The Impact of Navigation in Lumbar Spine Surgery: A Study of Historical Aspects, Current Techniques and Future Directions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Historical Overview of Navigation in Lumbar Spine Surgery
3.1.1. In the 1980s (The Initial Concept of Surgical Navigation)
3.1.2. In the Early 1990s (Emergence of Image-Guided Surgery)
3.1.3. In the Late 1990s (Introduction of Computer-Assisted Surgery)
3.1.4. In the Early 2000s (Advances in 3D Navigation Systems)
3.1.5. In the 2010s (The Integration of Navigation with Robotic Systems)
3.2. Current Navigation Systems
3.3. Steps of Applied Navigation in Lumbar Spine Surgery
3.3.1. Preoperative Planning
3.3.2. Patient Positioning and Registration
3.3.3. Intraoperative Navigation
3.3.4. Registration, Verification, and Adjustment
3.3.5. Navigated Instruments
3.3.6. Postoperative Assessment
3.4. The Role of Navigation Systems in Lumbar Spine Surgery and Their Effectiveness
3.4.1. Role of Navigation in Lumbar Pedicle Screw Placement
3.4.2. Role of Navigation in Lumbar Interbody Implant Placement
3.4.3. Role of Navigation in Minimally Invasive Lumbar Decompression
3.4.4. Role of Navigation in Lumbar Spinal Tumors and Other Cystic Lesions
3.4.5. Role of Navigation in Spinal Osteotomy and Deformity Correction
3.4.6. Role of Navigation in Lumbar Spine Fractures and Spinal Spondylolisthesis
4. Discussion
4.1. Advantages of Navigation in Spine Surgery
4.2. Disadvantages of Navigation in Spine Surgery
- High Cost: The initial investment in navigation systems is substantial, which can be a barrier for many healthcare facilities, especially those in resource-limited settings. Maintenance and updates also add to the cost [100]. The economic burden extends to training personnel and integrating these systems into existing workflows [101]. Despite advancements in the field of navigated spine surgery over the past two decades and the widespread availability of navigation systems, a mere 9% of surgeons consistently employ these systems [1].
- Learning Curve: Surgeons and operating room staff need to undergo extensive training to become proficient in using navigation systems. The learning curve can initially lead to longer operative times and increased complexity in case management [102]. Proficiency requires consistent use and practice, which can be challenging in low-volume centers [103]. The surgeons reported that their first experience did not comply with their expectations. As they progressed along the learning curve, the team identified several critical factors for success, such as the optimal camera position, reference frame attachment location and orientation, recognition of possible causes of errors that the system possesses, and proper steps in the surgical workflow [34]. As they became competent with these parameters, their ability to efficiently place screws significantly improved.
4.3. Future of Navigation in Spine Surgery
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Härtl, R.; Lam, K.S.; Wang, J.; Korge, A.; Kandziora, F.; Audigé, L. Worldwide Survey on the Use of Navigation in Spine Surgery. World Neurosurg. 2013, 79, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, S.; Vidyadhara, S.; Ramesh, P.; Shetty, A.P. Randomized Clinical Study to Compare the Accuracy of Navigated and Non-Navigated Thoracic Pedicle Screws in Deformity Correction Surgeries. Spine 2007, 32, E56–E64. [Google Scholar] [CrossRef] [PubMed]
- Helm, P.A.; Teichman, R.; Hartmann, S.L.; Simon, D. Spinal Navigation and Imaging: History, Trends, and Future. IEEE Trans. Med. Imaging 2015, 34, 1738–1746. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Sonawane, S.; Meena, U.; Lu, Z.; Fujiwara, Y.; Taoka, T.; Uotani, K.; Oda, Y.; Sakaguchi, T.; Arataki, S. Comparison of C-Arm-Free Oblique Lumbar Interbody Fusion L5-S1 (OLIF51) with Transforaminal Lumbar Interbody Fusion L5-S1 (TLIF51) for Adult Spinal Deformity. Medicina 2023, 59, 838. [Google Scholar] [CrossRef] [PubMed]
- Zygogiannis, K.; Tanaka, M.; Sake, N.; Arataki, S.; Fujiwara, Y.; Taoka, T.; Uotani, K.; Askar, A.E.K.A.; Chatzikomninos, I. Our C-Arm-Free Minimally Invasive Technique for Spinal Surgery: The Thoracolumbar and Lumbar Spine-Based on Our Experiences. Medicina 2023, 59, 2116. [Google Scholar] [CrossRef] [PubMed]
- Bourret, S.; Cloche, T.; Boue, L.; Thompson, W.; Dubois, T.; Le Huec, J.-C. Computed Tomography Intraoperative Navigation in Spinal Surgery: Assessment of Patient Radiation Exposure in Current Practices. Int. J. Spine Surg. 2022, 16, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, K.; Selvaganesh, S.; Nesappan, T. Hybrid Navigation Technique for Improved Precision in Implantology. Cureus 2023, 15, e45440. [Google Scholar] [CrossRef] [PubMed]
- Tajsic, T.; Patel, K.; Farmer, R.; Mannion, R.J.; Trivedi, R.A. Spinal Navigation for Minimally Invasive Thoracic and Lumbosacral Spine Fixation: Implications for Radiation Exposure, Operative Time, and Accuracy of Pedicle Screw Placement. Eur. Spine J. 2018, 27, 1918–1924. [Google Scholar] [CrossRef] [PubMed]
- Hagan, M.J.; Syed, S.; Leary, O.P.; Persad-Paisley, E.M.; Lin, Y.; Zheng, B.; Shao, B.; Abdulrazeq, H.; Yu, J.Y.H.; Telfeian, A.E.; et al. Pedicle Screw Placement Using Intraoperative Computed Tomography and Computer-Aided Spinal Navigation Improves Screw Accuracy and Avoids Postoperative Revisions: Single-Center Analysis of 1400 Pedicle Screws. World Neurosurg. 2022, 160, e169–e179. [Google Scholar] [CrossRef]
- Sielatycki, J.A.; Mitchell, K.; Leung, E.; Lehman, R.A. State of the Art Review of New Technologies in Spine Deformity Surgery-Robotics and Navigation. Spine Deform. 2022, 10, 5–17. [Google Scholar] [CrossRef]
- D’Souza, M.; Gendreau, J.; Feng, A.; Kim, L.H.; Ho, A.L.; Veeravagu, A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot. Surg. Res. Rev. 2019, 6, 9–23. [Google Scholar] [CrossRef]
- Mao, J.Z.; Agyei, J.O.; Khan, A.; Hess, R.M.; Jowdy, P.K.; Mullin, J.P.; Pollina, J. Technologic Evolution of Navigation and Robotics in Spine Surgery: A Historical Perspective. World Neurosurg. 2021, 145, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.T.; Simon, D.A.; Rampersaud, Y.R. Virtual Fluoroscopy: Computer-Assisted Fluoroscopic Navigation. Spine 2001, 26, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.-S.; Chen, L.-H.; Wong, C.-B.; Lai, P.-L.; Tsai, T.-T.; Niu, C.-C.; Chen, W.-J. Computer-Assisted Fluoroscopic Navigation of Pedicle Screw Insertion: An in Vivo Feasibility Study. Acta Orthop. Scand. 2004, 75, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.D.; Lyo, I.U.; Kang, B.S.; Sim, H.B.; Kwon, S.C.; Park, E.S. Accuracy of Pedicle Screw Insertion Using Fluoroscopy-Based Navigation-Assisted Surgery: Computed Tomography Postoperative Assessment in 96 Consecutive Patients. J. Korean Neurosurg. Soc. 2014, 56, 16–20. [Google Scholar] [CrossRef]
- Summerlin, D.; Willis, J.; Boggs, R.; Johnson, L.M.; Porter, K.K. Radiation Dose Reduction Opportunities in Vascular Imaging. Tomography 2022, 8, 2618–2638. [Google Scholar] [CrossRef] [PubMed]
- Nottmeier, E.W.; Crosby, T.L. Timing of Paired Points and Surface Matching Registration in Three-Dimensional (3D) Image-Guided Spinal Surgery. Clin. Spine Surg. 2007, 20, 268–270. [Google Scholar] [CrossRef]
- Peng, C.W.B.; Yue, W.M.; Poh, S.Y.; Yeo, W.; Tan, S.B. Clinical and Radiological Outcomes of Minimally Invasive versus Open Transforaminal Lumbar Interbody Fusion. Spine 2009, 34, 1385–1389. [Google Scholar] [CrossRef]
- Waschke, A.; Walter, J.; Duenisch, P.; Reichart, R.; Kalff, R.; Ewald, C. CT-Navigation versus Fluoroscopy-Guided Placement of Pedicle Screws at the Thoracolumbar Spine: Single Center Experience of 4500 Screws. Eur. Spine J. 2013, 22, 654–660. [Google Scholar] [CrossRef]
- Lazennec, J.Y.; Saillant, G.; Hansen, S.; Ramare, S. Intraoperative ultrasonography evaluation of posterior vertebral wall displacement in thoracolumbar fractures. Neurol. Med. Chir. 1999, 39, 8–14. [Google Scholar] [CrossRef]
- Acosta, F.L.; Thompson, T.L.; Campbell, S.; Weinstein, P.R.; Ames, C.P. Use of Intraoperative Isocentric C-Arm 3D Fluoroscopy for Sextant Percutaneous Pedicle Screw Placement: Case Report and Review of the Literature. Spine J. 2005, 5, 339–343. [Google Scholar] [CrossRef]
- Nolte, L.P.; Slomczykowski, M.A.; Berlemann, U.; Strauss, M.J.; Hofstetter, R.; Schlenzka, D.; Laine, T.; Lund, T. A New Approach to Computer-Aided Spine Surgery: Fluoroscopy-Based Surgical Navigation. Eur. Spine J. 2000, 9 (Suppl. S1), S78–S88. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Arataki, S.; Mehta, R.; Tsai, T.-T.; Fujiwara, Y.; Uotani, K.; Yamauchi, T. Transtubular Endoscopic Posterolateral Decompression for L5–S1 Lumbar Lateral Disc Herniation. J. Vis. Exp. 2022, 188, e63603. [Google Scholar] [CrossRef]
- Bertelsen, A.; Melo, J.; Sánchez, E.; Borro, D. A Review of Surgical Robots for Spinal Interventions. Int. J. Med. Robot. Comput. Assist. Surg. 2013, 9, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.A.; Theodore, N.; Ahmed, A.K.; Westbroek, E.M.; Mirovsky, Y.; Harel, R.; Orru’, E.; Khan, M.; Witham, T.; Sciubba, D.M. Augmented Reality-Assisted Pedicle Screw Insertion: A Cadaveric Proof-of-Concept Study. J. Neurosurg. Spine 2019, 31, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Boon Tow, B.P.; Yue, W.M.; Srivastava, A.; Lai, J.M.; Guo, C.M.; Wearn Peng, B.C.; Chen, J.L.T.; Yew, A.K.S.; Seng, C.; Tan, S.B. Does Navigation Improve Accuracy of Placement of Pedicle Screws in Single-Level Lumbar Degenerative Spondylolisthesis?: A Comparison Between Free-Hand and Three-Dimensional O-Arm Navigation Techniques. Clin. Spine Surg. 2015, 28, E472–E477. [Google Scholar] [CrossRef] [PubMed]
- Best, N.M.; Sasso, R.C.; Garrido, B.J. Computer-Assisted Spinal Navigation Using a Percutaneous Dynamic Reference Frame for Posterior Fusions of the Lumbar Spine. Am. J. Orthop. 2009, 38, 387–391. [Google Scholar] [PubMed]
- Rahmathulla, G.; Nottmeier, E.W.; Pirris, S.M.; Deen, H.G.; Pichelmann, M.A. Intraoperative Image-Guided Spinal Navigation: Technical Pitfalls and Their Avoidance. Neurosurg. Focus. 2014, 36, E3. [Google Scholar] [CrossRef] [PubMed]
- Sclafani, J.A.; Regev, G.J.; Webb, J.; Garfin, S.R.; Kim, C.W. Use of a Quantitative Pedicle Screw Accuracy System to Assess New Technology: Initial Studies on O-Arm Navigation and Its Effect on the Learning Curve of Percutaneous Pedicle Screw Insertion. SAS J. 2011, 5, 57–62. [Google Scholar] [CrossRef]
- Van de Kelft, E.; Costa, F.; Van der Planken, D.; Schils, F. A Prospective Multicenter Registry on the Accuracy of Pedicle Screw Placement in the Thoracic, Lumbar, and Sacral Levels with the Use of the O-Arm Imaging System and StealthStation Navigation. Spine 2012, 37, E1580–E1587. [Google Scholar] [CrossRef]
- Scheufler, K.-M.; Franke, J.; Eckardt, A.; Dohmen, H. Accuracy of Image-Guided Pedicle Screw Placement Using Intraoperative Computed Tomography-Based Navigation with Automated Referencing. Part II: Thoracolumbar Spine. Neurosurgery 2011, 69, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.Y.; Chan, C.K.; Lee, S.-H.; Lee, H.-Y. The Accuracy of 3D Image Navigation with a Cutaneously Fixed Dynamic Reference Frame in Minimally Invasive Transforaminal Lumbar Interbody Fusion. Comput. Aided Surg. 2012, 17, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Sagi, H.C.; Manos, R.; Benz, R.; Ordway, N.R.; Connolly, P.J. Electromagnetic Field-Based Image-Guided Spine Surgery Part One: Results of a Cadaveric Study Evaluating Lumbar Pedicle Screw Placement. Spine 2003, 28, 2013–2018. [Google Scholar] [CrossRef] [PubMed]
- Rivkin, M.A.; Yocom, S.S. Thoracolumbar Instrumentation with CT-Guided Navigation (O-Arm) in 270 Consecutive Patients: Accuracy Rates and Lessons Learned. Neurosurg. Focus 2014, 36, E7. [Google Scholar] [CrossRef] [PubMed]
- Modi, H.N.; Suh, S.-W.; Hong, J.-Y.; Yang, J.-H. Accuracy of Thoracic Pedicle Screw Using Ideal Pedicle Entry Point in Severe Scoliosis. Clin. Orthop. 2010, 468, 1830–1837. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Mittlmeier, T.; Gierer, P.; Harms, C.; Gradl, G. Benefit and Accuracy of Intraoperative 3D-Imaging after Pedicle Screw Placement: A Prospective Study in Stabilizing Thoracolumbar Fractures. Eur. Spine J. 2009, 18, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, L.; Bi, L. Spinal navigation with intra-operative 3D-imaging modality in lumbar pedicle screw fixation. Zhonghua Yi Xue Za Zhi 2008, 88, 1905–1908. [Google Scholar] [PubMed]
- Luther, N.; Iorgulescu, J.B.; Geannette, C.; Gebhard, H.; Saleh, T.; Tsiouris, A.J.; Härtl, R. Comparison of Navigated versus Non-Navigated Pedicle Screw Placement in 260 Patients and 1434 Screws: Screw Accuracy, Screw Size, and the Complexity of Surgery. Clin. Spine Surg. 2015, 28, E298–E303. [Google Scholar] [CrossRef] [PubMed]
- Houten, J.K.; Nasser, R.; Baxi, N. Clinical Assessment of Percutaneous Lumbar Pedicle Screw Placement Using theO-Arm Multidimensional Surgical Imaging System. Neurosurgery 2012, 70, 990–995. [Google Scholar] [CrossRef]
- Wood, M.; Mannion, R. A Comparison of CT-Based Navigation Techniques for Minimally Invasive Lumbar Pedicle Screw Placement. Clin. Spine Surg. 2011, 24, E1–E5. [Google Scholar] [CrossRef]
- Eck, J.C.; Hodges, S.; Humphreys, S.C. Minimally Invasive Lumbar Spinal Fusion. J. Am. Acad. Orthop. Surg. 2007, 15, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.; Paul, R.M. Chip Fusion of the Low Back Following Exploration of the Spinal Canal. J. Bone Jt. Surg. 1944, 26, 125–130. [Google Scholar]
- Xi, Z.; Chou, D.; Mummaneni, P.V.; Burch, S. The Navigated Oblique Lumbar Interbody Fusion: Accuracy Rate, Effect on Surgical Time, and Complications. Neurospine 2020, 17, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Urakawa, H.; Sivaganesan, A.; Vaishnav, A.S.; Sheha, E.; Qureshi, S.A. The Feasibility of 3D Intraoperative Navigation in Lateral Lumbar Interbody Fusion: Perioperative Outcomes, Accuracy of Cage Placement and Radiation Exposure. Glob. Spine J. 2023, 13, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Chung, N.-S.; Lee, H.-D.; Jeon, C.-H. Accuracy of the Lateral Cage Placement under Intraoperative C-Arm Fluoroscopy in Oblique Lateral Interbody Fusion. J. Orthop. Sci. 2018, 23, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.R.; Smith, B.W.; Patel, R.D.; Park, P. Use of 3D CT-Based Navigation in Minimally Invasive Lateral Lumbar Interbody Fusion. J. Neurosurg. Spine 2016, 25, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Vazan, M.; Ryang, Y.-M.; Gerhardt, J.; Zibold, F.; Janssen, I.; Ringel, F.; Gempt, J.; Meyer, B. L5 Corpectomy-the Lumbosacral Segmental Geometry and Clinical Outcome-a Consecutive Series of 14 Patients and Review of the Literature. Acta Neurochir. 2017, 159, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Singh, M.; Fujiwara, Y.; Uotani, K.; Oda, Y.; Arataki, S.; Yamauchi, T.; Takigawa, T.; Ito, Y. Comparison of Navigated Expandable Vertebral Cage with Conventional Expandable Vertebral Cage for Minimally Invasive Lumbar/Thoracolumbar Corpectomy. Medicina 2022, 58, 364. [Google Scholar] [CrossRef]
- Tan, Y.; Tanaka, M.; Sonawane, S.; Uotani, K.; Oda, Y.; Fujiwara, Y.; Arataki, S.; Yamauchi, T.; Takigawa, T.; Ito, Y. Comparison of Simultaneous Single-Position Oblique Lumbar Interbody Fusion and Percutaneous Pedicle Screw Fixation with Posterior Lumbar Interbody Fusion Using O-Arm Navigated Technique for Lumbar Degenerative Diseases. J. Clin. Med. 2021, 10, 4938. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, G.; Fedeli, U.; Fadda, E.; Giovanazzi, A.; Scoizzato, L.; Saia, B. Increased Cancer Risk among Surgeons in an Orthopaedic Hospital. Occup. Med. Oxf. Engl. 2005, 55, 498–500. [Google Scholar] [CrossRef]
- Liu, Y.-B.; Wang, Y.; Chen, Z.-Q.; Li, J.; Chen, W.; Wang, C.-F.; Fu, Q. Volume Navigation with Fusion of Real-Time Ultrasound and CT Images to Guide Posterolateral Transforaminal Puncture in Percutaneous Endoscopic Lumbar Discectomy. Pain. Physician 2018, 21, E265–E278. [Google Scholar] [PubMed]
- Gunjotikar, S.; Pestonji, M.; Tanaka, M.; Komatsubara, T.; Ekade, S.J.; Heydar, A.M.; Hieu, H.K. Evolution, Current Trends, and Latest Advances of Endoscopic Spine Surgery. J. Clin. Med. 2024, 13, 3208. [Google Scholar] [CrossRef]
- Tanaka, M.; Sonawane, S.; Uotani, K.; Fujiwara, Y.; Sessumpun, K.; Yamauchi, T.; Sugihara, S. Percutaneous C-Arm Free O-Arm Navigated Biopsy for Spinal Pathologies: A Technical Note. Diagnostics 2021, 11, 636. [Google Scholar] [CrossRef]
- Kelly, P.D.; Zuckerman, S.L.; Yamada, Y.; Lis, E.; Bilsky, M.H.; Laufer, I.; Barzilai, O. Image Guidance in Spine Tumor Surgery. Neurosurg. Rev. 2020, 43, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-K.; Chan, C.-M.; Zhang, Q.; Xu, H.-R.; Niu, X.-H. Computer Navigation-Aided Resection of Sacral Chordomas. Chin. Med. J. 2016, 129, 162–168. [Google Scholar] [CrossRef]
- Ganau, M.; Talacchi, A.; Cecchi, P.C.; Ghimenton, C.; Gerosa, M.; Faccioli, F. Cystic dilation of the ventriculus terminalis. J. Neurosurg. Spine. 2012, 17, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Saruhashi, Y.; Odate, S.; Matsusue, Y.; Morikawa, S. Percutaneous aspiration of spinal terminal ventricle cysts using real-time magnetic resonance imaging and navigation. Spine 2009, 34, 629–634. [Google Scholar] [CrossRef]
- Bonsanto, M.M.; Metzner, R.; Aschoff, A.; Tronnier, V.; Kunze, S.; Wirtz, C.R. 3D ultrasound navigation in syrinx surgery—A feasibility study. Acta Neurochir. 2005, 147, 533–540. [Google Scholar] [CrossRef]
- Barzilai, O.; Laufer, I.; Robin, A.; Xu, R.; Yamada, Y.; Bilsky, M.H. Hybrid Therapy for Metastatic Epidural Spinal Cord Compression: Technique for Separation Surgery and Spine Radiosurgery. Oper. Neurosurg. 2019, 16, 310–318. [Google Scholar] [CrossRef]
- Yamada, Y.; Katsoulakis, E.; Laufer, I.; Lovelock, M.; Barzilai, O.; McLaughlin, L.A.; Zhang, Z.; Schmitt, A.M.; Higginson, D.S.; Lis, E.; et al. The Impact of Histology and Delivered Dose on Local Control of Spinal Metastases Treated with Stereotactic Radiosurgery. Neurosurg. Focus 2017, 42, E6. [Google Scholar] [CrossRef]
- Nasser, R.; Drazin, D.; Nakhla, J.; Al-Khouja, L.; Brien, E.; Baron, E.M.; Kim, T.T.; Patrick Johnson, J.; Yassari, R. Resection of Spinal Column Tumors Utilizing Image-Guided Navigation: A Multicenter Analysis. Neurosurg. Focus 2016, 41, E15. [Google Scholar] [CrossRef]
- Tanaka, M.; Chan, T.-T.; Misawa, H.; Uotani, K.; Arataki, S.; Takigawa, T.; Mazaki, T.; Sugimoto, Y. Long-Term Results of Posterior Vertebral Column Resection for Severe Thoracolumbar Kyphosis with Achondroplastic Patients: A Case Series. Medicina 2022, 58, 605. [Google Scholar] [CrossRef] [PubMed]
- Buell, T.J.; Nguyen, J.H.; Mazur, M.D.; Mullin, J.P.; Garces, J.; Taylor, D.G.; Yen, C.-P.; Shaffrey, M.E.; Shaffrey, C.I.; Smith, J.S. Radiographic Outcome and Complications after Single-Level Lumbar Extended Pedicle Subtraction Osteotomy for Fixed Sagittal Malalignment: A Retrospective Analysis of 55 Adult Spinal Deformity Patients with a Minimum 2-Year Follow-Up. J. Neurosurg. Spine 2018, 30, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Uotani, K.; Fujiwara, Y.; Yamane, K.; Sonawane, S.; Arataki, S.; Yamauchi, T. Navigated Lateral Osteotomy for Adult Spinal Deformity: A Technical Note. World Neurosurg. 2021, 150, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Ebara, S.; Hashidate, H.; Hirabayashi, H.; Ogihara, N.; Mukaiyama, K.; Kato, H. Computer-Assisted Hemivertebral Resection for Congenital Spinal Deformity. J. Orthop. Sci. 2011, 16, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fujiwara, Y.; Uotani, K.; Yamauchi, T.; Misawa, H. C-Arm-Free Anterior Correction for Adolescent Idiopathic Scoliosis (Lenke Type 5C): Analysis of Early Outcomes and Complications. World Neurosurg. 2021, 150, e561–e569. [Google Scholar] [CrossRef]
- Tinelli, M.; Töpfer, F.; Kreinest, M.; Matschke, S.; Grützner, P.A.; Suda, A.J. Minimally Invasive Reduction and Percutaneous Posterior Fixation of One-Level Traumatic Thoraco-Lumbar and Lumbar Spine Fractures. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Defino, H.L.A.; Costa, H.R.T.; Nunes, A.A.; Nogueira Barbosa, M.; Romero, V. Open versus Minimally Invasive Percutaneous Surgery for Surgical Treatment of Thoracolumbar Spine Fractures- a Multicenter Randomized Controlled Trial: Study Protocol. BMC Musculoskelet. Disord. 2019, 20, 397. [Google Scholar] [CrossRef] [PubMed]
- Domino, J.S.; Smith, K.A.; Arnold, P.M. Clinical and Radiologic Outcomes of Thoracolumbar Fusions Using Intraoperative CT Guidance and Stereotactic Navigation in a Spinal Trauma Population: An Analysis of 58 Patients. Clin. Spine Surg. 2021, 34, E80–E85. [Google Scholar] [CrossRef]
- Malham, G.M. Minimally Invasive Direct Lateral Corpectomy for the Treatment of a Thoracolumbar Fracture. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2015, 76, 240–243. [Google Scholar] [CrossRef]
- Yu, J.Y.H.; Fridley, J.; Gokaslan, Z.; Telfeian, A.; Oyelese, A.A. Minimally Invasive Thoracolumbar Corpectomy and Stabilization for Unstable Burst Fractures Using Intraoperative Computed Tomography and Computer-Assisted Spinal Navigation. World Neurosurg. 2019, 122, e1266–e1274. [Google Scholar] [CrossRef]
- Abdu, W.A.; Wilber, R.G.; Emery, S.E. Pedicular Transvertebral Screw Fixation of the Lumbosacral Spine in Spondylolisthesis. A New Technique for Stabilization. Spine 1994, 19, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Minamide, A.; Akamaru, T.; Yoon, S.T.; Tamaki, T.; Rhee, J.M.; Hutton, W.C. Transdiscal L5-S1 Screws for the Fixation of Isthmic Spondylolisthesis: A Biomechanical Evaluation. Clin. Spine Surg. 2003, 16, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.R.; Gibbs, C.M.; Zheng, A.; Dalton, J.F.; Gannon, E.J.; Shaw, J.D.; Ward, W.T.; Lee, J.Y. Use of L5-S1 Transdiscal Screws in the Treatment of Isthmic Spondylolisthesis: A Technical Note. J. Spine Surg. 2021, 7, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Hadgaonkar, S.; Katkade, S.M.; Bhilare, P.; Shyam, A.; Sancheti, P.K. Efficacy of Less Invasive Modified O-Arm Navigated Delta Fixation in Osteoporotic High-Grade Spondylolisthesis: “A LIMO Delta Technique”. Eur. Spine J. 2023, 32, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Fernández, J.; Pulido, P.; García-Pallero, M.Á.; Blasco, G.; Frade-Porto, N.; Sola, R.G. Image Guidance in Transdiscal Fixation for High-Grade Spondylolisthesis in Adults with Correct Spinal Balance. Neurosurg. Focus 2018, 44, E9. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fujiwara, Y.; Uotani, K.; Kamath, V.; Yamauchi, T.; Ikuma, H. Percutaneous Transdiscal Pedicle Screw Fixation for Osteoporotic Vertebral Fracture: A Technical Note. Interdiscip. Neurosurg. 2021, 23, 100903. [Google Scholar] [CrossRef]
- Reinhold, M.; Knop, C.; Kneitz, C.; Disch, A. Spine Fractures in Ankylosing Diseases: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Glob. Spine J. 2018, 8, 56S–68S. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Takahashi, H.; Iida, Y.; Yokoyama, Y.; Fukutake, K.; Takamatsu, R.; Nakamura, K.; Suzuki, D.; Shishikura, W.; Tsuge, S.; et al. Spontaneous Symptomatic Pseudoarthrosis at the L2–L3 Intervertebral Space with Diffuse Idiopathic Skeletal Hyperostosis: A Case Report. Case Rep. Orthop. 2013, 2013, 497458. [Google Scholar] [CrossRef]
- Ikuma, H.; Takao, S.; Inoue, Y.; Hirose, T.; Matsukawa, K.; Kawasaki, K. Treatment of Thoracolumbar Spinal Fracture Accompanied by Diffuse Idiopathic Skeletal Hyperostosis Using Transdiscal Screws for Diffuse Idiopathic Skeletal Hyperostosis: Preliminary Results. Asian Spine J. 2021, 15, 340–348. [Google Scholar] [CrossRef]
- Wade, W.; Saltzstein, R.; Maiman, D. Spinal Fractures Complicating Ankylosing Spondylitis. Arch. Phys. Med. Rehabil. 1989, 70, 398–401. [Google Scholar] [PubMed]
- Marland, H.; McDonnell, J.M.; Hughes, L.; Morrison, C.; Wilson, K.V.; Cunniffe, G.; Morris, S.; Darwish, S.; Butler, J.S. Comparative Surgical Outcomes of Navigated vs. Non-Navigated Posterior Spinal Fusions in Ankylosing Spondylitis Patients. Surgeon 2024, 22, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-M.; Zhao, S.-J.; Xu, J.-Z.; Li, Q.; Quan, R.-F.; Deng, X.-M. Case Series: O-Arm Navigation Assisted by the Wiltse Approach Improves the Accuracy of Pedicle Screw Placement in Ankylosing Spondylitis Combined with Thoracolumbar Fractures. Medicine 2023, 102, e36807. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Guo, R.; Jiang, X.; Wu, J.; Zhang, D.; Yang, C.; Zhao, Q.; Zhang, C.; Yan, H.; Wang, Z.; et al. Posterior Wedge Osteotomy Assisted by O-Arm Navigation for Treating Ankylosing Spondylitis with Thoracolumbar Fractures: An Early Clinical Evaluation. Ann. Palliat. Med. 2021, 10, 6694–6705. [Google Scholar] [CrossRef]
- Garg, S.; Kleck, C.J.; Gum, J.L.; Larson, A.N. Navigation Options for Spinal Surgeons: State of the Art 2021. Instr. Course Lect. 2022, 71, 399–411. [Google Scholar] [PubMed]
- Virk, S.; Qureshi, S. Navigation in Minimally Invasive Spine Surgery. J. Spine Surg. 2019, 5, S25–S30. [Google Scholar] [CrossRef] [PubMed]
- Uehara, M.; Takahashi, J.; Ikegami, S.; Kuraishi, S.; Futatsugi, T.; Kato, H. Screw Perforation Rates in 359 Consecutive Patients Receiving Computer-Guided Pedicle Screw Insertion along the Cervical to Lumbar Spine. Eur. Spine J. 2017, 26, 2858–2864. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.R.; Yanamadala, V.; Coumans, J.-V. Effect of Intraoperative Navigation on Operative Time in 1-Level Lumbar Fusion Surgery. J. Clin. Neurosci. 2016, 32, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.R.G.; Sembrano, J.N.; Yson, S.C.; Polly, D.W. Comparison of Open and Percutaneous Lumbar Pedicle Screw Revision Rate Using 3-D Image Guidance and Intraoperative CT. Orthopedics 2015, 38, e129–e134. [Google Scholar] [CrossRef]
- Peng, P.; Chen, K.; Chen, H.; Zhang, K.; Sun, J.; Yang, P.; Zhou, F.; Liu, Y.; Yang, H.; Mao, H. Comparison of O-Arm Navigation and Microscope-Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion and Conventional Transforaminal Lumbar Interbody Fusion for the Treatment of Lumbar Isthmic Spondylolisthesis. J. Orthop. Transl. 2020, 20, 107–112. [Google Scholar] [CrossRef]
- Rampersaud, Y.R.; Foley, K.T.; Shen, A.C.; Williams, S.; Solomito, M. Radiation Exposure to the Spine Surgeon during Fluoroscopically Assisted Pedicle Screw Insertion. Spine 2000, 25, 2637–2645. [Google Scholar] [CrossRef] [PubMed]
- Giordano, B.D.; Baumhauer, J.F.; Morgan, T.L.; Rechtine, G.R. Cervical Spine Imaging Using Standard C-Arm Fluoroscopy: Patient and Surgeon Exposure to Ionizing Radiation. Spine 2008, 33, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Theocharopoulos, N.; Perisinakis, K.; Damilakis, J.; Papadokostakis, G.; Hadjipavlou, A.; Gourtsoyiannis, N. Occupational Exposure from Common Fluoroscopic Projections Used in Orthopaedic Surgery. J. Bone Jt. Surg. 2003, 85, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Yokota, K.; Kawano, O.; Sakai, H.; Morishita, Y.; Masuda, M.; Hayashi, T.; Kubota, K.; Hirashima, H.; Nakashima, R.; Nakashima, Y.; et al. Intraoperative Radiation Exposure from O-Arm-Based 3D Navigation in Spine Surgery. Spine Surg. Relat. Res. 2023, 7, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, N.W.; Parrish, J.M.; Sheha, E.D.; Singh, K. Intraoperative Risks of Radiation Exposure for the Surgeon and Patient. Ann. Transl. Med. 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, K.G.; Bishop, F.S.; Lubelski, D.; Steinmetz, M.P.; Benzel, E.C.; Mroz, T.E. Radiation Exposure to the Spine Surgeon in Lumbar and Thoracolumbar Fusions with the Use of an Intraoperative Computed Tomographic 3-Dimensional Imaging System. Spine 2012, 37, E1074–E1078. [Google Scholar] [CrossRef] [PubMed]
- Tabaraee, E.; Gibson, A.G.; Karahalios, D.G.; Potts, E.A.; Mobasser, J.-P.; Burch, S. Intraoperative Cone Beam-Computed Tomography with Navigation (O-ARM) versus Conventional Fluoroscopy (C-ARM): A Cadaveric Study Comparing Accuracy, Efficiency, and Safety for Spinal Instrumentation. Spine 2013, 38, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Abul-Kasim, K.; Söderberg, M.; Selariu, E.; Gunnarsson, M.; Kherad, M.; Ohlin, A. Optimization of Radiation Exposure and Image Quality of the Cone-Beam O-Arm Intraoperative Imaging System in Spinal Surgery. Clin. Spine Surg. 2012, 25, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Siewerdsen, J.H.; Han, X.; Sidky, E.Y.; Prince, J.L.; Pelizzari, C.A.; Pan, X. Evaluation of Sparse-View Reconstruction from Flat-Panel-Detector Cone-Beam CT. Phys. Med. Biol. 2010, 55, 6575–6599. [Google Scholar] [CrossRef]
- Dea, N.; Fisher, C.G.; Batke, J.; Strelzow, J.; Mendelsohn, D.; Paquette, S.J.; Kwon, B.K.; Boyd, M.D.; Dvorak, M.F.S.; Street, J.T. Economic Evaluation Comparing Intraoperative Cone Beam CT-Based Navigation and Conventional Fluoroscopy for the Placement of Spinal Pedicle Screws: A Patient-Level Data Cost-Effectiveness Analysis. Spine J. 2016, 16, 23–31. [Google Scholar] [CrossRef]
- Harrop, J.; Lobel, D.A.; Bendok, B.; Sharan, A.; Rezai, A.R. Developing a Neurosurgical Simulation-Based Educational Curriculum: An Overview. Neurosurgery 2013, 73 (Suppl. S1), 25–29. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.T.; Chen, K.-T.; Kim, J.; Brooks, N.P. Applications of Navigation in Full-Endoscopic Spine Surgery. Eur. Spine J. 2024, 33, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.-S.; Zhang, Y.; Chen, Z.-Q.; Wang, C.-F.; Zhao, Y.-C.; Shi, Z.-C.; Li, M.; Liu, K.P.G. Learning Curve of Computer-Assisted Navigation System in Spine Surgery. Chin. Med. J. 2010, 123, 2989–2994. [Google Scholar] [PubMed]
- Ryang, Y.-M.; Villard, J.; Obermüller, T.; Friedrich, B.; Wolf, P.; Gempt, J.; Ringel, F.; Meyer, B. Learning Curve of 3D Fluoroscopy Image-Guided Pedicle Screw Placement in the Thoracolumbar Spine. Spine J. 2015, 15, 467–476. [Google Scholar] [CrossRef]
- Crum, W.R.; Hartkens, T.; Hill, D.L.G. Non-Rigid Image Registration: Theory and Practice. Br. J. Radiol. 2004, 77 (Suppl. S2), S140–S153. [Google Scholar] [CrossRef] [PubMed]
- Aubin, C.E.; Labelle, H.; Chevrefils, C.; Desroches, G.; Clin, J.; Eng, A.B.M. Preoperative Planning Simulator for Spinal Deformity Surgeries. Spine 2008, 33, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Majdouline, Y.; Aubin, C.-E.; Wang, X.; Sangole, A.; Labelle, H. Preoperative Assessment and Evaluation of Instrumentation Strategies for the Treatment of Adolescent Idiopathic Scoliosis: Computer Simulation and Optimization. Scoliosis 2012, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhang, Y.Z.; Wang, Z.; Shi, J.H.; Chen, Y.B.; Xu, X.M.; Xu, Y.Q. Accuracy and Efficacy of Thoracic Pedicle Screws in Scoliosis with Patient-Specific Drill Template. Med. Biol. Eng. Comput. 2012, 50, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Matos, S.; Sánchez-Gómez, L.M.; Hijas-Gómez, A.I.; García-Carpintero, E.E.; Ballesteros-Massó, R.; Polo-deSantos, M. Efficacy and Safety of Robotic Spine Surgery: Systematic Review and Meta-Analysis. J. Orthop. Traumatol. 2022, 23, 49. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Miller, A.; Higginbotham, D.; Saleh, E.S.; McCarty, S. Virtual and Augmented Reality in Spine Surgery: An Era of Immersive Healthcare. Cureus 2023, 15, e43964. [Google Scholar] [CrossRef]
- Devlin, V.J.; Schwartz, D.M. Intraoperative Neurophysiologic Monitoring during Spinal Surgery. J. Am. Acad. Orthop. Surg. 2007, 15, 549–560. [Google Scholar] [CrossRef] [PubMed]
Year | Trend | |
---|---|---|
1980s | Early CAS concepts | Initial ideas for computer-assisted surgery |
1995 | Image-guided surgery | First use in spine surgery with preoperative imaging |
1999 | Intraoperative imaging | Intraoperative use of CT scans, fluoroscopy, and ultrasonography |
2000–2005 | Optical tracking | Real-time instrument tracking systems |
2006 | Intraoperative 3D imaging | Registration fee |
2010 | Advanced navigation | Robotic assistance in 3D imaging |
2011 | Augmented reality (AR) | Spatial orientation improved |
2015 | Robotic assistance | Improved precision of procedures |
2018 | Artificial intelligence (AI) | Integrated image processing |
2020 | Mixed reality | To enable immersive planning and guidance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heydar, A.M.; Tanaka, M.; Prabhu, S.P.; Komatsubara, T.; Arataki, S.; Yashiro, S.; Kanamaru, A.; Nanba, K.; Xiang, H.; Hieu, H.K. The Impact of Navigation in Lumbar Spine Surgery: A Study of Historical Aspects, Current Techniques and Future Directions. J. Clin. Med. 2024, 13, 4663. https://doi.org/10.3390/jcm13164663
Heydar AM, Tanaka M, Prabhu SP, Komatsubara T, Arataki S, Yashiro S, Kanamaru A, Nanba K, Xiang H, Hieu HK. The Impact of Navigation in Lumbar Spine Surgery: A Study of Historical Aspects, Current Techniques and Future Directions. Journal of Clinical Medicine. 2024; 13(16):4663. https://doi.org/10.3390/jcm13164663
Chicago/Turabian StyleHeydar, Ahmed Majid, Masato Tanaka, Shrinivas P. Prabhu, Tadashi Komatsubara, Shinya Arataki, Shogo Yashiro, Akihiro Kanamaru, Kazumasa Nanba, Hongfei Xiang, and Huynh Kim Hieu. 2024. "The Impact of Navigation in Lumbar Spine Surgery: A Study of Historical Aspects, Current Techniques and Future Directions" Journal of Clinical Medicine 13, no. 16: 4663. https://doi.org/10.3390/jcm13164663
APA StyleHeydar, A. M., Tanaka, M., Prabhu, S. P., Komatsubara, T., Arataki, S., Yashiro, S., Kanamaru, A., Nanba, K., Xiang, H., & Hieu, H. K. (2024). The Impact of Navigation in Lumbar Spine Surgery: A Study of Historical Aspects, Current Techniques and Future Directions. Journal of Clinical Medicine, 13(16), 4663. https://doi.org/10.3390/jcm13164663