" Journal of Clinical Medicine 13, no. 15: 4424. https://doi.org/10.3390/jcm13154424
APA StyleSitharthan, D., Kang, S., Treacy, P. -J., Bird, J., Alexander, K., Karunaratne, S., Leslie, S., Chan, L., Steffens, D., & Thanigasalam, R. (2024). The Sensitivity and Specificity of Multiparametric Magnetic Resonance Imaging and Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Predicting Seminal Vesicle Invasion in Clinically Significant Prostate Cancer: A Multicenter Retrospective Study. Journal of Clinical Medicine, 13(15), 4424. https://doi.org/10.3390/jcm13154424