Clinical Impact of Intracoronary Imaging in the Management of Stent Thrombosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Intravascular Imaging and Classification of ST Mechanism
2.3. Statistical Analysis
3. Results
3.1. Intracoronary Imaging and Its Effect on PCI Procedure
3.2. Effect of Intracoronary Imaging on Clinical Outcomes
4. Discussion
5. Limitations
6. Conclusions
Impact on Daily Practice
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ploumen, E.H.; Pinxterhuis, T.H.; Buiten, R.A.; Zocca, P.; Danse, P.W.; Schotborgh, C.E.; Scholte, M.; Gin, R.M.T.J.; Somi, S.; van Houwelingen, K.G.; et al. Final 5-Year Report of the Randomized BIO-RESORT Trial Comparing 3 Contemporary Drug-Eluting Stents in All-Comers. J. Am. Heart Assoc. 2022, 11, e026041. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Chae, I.H.; Park, J.J.; Lee, H.S.; Kang, D.Y.; Hwang, S.S.; Youn, T.J.; Kim, H.S. Stent Thrombosis with Drug-Eluting Stents and Bioresorbable Scaffolds: Evidence from a Network Meta-Analysis of 147 Trials. J. Am. Coll. Cardiol. Interv. 2016, 9, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Tovar Forero, M.N.; Zanchin, T.; Masdjedi, K.; van Zandvoort, L.J.; Kardys, I.; Zijlstra, F.; Häner, J.; Windecker, S.; Van Mieghem, N.M.; Räber, L.; et al. Incidence and predictors of outcomes after a first definite coronary stent thrombosis. EuroIntervention 2020, 16, e344–e350. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Joner, M.; Kastrati, A. Stent thrombosis and restenosis: What have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. Eur. Heart J. 2015, 36, 3320–3331. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef] [PubMed]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Räber, L.; Mintz, G.S.; Koskinas, K.C.; Johnson, T.W.; Holm, N.R.; Onuma, Y.; Radu, M.D.; Joner, M.; Yu, B.; Jia, H.; et al. Clinical use of intracoronary imaging. Part 1: Guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2018, 39, 3281–3300. [Google Scholar] [CrossRef] [PubMed]
- Karamasis, G.V.; Varlamos, C.; Benetou, D.R.; Kalogeropoulos, A.S.; Keeble, T.R.; Tsigkas, G.; Xenogiannis, I. The Usefulness of Intracoronary Imaging in Patients with ST-Segment Elevation Myocardial Infarction. J. Clin. Med. 2023, 12, 5892. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, E.; Bajaj, R.; Lansky, A.; Mathur, A.; Baumbach, A.; Bourantas, C.V. Intravascular Imaging for Guiding In-Stent Restenosis and Stent Thrombosis Therapy. J. Am. Heart Assoc. 2022, 11, e026492. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Alfonso, F.; Barbato, E.; Byrne, R.A.; Capodanno, D.; Colleran, R.; Escaned, J.; Giacoppo, D.; Kunadian, V.; Lansky, A.; et al. Management of myocardial revascularisation failure: An expert consensus document of the EAPCI. EuroIntervention 2020, 16, e875–e890. [Google Scholar] [CrossRef]
- Armstrong, E.J.; Feldman, D.N.; Wang, T.Y.; Kaltenbach, L.A.; Yeo, K.K.; Wong, S.C.; Spertus, J.; Shaw, R.E.; Minutello, R.M.; Moussa, I.; et al. Clinical presentation, management, and outcomes of angiographically documented early, late, and very late stent thrombosis. JACC Cardiovasc. Interv. 2012, 5, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Souteyrand, G.; Amabile, N.; Mangin, L.; Chabin, X.; Meneveau, N.; Cayla, G.; Vanzetto, G.; Barnay, P.; Trouillet, C.; Rioufol, G.; et al. Mechanisms of stent thrombosis analysed by optical coherence tomography: Insights from the national PESTO French registry. Eur. Heart J. 2016, 37, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Katsikis, A.; Keeble, T.R.; Davies, J.R.; Jagathesan, R.; Kabir, A.; Sayer, J.W.; Robinson, N.M.; Kalogeropoulos, A.S.; Aggarwal, R.K.; Gamma, R.A.; et al. Contemporary management of stent thrombosis: Predictors of mortality and the role of new-generation drug-eluting stents. Catheter Cardiovasc Interv. 2019, 96, E8–E16. [Google Scholar] [CrossRef] [PubMed]
- Hicks, K.A.; Mahaffey, K.W.; Mehran, R.; Nissen, S.E.; Wiviott, S.D.; Dunn, B.; Solomon, S.D.; Marler, J.R.; Teerlink, J.R.; Farb, A.; et al. 2017 Cardiovascular and Stroke Endpoint Definitions for Clinical Trials. Circulation 2018, 137, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Adriaenssens, T.; Joner, M.; Godschalk, T.C.; Malik, N.; Alfonso, F.; Xhepa, E.; De Cock, D.; Komukai, K.; Tada, T.; Cuesta, J.; et al. Optical Coherence Tomography Findings in Patients with Coronary Stent Thrombosis: A Report of the PRESTIGE Consortium (Prevention of Late Stent Thrombosis by an Interdisciplinary Global European Effort). Circulation 2017, 136, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lara, J.; Salvatella, N.; Gonzalo, N.; Hernández-Hernández, F.; Fernandez-Nofrerias, E.; Sánchez-Recalde, A.; Bastante, T.; Marcano, A.; Romaguera, R.; Ferreiro, J.L.; et al. IVUS-guided treatment strategies for definite late and very late stent thrombosis. EuroIntervention 2016, 12, e1355–e1365. [Google Scholar] [CrossRef]
- Alfonso, F.; Sandoval, J. New insights on stent thrombosis: In praise of large nationwide registries for rare cardiovascular events. J. Am. Coll. Cardiol. Interv. 2012, 5, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Taniwaki, M.; Radu, M.D.; Zaugg, S.; Amabile, N.; Garcia-Garcia, H.M.; Yamaji, K.; Jørgensen, E.; Kelbæk, H.; Pilgrim, T.; Caussin, C.; et al. Mechanisms of Very Late Drug-Eluting Stent Thrombosis Assessed by Optical Coherence Tomography. Circulation 2016, 133, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, X.; Kan, J.; Ge, Z.; Han, L.; Lu, S.; Tian, N.; Lin, S.; Lu, Q.; Wu, X.; et al. Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation: The ULTIMATE Trial. J. Am. Coll. Cardiol. 2018, 72, 3126–3137. [Google Scholar] [CrossRef]
- Lee, J.M.; Choi, K.H.; Song, Y.B.; Lee, J.Y.; Lee, S.J.; Lee, S.Y.; Kim, S.M.; Yun, K.H.; Cho, J.Y.; Kim, C.J.; et al. Intravascular Imaging-Guided or Angiography-Guided Complex PCI. N. Engl. J. Med. 2023, 388, 1668–1679. [Google Scholar] [CrossRef]
- Holm, N.R.; Andreasen, L.N.; Neghabat, O.; Laanmets, P.; Kumsars, I.; Bennett, J.; Olsen, N.T.; Odenstedt, J.; Hoffmann, P.; Dens, J.; et al. OCT or Angiography Guidance for PCI in Complex Bifurcation Lesions. N. Engl. J. Med. 2023, 389, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.A.; Landmesser, U.; Maehara, A.; Matsumura, M.; Shlofmitz, R.A.; Guagliumi, G.; Price, M.J.; Hill, J.M.; Akasaka, T.; Prati, F.; et al. Optical Coherence Tomography-Guided versus Angiography-Guided PCI. N. Engl. J. Med. 2023, 389, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, F.; Dutary, J.; Paulo, M.; Gonzalo, N.; Pérez-Vizcayno, M.J.; Jiménez-Quevedo, P.; Escaned, J.; Bañuelos, C.; Hernández, R.; Macaya, C. Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis. Heart 2012, 98, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, F.; Byrne, R.A.; Yahagi, K.; Mori, H.; Ladich, E.; Fowler, D.R.; Kutys, R.; Xhepa, E.; Kastrati, A.; Virmani, R.; et al. Neoatherosclerosis: Overview of histopathologic findings and implications for intravascular imaging assessment. Eur. Heart J. 2015, 36, 2147–2159. [Google Scholar] [CrossRef] [PubMed]
- Giagliumi, G.; Sirbu, V.; Musumeci, G.; Gerber, R.; Biondi-Zoccai, G.; Ikejima, H.; Ladich, E.; Lortkipanidze, N.; Matiashvili, A.; Valsecchi, O.; et al. Examination of the in Vivo Mechanisms of Late Drug-Eluting Stent Thrombosis: Findings from Optical Coherence Tomography and Intravascular Ultrasound Imaging. JACC Cardiovasc Interv. 2012, 5, 12–20. [Google Scholar] [CrossRef]
- Shlofmitz, E.; Iantorno, M.; Waksman, R. Restenosis of Drug-Eluting Stents: A New Classification System Based on Disease Mechanism to Guide Treatment and State-of-the-Art Review. Circ. Cardiovasc. Interv. 2019, 12, e007023. [Google Scholar] [CrossRef]
Baseline Characteristics | Unadjusted Population | Matched/Adjusted Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No ICI | ICI | No ICI | ICI | |||||||
(n = 85) | (n = 45) | p-Value | SMD (%) | (n = 30) | (n = 30) | p-Value | SMD (%) | |||
Demographics | ||||||||||
Age (years) | 65 (56,73) | 63 (53,71) | 0.2 | 27 | 62 (55,72) | 64 (52,71) | 0.8 | 3 | ||
Male gender (n,%) | 72 (85%) | 38 (84%) | >0.9 | 1 | 28 (93%) | 25 (83%) | 0.4 | 27 | ||
Cardiovascular risk factors | ||||||||||
Active smoking (n,%) | 35 (41%) | 8 (18%) | 0.012 | 61 | 13 (43%) | 6 (20%) | 0.052 | 67 | ||
Dyslipidaemia (n,%) | 61 (72%) | 22 (49%) | 0.017 | 45 | 22 (73%) | 15 (50%) | 0.11 | 46 | ||
Hypertension (n,%) | 65 (76%) | 21 (47%) | 0.001 | 59 | 22 (73%) | 16 (53%) | 0.2 | 40 | ||
Diabetes (n,%) | 20 (24%) | 10 (22%) | >0.9 | 3 | 6 (20%) | 5 (17%) | >0.9 | 8 | ||
Family history (n,%) | 20 (24%) | 12 (27%) | 0.9 | 7 | 5 (17%) | 7 (23%) | 0.7 | 15 | ||
BMI | 28.1 (25.5,29.4) | 28.6 (25.1,31.1) | 0.3 | 17 | 27.6 (25.6,28.6) | 28.6 (25.8,31.5) | 0.13 | 21 | ||
Chronic kidney disease # (n,%) | 15 (18%) | 5 (11%) | 0.5 | 21 | 5 (17%) | 3 (10%) | 0.7 | 21 | ||
CAD status (n,%) | ||||||||||
Previous MI | 74 (87%) | 33 (73%) | 0.087 | 31 | 28 (93%) | 23 (77%) | 0.15 | 37 | ||
Previous CABG | 9 (11%) | 5 (11%) | >0.9 | 2 | 3 (10%) | 1 (3.3%) | 0.6 | 21 | ||
Number of coronary arteries diseased (n,%) | 1 | 55 (65%) | 34 (76%) | 0.3 | 33 | 19 (63%) | 23 (77%) | 0.2 | 43 | |
2 | 20 (24%) | 9 (20%) | 8 (27%) | 7 (23%) | ||||||
3 | 10 (12%) | 2 (4.4%) | 3 (10%) | 0 (0%) | ||||||
LVEF (%) | 44 (41,55) | 45 (35,55) | >0.9 | 20 | 43 (40,49) | 45 (40,45) | 0.7 | 0 | ||
Presentation mode: Clinical (n,%) | ||||||||||
Cardiogenic shock | 8 (9.4%) | 4 (8.9%) | >0.9 | 2 | 4 (13%) | 3 (10%) | >0.9 | 12 | ||
Mechanical ventilation | 7 (8.2%) | 2 (4.4%) | 0.5 | 18 | 4 (13%) | 1 (3.3%) | 0.4 | 48 | ||
Post-cardiac arrest | 10 (12%) | 7 (16%) | 0.7 | 10 | 5 (17%) | 5 (17%) | >0.9 | 0 | ||
STEMI | 82 (96%) | 32 (71%) | <0.001 | 55 | 27 (90%) | 27 (90%) | >0.9 | 0 | ||
NSTEMI/UA | 3 (3.5%) | 13 (29%) | 3 (10%) | 3 (10%) | ||||||
OOH presentation | 33 (39%) | 15 (33%) | 0.7 | 12 | 12 (40%) | 11 (37%) | >0.9 | 7 | ||
Discontinuation of APT | 25 (29%) | 9 (20%) | 0.3 | 23 | 9 (30%) | 8 (27%) | >0.9 | 8 | ||
Presentation mode: Stent related | ||||||||||
Type of ST (n,%) | Acute | 0 (0%) | 8 (18%) | <0.001 (*) | 48 (*) | 0 (0%) | 3 (10%) | >0.9 (*) | 8 (*) | |
Sub-acute | 2 (2%) | 2 (4%) | 1 (3%) | 1 (3%) | ||||||
Late | 3 (3%) | 3 (7%) | 3 (10%) | 1 (3%) | ||||||
Very late | 80 (94%) | 32 (71%) | 26 (87%) | 25 (83%) | ||||||
Initial TIMI flow (n,%) | >0 | 24 (28%) | 18 (40%) | 0.2 | 24 | 11 (37%) | 12 (40%) | >0.9 | 7 | |
0 | 61 (72%) | 27 (60%) | 19 (63%) | 18 (60%) | ||||||
Culprit vessel: LAD vs. non-LAD (n,%) | 29 (34%) | 27 (60%) | 0.008 | 52 | 17 (57%) | 18 (60%) | >0.9 | 7 | ||
Culprit stent type (n,%) | DES overall | 52 (61%) | 38 (84%) | 0.011 (**) | 63 (**) | 25 (83%) | 24 (80%) | >0.9 (**) | 9 (**) | |
BMS | 33 (39%) | 7 (65%) | 5 (17%) | 6 (20%) | ||||||
DES 1st gen. | 13 (15%) | 6 (13%) | 6 (20%) | 6 (20%) | ||||||
DES 2nd gen. | 39 (46%) | 32 (71%) | 19 (63%) | 18 (60%) |
Peri-Procedural Characteristics | Unadjusted Population | Propensity Matched/Adjusted Sample | ||||
---|---|---|---|---|---|---|
No ICI | ICI | No ICI | ICI | |||
(n = 85) | (n = 45) | p-Value | (n = 30) | (n = 30) | p-Value | |
Culprit stent localization | ||||||
Graft | 2 (2%) | 2 (4%) | 0.046 | 0 (0%) | 0 (0%) | 0.8 |
LAD | 27 (32%) | 26 (58%) | 15 (50%) | 17 (57%) | ||
Circumflex | 11 (13%) | 6 (13%) | 3 (10%) | 4 (13%) | ||
RCA | 42 (49%) | 10 (22%) | 10 (33%) | 8 (27%) | ||
Diagonal | 2 (2%) | 1 (2%) | 2 (7%) | 1 (3%) | ||
Intermediate | 1 (1%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Thromboaspiration | 43 (51%) | 31 (69%) | 0.069 | 13 (43%) | 23 (77%) | 0.018 |
IIb/IIIa use | 45 (53%) | 29 (64%) | 0.3 | 17 (57%) | 19 (63%) | 0.8 |
End TIMI flow | ||||||
End-TIMI flow = 2 | 9 (11%) | 4 (8.9%) | >0.9 | 3 (10%) | 2 (6.7%) | >0.9 |
End-TIMI flow = 3 | 76 (89%) | 41 (91%) | 27 (90%) | 28 (93%) | ||
>1 stent per culprit vessel | 18 (21%) | 4 (9%) | 0.07 | 4 (13%) | 2 (7%) | 0.7 |
Multi-vessel PCI ** | 4 (4.7%) | 5 (11%) | 0.3 | 3 (10%) | 3 (10%) | >0.9 |
Type of treatment | ||||||
Thromboaspiration | 2 (2%) | 0 (0%) | 0.045 (*) | 1 (3%) | 0 (0%) | >0.9 (*) |
DCB | 13 (15%) | 3 (7%) | 7 (23%) | 2 (7%) | ||
DES | 60 (71%) | 23 (51%) | 17 (57%) | 18 (60%) | ||
In-hospital CABG | 0 (0%) | 1 (2%) | 0 (0%) | 0 (0%) | ||
POBA | 10 (12%) | 18 (40%) | 5 (17%) | 10 (33%) | ||
Post- intervention APT | ||||||
ASA | 1 (1.2%) | 0 (0%) | 0.4 | 0 (0%) | 0 (0%) | 0.2 |
ASA + Clopidogrel | 19 (22%) | 9 (20%) | 9 (30%) | 9 (30%) | ||
ASA + Prasugrel | 3 (3.5%) | 4 (8.9%) | 0 (0%) | 3 (10%) | ||
ASA + Ticagrelor | 62 (73%) | 31 (69%) | 21 (70%) | 17 (57%) | ||
Unknown | 0 (0%) | 1 (2.2%) | 0 (0%) | 1 (3.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamasis, G.V.; Katsikis, A.; Konstantinou, K.; Clesham, G.J.; Kelly, P.A.; Jagathesan, R.; Prati, F.; Bourantas, C.V.; Davies, J.R.; Keeble, T.R. Clinical Impact of Intracoronary Imaging in the Management of Stent Thrombosis. J. Clin. Med. 2024, 13, 4667. https://doi.org/10.3390/jcm13164667
Karamasis GV, Katsikis A, Konstantinou K, Clesham GJ, Kelly PA, Jagathesan R, Prati F, Bourantas CV, Davies JR, Keeble TR. Clinical Impact of Intracoronary Imaging in the Management of Stent Thrombosis. Journal of Clinical Medicine. 2024; 13(16):4667. https://doi.org/10.3390/jcm13164667
Chicago/Turabian StyleKaramasis, Grigoris V., Athanasios Katsikis, Klio Konstantinou, Gerald J. Clesham, Paul A. Kelly, Rohan Jagathesan, Francesco Prati, Christos V. Bourantas, John R. Davies, and Thomas R. Keeble. 2024. "Clinical Impact of Intracoronary Imaging in the Management of Stent Thrombosis" Journal of Clinical Medicine 13, no. 16: 4667. https://doi.org/10.3390/jcm13164667
APA StyleKaramasis, G. V., Katsikis, A., Konstantinou, K., Clesham, G. J., Kelly, P. A., Jagathesan, R., Prati, F., Bourantas, C. V., Davies, J. R., & Keeble, T. R. (2024). Clinical Impact of Intracoronary Imaging in the Management of Stent Thrombosis. Journal of Clinical Medicine, 13(16), 4667. https://doi.org/10.3390/jcm13164667