Influence of Cochlear Anatomy on Intraoperative Electrically Evoked Compound Action Potentials
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design and Population
2.2. Cochlear Duct Length Measurements
2.3. Cochlear Impedance and Evoked Compound Action Potential (ECAP)
2.4. Statistical Analysis
Analytical Statistics
- An investigation of the correlation between cochlear parameters and electrode impedance and electrically evoked compound action potential (ECAP) measures was conducted via Pearson correlation coefficients.
- Simple and multiple linear regression models were used to predict the amount of change in electrode impedance, and ECAP measures were determined based on every unit change in cochlear parameters.
- Normality assumptions were checked using the Shapiro–Wilk test.
- p values ≤ 0.05 were considered statistically significant.
3. Results
3.1. The Linear Regression Models between Electrode Impedance and Cochlear Parameters
3.2. The Linear Regression Models between the ECAP and Cochlear Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hardy, M. The length of the organ of Corti in man. Am. J. Anat. 1938, 62, 291–311. [Google Scholar] [CrossRef]
- Dimopoulos, P.; Muren, C. Anatomic variations of the cochlea and relations to other temporal bone structures. Acta Radiol. 1990, 31, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Erixon, E.; Högstorp, H.; Wadin, K.; Rask-Andersen, H. Variational anatomy of the human cochlea: Implications for cochlear implantation. Otol. Neurotol. 2009, 30, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Bast, T.H. XXXII Development of the otic capsule: VI. Histological Changes and Variations in the Growing Bony Capsule of the Vestibule and Cochlea. Ann. Otol. Rhinol. Laryngol. 1942, 51, 343–357. [Google Scholar] [CrossRef]
- Escudé, B.; James, C.; Deguine, O.; Cochard, N.; Eter, E.; Fraysse, B. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol. Neurotol. 2006, 11, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Khurayzi, T.; Almuhawas, F.; Sanosi, A. Direct measurement of cochlear parameters for automatic calculation of the cochlear duct length. Ann. Saudi Med. 2020, 40, 212–218. [Google Scholar] [CrossRef]
- van der Marel, K.S.; Briaire, J.J.; Wolterbeek, R.; Snel-Bongers, J.; Verbist, B.M.; Frijns, J.H.M. Diversity in cochlear morphology and its influence on cochlear implant electrode position. Ear Hear. 2014, 35, e9–e20. [Google Scholar] [CrossRef] [PubMed]
- Erixon, E.; Rask-Andersen, H. How to predict cochlear length before cochlear implantation surgery. Acta Otolaryngol. 2013, 133, 1258–1265. [Google Scholar] [CrossRef]
- Gärtner, L.; Klötzer, K.; Lenarz, T.; Scheper, V. Correlation of electrically evoked compound action potential amplitude growth function slope and anamnestic parameters in cochlear implant patients—Identification of predictors for the neuronal health status. Life 2021, 11, 203. [Google Scholar] [CrossRef]
- Lambriks, L.; van Hoof, M.; Debruyne, J.; Janssen, M.; Hof, J.; Hellingman, K.; Devocht, E.; George, E. Toward neural health measurements for cochlear implantation: The relationship among electrode positioning, the electrically evoked action potential, impedances and behavioral stimulation levels. Front. Neurol. 2023, 14, 1093265. [Google Scholar] [CrossRef]
- Mlynski, R.; Lüsebrink, A.; Oberhoffner, T.; Langner, S.; Weiss, N.M. Mapping cochlear duct length to electrically evoked compound action potentials in cochlear implantation. Otol. Neurotol. 2021, 42, e254–e260. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.L.; Polterauer, D.; Hempel, J.M.; Canis, M.; Spiro, J.E.; Müller, J. Variation of the cochlear anatomy and cochlea duct length: Analysis with a new tablet-based software. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Doubi, A.; Almuhawas, F.; Alzhrani, F.; Doubi, M.; Aljutaili, H.; Hagr, A. The effect of cochlear coverage on auditory and speech performance in cochlear implant patients. Otol. Neurotol. 2019, 40, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Thong, J.F.; Low, D.; Tham, A.; Liew, C.; Tan, T.Y.; Yuen, H.W. Cochlear duct length–one size fits all? Am. J. Otolaryngol. 2017, 38, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.; Alzhrani, F. Comparison of cochlear duct length between the Saudi and non-Saudi populations. Ann. Saudi Med. 2018, 38, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Söderqvist, S.; Sivonen, V.; Lamminmäki, S.; Ylönen, J.; Markkola, A.; Sinkkonen, S.T. Investigating the association of electrically-evoked compound action potential thresholds with inner-ear dimensions in pediatric cochlear implantation. Int. J. Pediatr. Otorhinolaryngol. 2022, 158, 111160. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Frater, A.; Calixto, R.; Karoui, C.; Margeta, J.; Wang, Z.; Hoen, M.; Delingette, H.; Patou, F.; Raffaelli, C.; et al. Anatomical variations of the human cochlea using an image analysis tool. J. Clin. Med. 2023, 12, 509. [Google Scholar] [CrossRef] [PubMed]
- Holden, L.K.; Firszt, J.B.; Reeder, R.M.; Uchanski, R.M.; Dwyer, N.Y.; Holden, T.A. Factors affecting outcomes in cochlear implant recipients implanted with a perimodiolar electrode array located in scala tympani. Otol. Neurotol. 2016, 37, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Ketterer, M.C.; Aschendorff, A.; Arndt, S.; Hassepass, F.; Wesarg, T.; Laszig, R.; Beck, R. The influence of cochlear morphology on the final electrode array position. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 385–394. [Google Scholar] [CrossRef]
- O’connell, B.P.; Cakir, A.; Hunter, J.B.; Francis, D.O.; Noble, J.H.; Labadie, R.F.; Zuniga, G.; Dawant, B.M.; Rivas, A.; Wanna, G.B. Electrode location and angular insertion depth are predictors of audiologic outcomes in cochlear implantation. Otol. Neurotol. 2016, 37, 1016–1023. [Google Scholar] [CrossRef]
- van Wermeskerken, G.K.A.; van Olphen, A.F.; Graamans, K. Imaging of electrode position in relation to electrode functioning after cochlear implantation. Eur. Arch. Oto-Rhino-Laryngol. 2009, 266, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Mewes, A.; Brademann, G.; Hey, M. Comparison of perimodiolar electrodes: Imaging and electrophysiological outcomes. Otol. Neurotol. 2020, 41, e934–e944. [Google Scholar] [CrossRef]
- Long, C.J.; Holden, T.A.; McClelland, G.H.; Parkinson, W.S.; Shelton, C.; Kelsall, D.C.; Smith, Z.M. Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J. Assoc. Res. Otolaryngol. 2014, 15, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Hatsushika, S.I.; Shepherd, R.K.; Tong, Y.C.; Clark, G.M.; Funasaka, S. Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann.Otol. Rhinol. Laryngol. 1990, 99, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Y.; Sun, J.Q.; Sun, J.W.; Guo, X.T. The effect of cochlear size on electrically evoked auditory brainstem responses in deaf children. Laryngoscope Investig. Otolaryngol. 2023, 8, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Aebischer, P.; Meyer, S.; Caversaccio, M.; Wimmer, W. Intraoperative impedance-based estimation of cochlear implant electrode array insertion depth. IEEE Trans. Biomed. Eng. 2020, 68, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, W.; Sclabas, L.; Caversaccio, M.; Weder, S. Cochlear implant electrode impedance as potential biomarker for residual hearing. Front. Neurol. 2022, 13, 886171. [Google Scholar] [CrossRef] [PubMed]
- Esquia Medina, G.N.; Borel, S.; Nguyen, Y.; Ambert-Dahan, E.; Ferrary, E.; Sterkers, O.; Grayeli, A.B. Is electrode-modiolus distance a prognostic factor for hearing performances after cochlear implant surgery? Audiol. Neurotol. 2013, 18, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Saunders, E.; Cohen, L.; Aschendorff, A.; Shapiro, W.; Knight, M.; Stecker, M.; Richter, B.; Waltzman, S.; Tykocinski, M.; Roland, T.; et al. Threshold, comfortable level and impedance changes as a function of electrode-modiolar distance. Ear Hear. 2002, 23, 28S–40S. [Google Scholar] [CrossRef]
- Degen, C.V.; Büchner, A.; Kludt, E.; Lenarz, T. Effect of electrode to modiolus distance on electrophysiological and psychophysical parameters in CI patients with perimodiolar and lateral electrode arrays. Otol. Neurotol. 2020, 41, e1091–e1097. [Google Scholar] [CrossRef]
- Kuthubutheen, J.; Grewal, A.; Symons, S.; Nedzelski, J.; Shipp, D.; Lin, V.; Chen, J. The effect of cochlear size on cochlear implantation outcomes. Biomed. Res. Int. 2019, 2019, 5849871. [Google Scholar] [CrossRef] [PubMed]
- Alshalan, A.; Abdelsamad, Y.; Assiri, M.; Alsanosi, A. Cochlear Implantation: The Variation in Cochlear Height. Ear Nose Throat J. 2022. [Google Scholar] [CrossRef] [PubMed]
Demographics | All (N = 45) | |
---|---|---|
Gender | Female | 19 (42.2) |
Male | 26 (57.8) | |
Age (Years) | Mean (SD) | 6.6 (1.6) |
Min–Max | 3.70–9.80 | |
Ear | Left | 24 (53.3) |
Right | 21 (46.7) | |
Age at Implantation (Years) | Mean (SD) | 2.4 (0.9) |
Min–Max | 0.80–4.30 | |
Electrode Type | Flex 26 | 8 (17.8) |
Flex 28 | 12 (26.7) | |
Form 24 | 25 (55.5) | |
Cochlear Parameters | ||
A Value | Mean (SD) | 8.5 (0.4) |
Min–Max | 7.90–9.30 | |
B Value | Mean (SD) | 6.3 (0.4) |
Min–Max | 5.50–7.10 | |
H Value | Mean (SD) | 3.6 (0.4) |
Min–Max | 2.10–4.40 | |
CDL | Mean (SD) | 33.2 (2.0) |
Min–Max | 29.30–37.00 | |
Cochlear Coverage (%) | Mean (SD) | 76.0 (5.7) |
Min–Max | 61.00–89.00 | |
Cochlear Impedances (kOhm) | ||
Apical | Mean (SD) | 5.5 (1.7) |
Min–Max | 2.90–9.67 | |
Middle | Mean (SD) | 5.0 (1.6) |
Min–Max | 3.20–10.48 | |
Basal | Mean (SD) | 5.2 (1.4) |
Min–Max | 3.34–8.41 | |
All Impedances Average | Mean (SD) | 5.2 (1.3) |
Min–Max | 3.41–9.06 | |
ECAP Thresholds (µV) | ||
Apical | Mean (SD) | 13.1 (3.8) |
Min–Max | 7.65–22.55 | |
Middle | Mean (SD) | 14.3 (3.7) |
Min–Max | 8.20–21.78 | |
Basal | Mean (SD) | 15.6 (4.8) |
Min–Max | 7.75–28.15 | |
All ECAPs Average | Mean (SD) | 14.3 (2.8) |
Min–Max | 8.98–22.76 |
Apical | Middle | Basal | Overall Average | ||
---|---|---|---|---|---|
Regarding Cochlear Impedance Measures kOhm | |||||
A Value | Coefficient (r) p Value | −0.325 (0.033) | −0.160 (0.305) | 0.209 (0.179) | −0.132 (0.398) |
B Value | Coefficient (r) p Value | −0.309 (0.044) | −0.248 (0.109) | −0.083 (0.597) | −0.263 (0.088) |
H Value | Coefficient (r) p Value | −0.029 (0.852) | 0.011 (0.944) | 0.141 (0.365) | 0.043 (0.783) |
CDL | Coefficient (r) p Value | −0.349 (0.022) | −0.262 (0.090) | −0.015 (0.925) | −0.263 (0.089) |
Cochlear Coverage (%) | Coefficient (r) p Value | −0.036 (0.817) | −0.175 (0.261) | −0.084 (0.592) | −0.122 (0.436) |
Regarding Compound Action Potential (ECAP) Measures µV | |||||
A Value | Coefficient (r) p Value | 0.137 (0.394) | 0.268 (0.090) | 0.162 (0.312) | 0.281 (0.075) |
B Value | Coefficient (r) p Value | 0.162 (0.313) | 0.491 (0.001) | 0.458 (0.003) | 0.518 (0.001) |
H Value | Coefficient (r) p Value | 0.190 (0.234) | −0.173 (0.279) | −0.007 (0.964) | 0.008 (0.961) |
CDL | Coefficient (r) p Value | 0.177 (0.268) | 0.480 (0.002) | 0.415 (0.007) | 0.503 (0.001) |
Cochlear Coverage (%) | Coefficient (r)p Value | −0.395 (0.011) | −0.027 (0.865) | −0.107 (0.507) | −0.243 (0.125) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatani, N.; Abdelsamad, Y.; Alsanosi, A. Influence of Cochlear Anatomy on Intraoperative Electrically Evoked Compound Action Potentials. J. Clin. Med. 2024, 13, 4716. https://doi.org/10.3390/jcm13164716
Fatani N, Abdelsamad Y, Alsanosi A. Influence of Cochlear Anatomy on Intraoperative Electrically Evoked Compound Action Potentials. Journal of Clinical Medicine. 2024; 13(16):4716. https://doi.org/10.3390/jcm13164716
Chicago/Turabian StyleFatani, Nawaf, Yassin Abdelsamad, and Abdulrahman Alsanosi. 2024. "Influence of Cochlear Anatomy on Intraoperative Electrically Evoked Compound Action Potentials" Journal of Clinical Medicine 13, no. 16: 4716. https://doi.org/10.3390/jcm13164716
APA StyleFatani, N., Abdelsamad, Y., & Alsanosi, A. (2024). Influence of Cochlear Anatomy on Intraoperative Electrically Evoked Compound Action Potentials. Journal of Clinical Medicine, 13(16), 4716. https://doi.org/10.3390/jcm13164716