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Abstract: Introduction: Statistical shape modelling (SSM) is used to analyse morphology, discover
qualitatively and quantitatively unique shape features within a population, and generate mean
shapes and shape modes that show morphological variability. Hierarchical agglomerative clustering
is a machine learning analysis used to identify subgroups within a given population in relation
to shape features. We tested the application of both methods in the clinically relevant scenario of
patients undergoing aortic valve repair (AVR). Every year, around 5000 patients undergo surgical
AVR in the UK. Aims: Evaluate aortic morphology and identify subgroups amongst patients who had
undergone AVR, including Ozaki, Ross, and valve-sparing procedures using SSM and unsupervised
hierarchical clustering analysis. This methodological framework can evaluate both pre- and post-
surgical variability across subgroups undergoing different surgeries. Methods: Pre- (n = 47) and
post- (n = 35) operative three-dimensional (3D) aortic models were reconstructed from computed
tomography (CT) and cardiac magnetic resonance (CMR) images. Computational analyses for SSM
and hierarchical clustering were run separately for the two subgroups, assessing (a) ascending
aorta only and (b) the whole aorta. This allows for exploring possible variations in morphological
classification related to the input shape. Results: Most patients in the Ross procedure subgroup
exhibited differences in aortic morphology from other subgroups, including an elongated ascending
and wide aortic arch pre-operatively, and an elongated ascending aorta with a slightly enlarged
sinus post-operatively. In hierarchical clustering, the Ross aortas also appeared to cluster together
compared to the other surgical procedures, both pre-operatively and post-operatively. There were
significant differences between clusters in terms of clustering distance in the pre-operative analyses
(p = 0.003 for ascending aortas, p = 0.016 for whole aortas). There were no significant differences
between the clusters in post-operative analyses (p = 0.47 for ascending, p = 0.19 for whole aorta).
Conclusions: We demonstrated the feasibility of evaluating aortic morphology before and after
different aortic valve surgeries using SSM and hierarchical clustering. This framework could be
used to further explore shape features associated with surgical decision-making pre-operatively and,
importantly, to identify subgroups whose morphology is associated with poorer clinical outcomes
post-operatively. Statistical shape modelling (SSM) and unsupervised hierarchical clustering are two
statistical methods that can be used to assess morphology, show morphological variations, with the
latter being able to identify subgroups within a population. These methods have been applied to the
population of aortic valve replacement (AVR) patients since there are different surgical procedures
(traditional AVR, Ozaki, Ross, and valve-sparing). The aim is to evaluate aortic morphology and
identify subgroups within this population before and after surgery. Computed tomography and
cardiac magnetic resonance images were reconstructed into 3D models of the ascending aorta and
whole aorta, which were then input into SSM and hierarchical clustering. The results show that
the Ross aortic morphology is quite different from the other aortas. The clustering did not classify
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the aortas based on the surgical procedures; however, most of the Ross group did cluster together,
indicating low variability within this surgical group.

Keywords: statistical shape modelling; hierarchical clustering; aortic valve replacement; aortic
morphology; medical imaging

1. Introduction

Three-dimensional (3D) statistical shape modelling (SSM) is used to analyse morphol-
ogy both qualitatively and quantitatively based on 3D imaging-derived reconstructions,
providing insights as to features that otherwise cannot be adequately captured by analysing
conventional 2D imaging [1]. Essentially, SSM allows parameterizing 3D shapes in one
common mathematical framework so that it can be used to create an average shape of a
shape population or discover unique 3D features of shape variability within a population by
applying mathematical techniques. SSM has been used in different fields, such as medical
imaging, anatomy, and engineering [1,2]. By applying principal component analysis (PCA)
within a SSM framework, the dimensionality of a complex dataset can be reduced in order
to facilitate data interpretability and analysis [3]. PCA is used to produce shape modes, each
one relating to a certain percentage of the overall shape variability within the population
and thus often representing a specific shape deformation, e.g., dilatation, curvature, or
size [4]. This allows us to observe overall shape deformations within a population, assess
relationships between morphology and pathology, or assess how a surgical procedure of
interest may result in more or less marked anatomical changes [5].

A complementary statistical method to SSM, hierarchical agglomerative clustering
is an unsupervised machine learning method used to identify subgroups within a given
population in relation to shape features [6]. In general, this method has been found to
be very useful to discover unique patterns in different fields, including genomics and
taxonomy; for example, successfully identifying different subsets of cancers based on
gene expression [7,8]. Cluster analysis measures similarities within the sample data and
segments a sample of shapes into different groups, or clusters. Subjects’ similarity or
dissimilarity is determined by calculating distances between subject feature vectors (in our
case, shape vectors) using distance metrics, and clusters are formed by applying linkage
functions. Each cluster has a set of similar shapes, and the shapes in other clusters are
considered dissimilar [9]. This is visually represented by a dendrogram, a tree-like diagram
that illustrates branches of clusters [10]. Agglomerative clustering is performed, considering
each object as its own cluster and then calculating pairwise similarity, whereby the two
most similar objects/clusters are grouped together, forming a single bigger cluster [11].
This process is repeated iteratively for every cluster, resulting in one large cluster at the
top of the hierarchical tree, including all the objects. The identification of subgroups with
this approach has the potential to improve diagnostic and treatment strategies [12]. This
method is unsupervised, which is an appealing feature as the analysis does not necessitate
knowledge about the population in question and does not require the indication of the
number of clusters [9].

Here, we sought to test the application of both SSM and hierarchical agglomerative
clustering in a clinically relevant scenario, i.e., aortic valve repair. Aortic valve repair for
the treatment of aortic stenosis (AS) and regurgitation (AR) has improved greatly over
the decades. Despite recent advances and good clinical outcomes [13], there is not one
single strategy to repair the aortic valve. There are in fact numerous surgical procedures
that have been developed and are used for aortic valve repair, including aortic valve
replacement (AVR), i.e., replacing the diseased valve with either a mechanical valve or
a bioprosthesis, as well as the Ozaki, Ross, and valve-sparing (VS) procedures [14,15].
While these all yield good clinical outcomes, they also present limitations, including some
related to the material used for valve (re)construction and to the surgical technique itself.



J. Clin. Med. 2024, 13, 4577 3 of 22

Other important factors include the shape and size of the patch used in repair [16], with
prosthesis-patient mismatch occurring in up to 70% of procedures [17]. This may have
serious clinical implications, as the mortality rate can almost double in severe mismatch
cases [18]. Such a mismatch usually occurs when the prosthetic valve (the effective orifice
area) is considered too small for the patient [19]. This mismatch can also impact the rate of
degeneration of the prosthetic valve, negatively affecting cardiac function [17]. On top of
known clinical differences, there may also be differences related to the morphology of the
aortic root, ascending aorta, and whole aorta in terms of the suitability of a patient for a
type of repair, and/or possible deleterious effects post-surgery related to the morphology
of the aorta (e.g., dilation, tortuosity, curvature) [20]. Novel computational tools to study in
depth the morphology of the aorta are therefore appealing and relevant.

In this study, we aimed to evaluate aortic morphology and identify subgroups in a
population of patients who had undergone AVR, Ozaki, Ross, and valve-sparing procedures
using both SSM and unsupervised hierarchical clustering analysis in order to perform an
in-depth analysis of 3D shape features within this population, which may impact future
AVR intervention strategies.

2. Methods

The study comprised a pre-operative analysis and a post-operative analysis. The
rationale for the pre-operative analysis relates to exploring whether the choice of surgery
is associated with the morphology of the aorta. The rationale for the post-operative
analysis relates to exploring the extent to which different surgeries affect aortic morphology.
In both cases, analyses were performed on the isolated ascending aorta (referred to as
the “ascending aorta”) and on a larger portion of the aorta that includes the arch and
descending tract up to the level of the diaphragm (referred to as the “whole aorta”). From
a methodological standpoint, running analyses including these two different input shapes
is of interest, as it may reveal the impact of input shapes (including subtle changes having
more/less weight in either scenario) on cluster allocation. As detailed below, the analyses
included performing SSM analysis in addition to plotting a scatterplot of Mode 1 vs. Mode
2 and performing a hierarchical cluster analysis to classify aortas and detect variability
across the surgical groups.

2.1. Patient Population

Patients who underwent aortic valve surgery (AVR, Ozaki, Ross, and VS) at the Bristol
Heart Institute (2015–2022), with a computed tomography (CT) scan (Siemens (Siemens
Healthineers, Forcheim, Germany); 1 mm reconstruction every 0.7 mm or Canon Aquilion
(Canon Medical Systems Corporation, Ōtawara, Tochigi, Japan) 1; 0.5 mm reconstruction
every 0.5 mm, 80/120 kV, 20 mg iodinated contrast per kg for 20 s duration) or cardiac mag-
netic resonance (CMR) scan (1.5T Siemens, temporal resolution 30 ms, matrix 156 × 256 with
pixel size of 1 mm and slice thickness of 5 mm), were retrospectively included in the study.
Patients with appropriate images were included, defined as: including the aortic arch and
the descending aorta up to the diaphragm level, having adequate contrast in CT images,
and having appropriate sequences for segmentation (non-cine sequences, sequences with a
good number of slices > 60 slices) in CMR images. For the purpose of this feasibility study,
patients with other pathologies, such as aortic coarctation, or who had previous interven-
tions, such as stenting, were included regardless of their valve morphology (unicuspid,
bicuspid, tricuspid).

Ethical approval was waived by the local R&I department in light of the retrospective
nature of the study and all imaging data were anonymized.

2.2. Segmentation and 3D Reconstruction

Medical images (DICOM) were segmented using commercial software (Mimics v25,
Materialise, Leuven, Belgium). All reconstructions were performed by one person. The
segmentation protocol included global thresholding and the split mask tool to only include



J. Clin. Med. 2024, 13, 4577 4 of 22

the desired anatomy, which was then exported to 3-matic (Materialise) for smoothing and
remeshing. The models were consistently cut below the aortic root (aortic valve annulus
level) and at the diaphragm level. The brachiocephalic branches were trimmed as close as
possible to the arch, isolating the morphology of the aorta. The anatomical landmark for
cutting the ascending aortic models was the innominate artery (i.e., cutting with a plane
perpendicular to the centreline of the aorta, as close as possible to the innominate). The
difference between CT and CMR images as input data may yield very small resolution
differences, which are not a concern for a large anatomy such as the aorta. In addition,
all models were remeshed with a mesh size of 2 mm, which would eliminate any such
difference and result in consistent models. The 3D models for all patients (ascending aorta,
and whole aorta) were exported as STL files for further analysis.

2.3. Statistical Shape Modelling

The open-source statistical shape analysis software based on deformation vectors,
‘Deformetrica’ (Deformetrica 4, www.deformetrica.org) was used. MATLAB (Mathworks,
Natick, MA, USA, MATLAB R2017a) scripts for registration and atlas construction using
Deformetrica functions by Bruse et al. were used [21]. The STL files, which were then
converted into VTK format, were first rigidly registered (i.e., aligned using the barycentre)
for atlas construction. Atlas here refers to the template or mean shape of the population
in addition to the deformations of the input 3D models. Stiffness (λV) and resolution (λW)
parameters must then be set. Stiffness controls the elasticity of the deformations, with small
λV yielding more elastic deformations [22]. Resolution controls the size of the shape features
that will be included in the analysis, with small λW including finer anatomical details [22].
To calculate the optimal resolution and stiffness, the surface area of the smallest model
in the population (for both the ascending aorta and whole aorta) was calculated. After
calculating and setting stiffness and resolution, the atlas was constructed with a template
(i.e., the mean shape of the population) and with PCA shape modes. The suitable number
of modes was estimated by looking at the cumulative inertia and choosing arbitrarily a
sufficient number of modes that represent a large enough percentage of shape variability
(e.g., >70%). The details of the SSM methodology can be found in [21].

2.4. Cluster Analysis

Statistical computing software R (R 4.3, R Foundation for Statistical Computing,
Vienna, Austria) was used to perform unsupervised hierarchical clustering. First, the XYZ
coordinates for each shape were extracted from the SSM data and converted into vectors
using the vector conversion function in R. These vectors, parametrizing each subject’s 3D
shape features, constituted the input for the clustering. The clustering algorithm works by
treating each object as a single node at the bottom of the dendrogram and then pairing each
object using a specified linkage method at a specified distance. The pairings are repeated for
(total objects in the data—1), eventually giving a single node at the top of the dendrogram,
including all the objects.

The construction of the dendrogram is influenced by two parameters: the distance
metric and the linkage method, which determine how close or similar the samples are to
each other [23]. The distance metric relates to the distance between two points, while the
linkage method defines how the objects are grouped together. The distance between two
objects is relative based on the metric used; the same two objects could be close to each
other using a specific distance or far away from each other using different settings, affecting
the appearance and number of clusters [24]. The most commonly used distance metrics
are Euclidean, Manhattan, Correlation, and Cosine, to name a few [25]. The most common
linkage methods are single, complete, average, centroid, median, Ward’s, and weighted [26].
Table 1 summarises distance metrics and linkage methods. Here, we chose the correlation
distance metric and the McQuitty/WPGMA linkage method because of their high accuracy
and specificity, as they have been shown to be adequate for Deformetrica-generated shape
parameterizations in terms of separating clinically meaningful shape clusters [12]. The

www.deformetrica.org
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correlation distance is good at assessing the similarity of shapes, which is the objective of
this study.

Table 1. A summary of the common linkage method and distance metrics used in hierarchical cluster
analysis. The x and y in the equations represent coordinates of points in a 2D space.

Linkage
Method Description Distance Metric Description Distance Equation

Single

The objects are grouped
in one cluster

depending on the two
closest objects within
the clusters. Produces

long clusters.

Euclidean

Based on the
Pythagoras theorem
formula and is used

when data are
continuous and have
normal distribution.
High values will be

clustered together, and
low values will be
clustered together.

d(x, y) = ∑(xi − yi)
2

Complete

The opposite of single;
the objects are grouped
based on the furthest

objects within the
clusters. Produces

compact
spherical clusters.

Manhattan

It measures by
summing the absolute

differences of the
coordinates of

two objects.

Dman = ∑n
i=1(xi − yi)

Average

This is based on the
average distance of the

objects within
the clusters.

Correlation

Based on the
correlation coefficient.
Most common is the
Pearson parametric

correlation. Sensitive
to outliers.

dcorrelation

= 1 − (xi−xi)(yi−yi)√
(xi−xi)(xi−xi)

′ √(yi−yi)(yi−yi)

Centroid

The objects are grouped
in a cluster based on
the distance between
the objects that are in

the centre of the cluster.

Mahalanobois
Takes normalisation of
data into account and is

based on t-score.

dMahalanobois =√
(x − µ)TS−1(x − µ)

where S is the covariance matrix of
the distribution, µ is the mean of

vector of the distribution, and
(x − µ)T is the transpose of the

difference vector.

Ward

The objects are grouped
based on the minimal

increase in sum-of
squares. Minimises the

variance within
each cluster.

Cosine Measures cosine angle
between two vectors.

dcosine =
A·B

∥A∥·∥B∥
where A and B are vectors and

∥A∥·∥B∥ are the magnitudes of the
vectors (sum of squares).

McQuitty/
Weighted

(WPGMA)

Based on the average
distance between

clusters but does not
take number of points

in the clusters
into consideration.

2.5. Data Analysis

Dunn’s pairwise comparison and Kruskal-Wallis test were performed to compare
between the different surgical groups in regards to PCA shape modes and patients’ de-
mographics, in addition to aortic geometric analyses between clusters. In the univariate
regression, we correlated Mode 1, which represents aortic size, with patient demographics
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(age, BSA, BMI, height). Concerning multiple regression, we correlated Mode 1 with BSA,
BMI, and height while always controlling for age.

Pearson’s chi-squared test was performed to assess the distribution frequency of surgi-
cal groups in each cluster. A p value of 0.05 was considered statistically significant. Statisti-
cal analyses were performed in Stata (StataMP 17, StataCorp, College Station, TX, USA).

3. Results
3.1. Patients Characteristics

The pre-operative population included 47 patients: 15 AVR, 15 Ozaki, 13 Ross,
and 4 VS. The mean age was 44 years (AVR: 46 years; Ozaki: 51 years; Ross: 31 years;
VS: 56 years) with a range of 16–78 years. There were 30 males and 17 females; 28 of the
patients had a bicuspid aortic valve and 13 had a tricuspid aortic valve. Six did not have
clear valve morphologies.

The post-operative population included 35 patients: 12 AVR, 10 Ozaki, 10 Ross, and
3 VS. The mean age was 44 years (AVR: 49 years; Ozaki: 50 years; Ross: 31 years) with a
range of 17–76 years. There were 25 males and 10 females; 15 patients had a bicuspid aortic
valve and 10 had a tricuspid aortic valve. Ten did not have clear valve morphology.

Patient characteristics are reported in Table 2.

Table 2. Shows pre-operative and post-operative patients’ demographics and anthropometrics,
including valve morphology. Values are mean ± SD. BAV: bicuspid aortic valve; TAV: tricuspid aortic
valve. AVR: aortic valve replacement (traditional); VS: valve-sparing.

Pre-Operative Patient Characteristics

Variable AVR (n = 15) Ozaki (n = 15) Ross (n = 13) VS (n = 4)

Sex 12 m; 3 f 12 m; 3 f 3 m; 10 f 3 m; 1 f

Age (years; mean ± SD) 46.0 ± 19.0 51.0 ± 12.0 31.0 ± 11.0 56.0 ± 7.0

Height (cm) 174.7 ± 6.4 176.3 ± 10.9 167.0 ± 9.5 174.3 ± 9.0

Weight (kg) 81.8 ± 16.6 88.0 ± 18.8 73.1 ± 15.9 78.3 ± 19.9

BSA (m2) 2.0 ± 0.2 2.0 ± 0.2 1.9 ± 0.2 1.9 ± 0.3

BMI (kg/m2) 26.9 ± 5.4 28.0 ± 5.6 26.2 ± 5.8 25.5 ± 3.9

Valve Type 8 BAV; 6 TAV 10 BAV; 3 TAV 10 BAV; 2 TAV 2 TAV

Ascending Aorta Surface Area (mm2) 10,989.0 ± 2711.0 13,421.0 ± 2726.0 9031.0 ± 2125.0 14,658.0 ± 3125.0

Whole Aorta Surface Area (mm2) 32,570.0 ± 7880.0 29,969.0 ± 6292.0 22,221.0 ± 4180.0 34,841.0 ± 6151.0

Post-Operative Patient Characteristics

Variable AVR (n = 12) Ozaki (n = 10) Ross (n = 10) VS (n = 3)

Sex (M, F) 12 m; 0 f 6 m; 4 f 5 m; 5 f 2 m; 1 f

Age (years, mean ± SD) 49.5 ± 17.2 49.9 ± 10.8 31 ± 14.2 47.3 ± 27.3

Height (cm) 177.8 ± 4.7 173.4 ± 13.2 163.6 ± 10.1 184 ± 7.1

Weight (kg) 85.2 ± 16.7 85.8 ± 21.4 76.3 ± 15.9 75.5 ± 16.3

BSA (m2) 2.0 ± 0.2 2.0 ± 0.3 1.8 ± 0.2 2.0 ± 0.2

BMI (kg/m2) 26.8 ± 4.7 28.6 ± 7.1 29.2 ± 9.0 22.6 ± 6.6

Valve Type 5 BAV; 2 TAV 7 BAV; 2 TAV 3 BAV; 4 TAV 2 TAV

Ascending Aorta Surface Area (mm2) 10,794.0 ± 1977.0 9695.0 ± 1640.0 8029.0 ± 2118.0 9212.0 ± 1761.0

Whole Aorta Surface Area (mm2) 27,336.0 ± 6239.0 27,011.0 ± 4747.0 20,409.0 ± 4460.0 30,233.0 ± 11,028.0
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3.2. Pre-Operative SSM Analysis

The SSM produced a template of the ascending aorta from 47 ascending aortas, which
depicts a relatively dilated ascending aorta with a wide sinus (Figure 1A). There were
significant differences between the four surgical groups in terms of patients’ aortic size.
The greatest difference was between the Ross and VS groups in terms of the PCA shape
mode 1 (p < 0.001). The Ross included a few small-sized ascending aortas, while the VS
included some of the largest ascending aortas.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 7 of 23 
 

 

3.2. Pre-Operative SSM Analysis 
The SSM produced a template of the ascending aorta from 47 ascending aortas, which 

depicts a relatively dilated ascending aorta with a wide sinus (Figure 1A). There were 
significant differences between the four surgical groups in terms of patients’ aortic size. 
The greatest difference was between the Ross and VS groups in terms of the PCA shape 
mode 1 (p < 0.001). The Ross included a few small-sized ascending aortas, while the VS 
included some of the largest ascending aortas. 

Templates (Mean Shape) of Aorta 
 

 

Figure 1. Templates of ascending and whole aortas pre- and post-operatively. (A) Pre-operative 
ascending aorta template from 47 aortas. Lambda stiffness and resolution: 35 mm and 11 mm, 
respectively. (B) Template of post-operative ascending aorta from 35 ascending aortas. Lambda 
stiffness and resolution: 33mm and 11mm, respectively. (C) Template of pre-operative whole aorta 
from 46 patients after excluding the patient with stent. Lambda stiffness and resolution: 45mm and 
11mm, respectively. (D) Template of post-operative whole aorta from 35 aortas. Lambda stiffness 
and resolution: 45 mm and 13 mm, respectively. 

Mode 1 (size) correlated with age (p = 0.005, r2 = 0.16). Using bivariate correlation 
analysis of age and height, the p-values are 0.009 and 0.087, respectively. There is a 
correlation with BSA (p = 0.02, r2 = 0.29) when age is included in the analysis. 

Concerning the size of the whole aorta, the template produced from n = 46 aortas (one 
patient who had stented aorta that produced a low-quality 3D model was excluded) 
depicts a long ascending and descending aorta that is relatively thin, but with a wide 
aortic arch (Figure 1C). Again, there were significant differences between the size of the 
whole aorta in the four groups, particularly in the Ross vs. other groups (p < 0.001). There 
was no significant difference between the other groups (AVR vs. Ozaki: p = 0.26; AVR vs. 
VS: p = 0.19; Ozaki vs. VS: p = 0.14). 

There was a strong correlation between Mode 1 and age (p < 0.001, r2 = 0.46). Bivariate 
correlation analysis with age and height has shown that height has strong correlation with 

Figure 1. Templates of ascending and whole aortas pre- and post-operatively. (A) Pre-operative
ascending aorta template from 47 aortas. Lambda stiffness and resolution: 35 mm and 11 mm,
respectively. (B) Template of post-operative ascending aorta from 35 ascending aortas. Lambda
stiffness and resolution: 33 mm and 11 mm, respectively. (C) Template of pre-operative whole aorta
from 46 patients after excluding the patient with stent. Lambda stiffness and resolution: 45 mm and
11 mm, respectively. (D) Template of post-operative whole aorta from 35 aortas. Lambda stiffness
and resolution: 45 mm and 13 mm, respectively.

Mode 1 (size) correlated with age (p = 0.005, r2 = 0.16). Using bivariate correlation
analysis of age and height, the p-values are 0.009 and 0.087, respectively. There is a
correlation with BSA (p = 0.02, r2 = 0.29) when age is included in the analysis.

Concerning the size of the whole aorta, the template produced from n = 46 aortas
(one patient who had stented aorta that produced a low-quality 3D model was excluded)
depicts a long ascending and descending aorta that is relatively thin, but with a wide aortic
arch (Figure 1C). Again, there were significant differences between the size of the whole
aorta in the four groups, particularly in the Ross vs. other groups (p < 0.001). There was
no significant difference between the other groups (AVR vs. Ozaki: p = 0.26; AVR vs. VS:
p = 0.19; Ozaki vs. VS: p = 0.14).

There was a strong correlation between Mode 1 and age (p < 0.001, r2 = 0.46). Bivariate
correlation analysis with age and height has shown that height has strong correlation with
the size of the whole aorta (p = 0.001). BSA had a strong correlation as well (p = 0.002), but
not BMI (p = 0.19).
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Qualitative (visual) similarity between ascending aorta vs. whole aorta templates is
shown in Figure 2.
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Three measurements were taken at the aortic root, the mid-ascending aorta, and the
distal part of the ascending aorta (Figure 2C) for both the ascending aorta model and the
whole aorta model in order to measure the diameter difference. This was carried out to
evaluate the SSM’s template construction accuracy. For the pre-operative ascending aorta,
the measurements were: 36.19 mm, 39.48 mm, 36.57 mm; for the whole aorta, the measure-
ments were: 36.19 mm, 39.53 mm, 35.68 mm, indicating a sub-millimetre difference overall.
For the post-operative ascending aorta, the measurements were: 34.85 mm, 32.19 mm,
32.80 mm; for the whole aorta, the measurements were: 33.60 mm, 33.56 mm, 33.36 mm,
indicating a difference ranging from sub-millimetre to 1.37 mm. This signifies that the
SSM was accurate in producing matching templates (ascending aorta and whole aorta)
despite different lambda parameters for each. Aortic diameter measurements are reported
in Table 3.

Table 3. The diameter measurements of the pre-operative and post-operative templates of the
ascending aortas and whole aortas.

Templates Aortic Root Diameter Mid-Ascending
Aorta Diameter

Distal Ascending
Aorta Diameter

Pre-operative Ascending Aorta 36.19 mm 39.48 mm 36.57 mm
Pre-operative Whole Aorta 36.19 mm 39.53 mm 35.68 mm

Post-operative Ascending Aorta 34.85 mm 32.19 mm 32.80 mm
Post-operative Whole Aorta 33.60 mm 33.56 mm 33.36 mm

3.3. Post-Operative SSM Analysis

The post-operative SSM analysis produced a template from a population sample
of 35 ascending aortas, which depicted an ascending aorta with a slightly wide sinus
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(Figure 1B). The differences between the surgical groups in terms of aortic size were not as
great as in the pre-operative groups. The greatest difference in terms of PCA shape mode
1 is between the AVR group and the Ross group (p = 0.02), and between the AVR group
and the Ozaki group (p = 0.04). Differences in aortic size between other groups were not
significant (AVR vs. VS: p = 0.30; Ozaki vs. Ross: p = 0.40; Ozaki vs. VS: p = 0.26; Ross vs.
VS: p = 0.20).

As opposed to the pre-operative results, the correlation of aortic size, represented in
mode 1, with age, was not significant (p = 0.07). In the univariate correlation, height was
the only factor that had a significant correlation with mode1/aortic size (p = 0.01). Bivariate
correlation analysis was also not significant except for age when also correlated with BMI
(p = 0.05), and height when also correlated with age (p = 0.02). Mode 1 is illustrated in
Figure 3. Modes 2–4 are shown in the Appendix A.
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Figure 3. The first mode of the PCA shape modes depicting ascending and whole aortas pre- and
post-operatively. The three aortas from left to right illustrate −2 standard deviation, the mean
shape, and +2 standard deviation. This mode depicts mostly the size of the aorta. (A) Pre-operative
ascending aorta. The shape deforms from a small thin ascending aorta with a relatively thin sinus to
a large and dilated ascending aorta that is also curved and has a wide aortic root. (B) Post-operative
ascending aorta. (C) Pre-operative whole aorta. Here, a more tortuous descending aorta is seen.
The shape deforms from a thin whole aorta to a larger and more dilated whole aorta with tortuous
descending aorta. (D) Post-operative whole aorta. Again, a slightly tortuous descending aorta is
shown at +2 standard deviation.

For the whole aorta, the SSM analysis produced a template that depicted an aorta that
had a relatively long ascending aorta with a slightly wide sinus and a descending aorta
that was relatively thin (Figure 1D). Similar to the pre-operative aortas, the smallest aorta
belonged to the Ross group, while the largest belonged to the VS group. In PCA shape
mode 1, the Ross group showed the strongest difference from all other groups (vs. AVR:
p = 0.04; vs. Ozaki: p = 0.02; vs. VS: p = 0.03). Apart from this, there was no statistical
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significance between the groups in terms of aortic size (AVR vs. Ozaki: p = 0.32; AVR vs.
VS: p = 0.24; Ozaki vs. VS: p = 0.34).

Univariate correlation analysis showed that age strongly correlated with the size of
the whole aorta (p < 0.001, r2 = 0.47). Both BSA and height also correlated with size (p = 0.03
and p = 0.009, respectively). However, BMI had no correlation with size (p = 0.80).

A PCA scatterplot of Mode 1 vs. Mode 2 for the pre-operative and post-operative
ascending and whole aortas was carried out to identify shape variability between the
surgical groups (Figure 4).
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Figure 4. PCA scatterplots of Mode 1 vs. Mode 2 for the pre-operative and post-operative ascending
and whole aortas. (A) Pre-operative ascending aortas; (B) Pre-operative whole aortas; (C) Post-
operative ascending aortas; (D) Post-operative whole aortas. In all scenarios, there is no clear
distinction between the surgical groups, except for the Ross where they tend to mostly cluster
together. The Ross shapes have a tendency of having negative values for Mode 1 suggesting small
aortas. This clustering also shows that the Ross have less variability compared to the other surgical
groups. Many of the AVR points also seem to cluster together, but other points are also dispersed
throughout the plot, indicating greater variability. The Ozaki points are moderately spread out but
less in comparison to the AVR group. The valve-sparing group is too small to yield meaningful
results. AVR: aortic valve replacement; OZ: Ozaki; R: Ross; VS: valve-sparing.
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Table 4 describes in detail the cumulative inertia and PCA shape mode for the pre-
operative and post-operative analyses.

Table 4. Cumulative Inertia and PCA Shape Modes. Displays the cumulative inertia and PCA shapes
of ascending and whole aortas in pre- and post-operative analyses.

Pre-Operative Analysis

Scenario Mode 1 Mode 2 Mode 3 Mode 4

Cumulative
Inertia—Ascending

Aorta (Contribution)
24% (24%) 36% (12%) 47% (11%) 57% (10%)

Cumulative
Inertia—Whole Aorta

(Contribution)
27% (27%) 38% (11%) 47% (9%) 55% (8%)

Ascending Aorta
Shape features

Small and thin > large
and dilated

Wide aortic root >
elongated segment

proximal to aortic arch

Thin and long section
proximal to aortic arch
> wide and short aorta

and narrow sinus

Narrow aortic root and
long aorta > wide aortic

root and short aorta

Whole Aorta Shape
Small > large and

dilated, curved
descending aorta

‘Hook-like’ appearance
> tortuous + dilated

descending aorta

Dilated ascending >
thin ascending aorta

Long and narrow aorta,
gothic arch > short and

dilated aorta,
crenel arch

Post-Operative Analysis

Scenario Mode 1 Mode 2 Mode 3 Mode 4

Cumulative
Inertia—Ascending

Aorta (Contribution)
24% (24%) 36.3% (12.3%) 46% (9.7%) 54.6% (8.6%)

Cumulative
Inertia—Whole Aorta

(Contribution)
25.6% (25.6%) 36.6% (11%) 46.6% (10%) 54.6% (8%)

Ascending Aorta Shape Small > large
Curved, slightly long >

less curvature,
short, dilated

Curved and dilated >
slightly narrower

Dilated and
curved > thinner

Whole Aorta Shape Small > large, tortuous
descending aorta

Dilated and long
ascending, short

descending, tortuous >
short ascending, long

descending aorta

Long ascending, short
and wide descending >

short ascending,
long descending

Curved aorta, wide
aortic root > long and
straight descending,
thin aortic root, wide

ascending aorta

3.4. Pre-Operative Cluster Analysis

For the pre-operative cluster analysis ascending aorta, the dendrogram divides into
two main clusters, which further subdivides into five subclusters (Figure 5). Using Pearson’s
chi-squared test to assess the frequency of distribution, we show that the difference between
the five clusters in terms of encompassing the proportion of aortas belonging to the four
surgical groups is statistically significant (p < 0.001).

In the pre-operative cluster analysis whole aorta, the dendrogram divides into two
primary clusters, which are then subdivided into five subclusters (Figure 6). Using Pear-
son’s chi-squared test to assess the frequency of distribution, we show that the difference
between the five clusters in terms of encompassing the proportion of aortas belonging to
the four surgical groups is statistically significant (p = 0.03). A contingency table of the
pre-operative ascending and whole aortas within clusters is shown in Table 5.
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Figure 5. Hierarchical cluster dendrogram of pre-operative ascending aortas. Height represents extent
of dissimilarity between clusters. Cut-off line was placed at height of ~1.0, resulting in four clusters.
Linkage method and distance metric used were McQuitty (WPGMA) and correlation respectively.
AVR: aortic valve replacement; OZ: Ozaki; R: Ross; VS: valve-sparing. The numbers following
acronyms represent patient number. * Hierarchical cluster analysis; McQuitty linkage method and
correlation distance.

Table 5. Pre-operative Contingency Table of surgical groups within clusters.

Ascending Aortas

Group Cluster I Cluster II Cluster III Cluster IV Total

AVR 3 0 8 4 15

Ozaki 2 5 4 4 15

Ross 0 12 0 1 13

VS 1 0 1 2 4

Total 6 17 13 11 47

Whole Aortas

Group Cluster I Cluster II Cluster III Cluster IV Cluster V

AVR 3 2 3 4 2 14

Ozaki 6 1 1 4 3 15

Ross 2 1 0 0 10 13

VS 1 0 1 2 0 4

Total 12 4 5 10 15 46

Contingency table of surgical groups within clusters. Pearson’s chi-squared test. X2 (9) = 30.88 indicating p-value
of <0.01 for ascending aortas. X2 (12) = 22.64 indicating p-value of 0.03 for whole aortas. Numbers in the table
indicate the number of shapes corresponding to each surgical procedure within each cluster.
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Figure 6. Hierarchical cluster dendrogram of pre-operative whole aortas. Height represents extent of
dissimilarity between clusters. Cut-off line was placed at a height of ~1.0, resulting in five clusters.
Linkage method and distance metric used were McQuitty (WPGMA) and correlation, respectively.
AVR: aortic valve replacement; OZ: Ozaki; R: Ross; VS: valve-sparing. The numbers following
acronyms represent patient number. * Hierarchical cluster analysis; McQuitty linkage method and
correlation distance.

We wanted to assess how distinct the clusters are from each other, so we decided to test
for geometric variations of the whole aortas within the clusters. Cluster III is significantly
different from clusters IV and V (p = 0.05; p = 0.004), which is in turn different from
clusters I and II (p = 0.02) in terms of centreline length. Concerning tortuosity, the only
significant difference is between clusters I and III (p = 0.02). In terms of surface area/volume
ratio, there is a significant difference between cluster IV and clusters I and V (p = 0.02;
p < 0.001), and cluster II is also significantly different from cluster V (p = 0.05). Regarding
ascending/descending aorta diameter, there is a significant difference between cluster I
and clusters III and V (p = 0.002; p = 0.01), and between cluster III and cluster IV (p = 0.02).
Figure 7 illustrates this in detail.

3.5. Post-Operative Cluster Analysis

In the post-operative cluster analysis ascending aorta, the dendrogram is divided into
two main clusters, which are then subdivided into five subclusters (Figure 8). This time, the
Pearson’s chi-squared test does not show a significant difference between the clusters (p = 0.47).

For the post-operative cluster analysis whole aorta, the dendrogram is divided into
two primary clusters, which is then subdivided into five subclusters (Figure 9). Again,
there is no significant difference between the clusters (p = 0.19). A contingency table of
post-operative ascending and whole aortas within clusters is shown in Table 6.
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five clusters. Linkage method and distance metric used were McQuitty (WPGMA) and correlation,
respectively. AVR: aortic valve replacement; OZ: Ozaki; R: Ross; VS: valve-sparing. The numbers
following acronyms represent patient number. * Hierarchical cluster analysis; McQuitty linkage
method and correlation distance.
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Figure 9. Hierarchical cluster dendrogram of post-operative whole aortas. Height represents extent of
dissimilarity between clusters. Cut-off line was placed at a height of ~0.95–1.0 resulting in five clusters.
Linkage method and distance metric used were McQuitty (WPGMA) and correlation respectively.
AVR: aortic valve replacement; OZ: Ozaki; R: Ross; VS: valve-sparing. The numbers following
acronyms represent patient number. * Hierarchical cluster analysis; McQuitty linkage method and
correlation distance.

Table 6. Post-operative Contingency table of surgical groups within clusters.

Ascending Aortas

Group Cluster I Cluster II Cluster III Total

AVR 4 5 3 12

Ozaki 2 2 6 10

Ross 3 1 6 10

VS 1 0 2 3

Total 10 8 17 35

Whole Aortas

Group Cluster I Cluster II Cluster III Cluster IV Cluster V Total

AVR 2 5 1 2 2 12

Ozaki 1 2 4 1 2 10

Ross 1 8 0 1 0 10

VS 0 2 1 0 0 3

Total 4 17 6 4 4 35

Contingency table of surgical groups within clusters. Pearson’s chi-squared test. X2 (6) = 5.80 indicating p-value of
0.45 for ascending aortas. X2 (12) = 13.55 indicating p-value of 0.33 for whole aortas. Numbers in the table indicate
the number of shapes corresponding to each surgical procedure within the clusters.
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Concerning geometric analyses within clusters, Figure 10 demonstrates a significant
difference between cluster II and clusters III and IV in terms of centreline length (p < 0.001).
There is also a significant difference between cluster V and both clusters III and IV (p = 0.02).
Concerning tortuosity, there is a significant difference between cluster I and both clusters II
and IV (p < 0.001; p = 0.03). Cluster II is significantly different between cluster III and V
(p = 0.002; p = 0.03). There is also a significant difference between cluster II and cluster IV
(p = 0.02) in terms of surface area/volume ratio. Regarding ascending/descending aorta
diameter, the second cluster stands out as it is significantly different from all the other
clusters (p = 0.05; p = 0.003; p = 0.008; p = 0.02). Given the above information, it seems that
cluster two is the most distinct from the other clusters. Interestingly, almost half of the
shapes within this cluster are Ross, which may indicate that Ross patients have markedly
different aortic morphology.
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whiskers demonstrate maximum and minimum values. * signifies statistical significance of p < 0.05.
Blue dots signify outliers.
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4. Discussion

This study presented the feasibility of applying both 3D statistical shape modelling
and unsupervised hierarchical clustering to a population of patients before and after AVR
surgery, assessing if such methods could be useful in detecting differences in the aortic
morphology due to different surgical procedures. For both methods, we assessed the
ascending aorta as well as the whole aorta.

In the SSM, we produced a template of the ascending aorta and the whole aorta.
Next, we calculated the shape modes based on PCA. Compared to pre-operative ascending
aortas, there is less variability between the ascending aortas post-operatively. However, the
different surgical procedures seem to influence different aortic deformations. For example,
in the first mode, the AVR procedure group has the largest aortic size, while the smallest
ascending aorta belongs to the Ross group. We wanted to make sure if the size of the
ascending aorta is related to the procedure itself or if it is simply due to the patients’
demographics and anthropometrics. Even though there was a significant age difference
specifically between the Ross group, which includes the subject with the smallest aortic
surface area, and the AVR and Ozaki groups, we found no correlation between age and
aorta size (p = 0.07). We also found no correlation with BMI or BSA. However, there was a
correlation with height (p = 0.01). This shows that the size of the ascending aorta is mostly
attributed to the patient’s height and is not associated with the surgical procedure.

Concerning the whole aorta, we saw greater shape variability, even in the first mode,
which usually shows only changes in length and dilatation, but here not only does the
whole aorta become larger in size, but the tortuosity of the descending aorta also increases,
resulting in a ‘question mark’ appearance. We found that size here is correlated with
age and BSA as well as height, perhaps due to the inclusion of a larger portion of the
aorta. Again, the smallest whole aorta is influenced by the Ross group, but the largest
aorta is influenced by the VS group in this case. This is different from the ascending aorta
results because perhaps the aortic arch and descending aorta are larger in the VS compared
to the AVR.

Hierarchical clustering is not the only method that could be used to classify objects,
e.g., K-means clustering. We chose to use hierarchical clustering as opposed to K-means
clustering since K-means clustering requires specifying the number of clusters, while
hierarchical clustering does not have such a prerequisite. In addition, K-means clustering is
sensitive to noise which could affect the quality of clustering [27]. We wanted the method
to be completely unsupervised, which is especially helpful when we know little about the
interdifferences and variations within the population under study. Another advantage of
hierarchical clustering is that one can identify subclusters within the clusters due to its
hierarchical representation [28].

Our choice of settings was based on studies conducted by Bruse et al. [12] and Gun-
delwein et al. [29] as Bruse and colleagues have shown that the use of correlation dis-
tance and the weighted method was found to have the highest specificity and accuracy
above 90% [12]. The McQuitty method was also shown to have the best performance
compared to other methods in one study [30]. We chose the correlation distance because
Lance and Williams [31] recommended that the use of the correlation distance is quite
useful when the researcher wants to assess the interrelationship between objects, such
as the shapes of the objects, which is the purpose of our clustering. Additionally, two
previous studies that also assessed aortas used the correlation distance and were successful
in classifying the aortas according to their pathology [12,29].

The algorithm of the clustering analysis automatically classifies the shapes into a
number of clusters based on their morphology; the number need not be specified, which is
why it is considered unsupervised; however, we have to specify where to cut off the tree,
which affects the interpretability of the results, since the number of clusters will change.
That is, the higher the cut-off line on the dendrogram, the fewer the clusters where all
shapes are clustered in one group, and the lower the cut-off line, the more clusters since it
is closer to individual shapes. We tried to choose the maximum height possible, indicating
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the greatest difference between the clusters, but below the height where the tree splits into
two clusters since comparing two clusters is not informative.

For the pre-operative ascending aorta, we found four clusters, while we found five
clusters for the whole aorta. This suggests a great difference between the ascending and
whole aortas, even though they belong to the same patients. Similar to the construction
of the SSM atlas, the clustering will be influenced by the degree of morphological varia-
tions, and perhaps the difference between the dendrograms implies that there is a greater
difference between the patients within the region of the ascending aorta than the region of
the aortic arch and descending aorta. Since the ascending aorta is smaller, the clustering
analysis will be more sensitive to subtle variations within that region that may be caused
by valve pathology, and the inclusion of the arch and descending aorta may decrease
the sensitivity.

For the post-operative ascending and whole aorta, we attained three and five clusters,
respectively. The dendrograms did not cluster the shapes based on the different surgical
procedures, except for most of the Ross shapes. Six out of ten Ross ascending aortas were
clustered in one group, while eight out of ten were clustered in one group for the whole
aorta. Interestingly, this kind of clustering also occurs in the pre-operative analysis, where
12 out of 13 Ross ascending aortas cluster in one group and 10 out of 13 cluster for the
whole aorta. This shows that the hierarchical clustering methodology can successfully
classify aortas based on morphological variance since we already know that (1) there
is no big difference between the AVR, Ozaki, and VS procedures in terms of significant
morphological changes that they may cause, and (2) that the Ross procedure is quite
significantly different from the other procedures. However, since the pre-Ross shapes do
also cluster together and are also considered different from the other procedures, this may
indicate that it may not necessarily be due to the surgery itself.

Additionally, we assessed geometric differences between the clusters in terms of
centreline length, tortuosity, surface area/volume ratio, and ascending/descending aorta
diameter ratio. Indeed, there were significant morphological differences between the found
shape clusters, as shown by analysing the respective morphometric parameters.

4.1. Limitations

This was a feasibility study, and the sample size was too small to produce clinically
significant results. Therefore, clinical outcomes were not assessed. We had two different
patient cohorts for the pre-operative and post-operative analyses. If data were available
pre- and post-surgery for the same patient (or, in our case, across the two cohorts) it would
be possible to compare how the aortas change structure due to the surgical procedure using
a longitudinal SSM approach [32]. This is due to a lack of imaging data, as scans were
routine clinical scans, not research scans.

4.2. Future Outlook

We have shown that SSM and hierarchical clustering could be used to assess and clas-
sify aortic morphology pre- and post-operation. The classification could help clinicians in
patient risk stratification, leading to better diagnosis, and treatment plans. The assessment
of post-operative structures could also show how certain surgical procedures change the
anatomy, which can impact cardiovascular function. In this way, researchers and surgeons
could choose the most appropriate surgical procedure, modify it, or even come up with a
novel, more optimised procedure. Researchers could design customised valve prostheses
that closely match the patients’ anatomy. These statistical methods could be applied to any
cardiovascular structure and any surgical treatment.

5. Conclusions

We demonstrated the feasibility of applying statistical shape modelling and hierar-
chical clustering to evaluate aortic morphology before and after different aortic valve
surgeries, namely the traditional AVR, the Ozaki, Ross, and valve-sparing procedures. We
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have shown that the Ross surgical group has aortic variability that is different compared to
the rest. Clustering has shown that this difference exists in both pre- and post-operation,
potentially indicating the aortic variability is not solely due to the surgical procedure itself
but to this specific cohort of patients who were chosen to undergo the Ross procedure.
In the future, researchers could progress on this work by including large sample sizes to
yield clinically meaningful results that may help surgeons and clinicians improve surgical
treatment and patients’ quality of life.
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