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Abstract: Background: Mutations in Wolfram syndrome 1 (WFS1) cause Wolfram syndrome and
autosomal dominant non-syndromic hearing loss DFNA6/14/38. To date, more than 300 pathogenic
variants of WFS1 have been identified. Generally, the audiological phenotype of Wolfram syndrome
or DFNA6/14/38 is characterized by low-frequency hearing loss; however, this phenotype is largely
variable. Hence, there is a need to better understand the diversity in audiological and vestibular
profiles associated with WFS1 variants, as this can have significant implications for diagnosis and
management. This study aims to investigate the clinical characteristics, audiological phenotypes, and
vestibular function in patients with DFNA6/14/38. Methods: Whole-exome or targeted deafness
gene panel sequencing was performed to confirm the pathogenic variants in patients with genetic
hearing loss. Results: We identified nine independent families with affected individuals who carried
a heterozygous pathogenic variant of WFS1. The onset of hearing loss varied from the first to the
fifth decade. On a pure-tone audiogram, hearing loss was symmetrical, and the severity ranged
from mild to severe. Notably, either both low-frequency and high-frequency or all-frequency-specific
hearing loss was observed. However, hearing loss was non-progressive in all types. In addition,
vestibular impairment was identified in patients with DFNA6/14/38, indicating that impaired WFS1
may also affect the vestibular organs. Conclusions: Diverse audiological and vestibular profiles were
observed in patients with pathogenic variants of WFS1. These findings highlight the importance of
comprehensive audiological and vestibular assessments in patients with WFS1 mutations for accurate
diagnosis and management.

Keywords: genetic hearing loss; Wolfram syndrome 1; low-frequency hearing loss; audiologic profile;
vestibular profile

1. Introduction

Hearing loss is the most common sensorial disorder in humans, with genetic fac-
tors accounting for approximately 60–70% of cases [1]. So far, more than 124 deafness
genes and 223 deafness-associated genes have been identified [2–4]. Among these genes,
DFNA6 (DFN = deafness, A = dominant), DFNA14, and DFNA38 are associated with
low-frequency non-syndromic hearing loss (LF-NSHL), which is caused by variants of the
Wolfram syndrome 1 (WFS1) gene [5,6].

The WFS1 gene is located on human chromosome 4p16.1 and consists of eight exons. The
WFS1 gene encodes the transmembrane protein, wolframin. Wolframin is an 890-amino-acid
protein with an estimated molecular mass of 100 kDa that plays a pivotal role in the regulation
of calcium homeostasis within the endoplasmic reticulum (ER) [7,8]. Wolframin is a resident
component of the ER with an Ncytosolic/Cluminal orientation in the ER membrane and has a
crucial role in the negative regulation of a feedback loop of the ER stress signaling network [9].
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Although the physiological role of wolframin is unclear, wolframin is considered to have a
role in protein synthesis, trafficking, and regulation of ER stress [10–14]. In addition, the WFS1
gene negatively regulates a key transcription factor involved in ER stress signaling [15]. WFS1
mutations are associated with autosomal recessive Wolfram syndrome and the autosomal
dominant type of LF-NSHL (DFNA6/14/38) [16]. Wolfram syndrome is a rare, multisystem
disorder characterized by diabetes insipidus, insulin-deficient diabetes mellitus, optic atrophy,
and hearing loss [17].

The pathomechanism of DFNA6/14/38 and Wolfram syndrome remains elusive. It
is suggested that a deficit in wolframin caused by pathogenic variants of WFS1 elicits an
unfolded protein response and ER stress, leading to cellular apoptosis [17]. Given that
wolframin is localized in the canalicular reticulum (specialized form of ER), the role of
wolframin in the inner ear is possibly associated with ion homeostasis and regulation of ER
stress in the ER [18].

A wide range of WFS1 gene variants are distributed throughout the whole gene [19].
However, pathogenic variants are concentrated in exon 8, which is the largest exon [20,21].
In this study, we aimed to investigate the clinical characteristics, audiological phenotypes,
and vestibular function in patients with DFNA6/14/38 to provide a comprehensive profile
of the impact of WFS1 variants.

2. Materials and Methods
2.1. Patient Enrollment

The present study enrolled patients registered in the cohort for genetic hearing loss,
namely the Yonsei University Hearing Loss (YUHL) cohort. Patients with hearing loss who
also had a family history of hearing loss or voluntarily had undergone genetic testing were
included in this cohort. A total of 10 independent families were enrolled in this study. The
enrolled patients consisted of five men (50.0%) and five women (50.0%), with an average
age of 32.4 ± 19.9 years. This study was approved by the Institutional Review Board of
our hospital (approval no. 4-2015-0659). Written informed consent was obtained from
all participants.

2.2. Evaluation of Hearing Function

Pure-tone audiometry was performed for all enrolled patients and their family mem-
bers. The pure-tone air (500–4000 Hz) and bone conduction (500–4000 Hz) thresholds were
measured using clinical audiometers in a double-walled audio booth. The hearing thresh-
old was calculated as the average threshold at 500, 1000, 2000, and 4000 Hz. Vestibular
function tests, including the video head impulse test, caloric test, and vestibular-evoked
myogenic potential (VEMP), were performed.

2.3. Genetic Analysis

Genetic testing using next-generation sequencing was performed for individuals
and their family members, as previously reported [22–27]. Two-track genetic testing
was applied; whole-exome sequencing (WES) or deafness gene panel sequencing was
used depending on whether payment was covered by their own insurance system. For
panel next-generation sequencing, a 207-deafness gene panel was customized as previ-
ously described [25]. For WES, the Agilent SureSelect V5 enrichment capture kit (Agilent
Technologies, Santa Clara, CA, USA) was used according to the manufacturer’s sample
preparation protocol. MiSeq sequencer (Illumina, San Diego, CA, USA) and MiSeq Reagent
Kit v2 (300 cycles) were used for massively parallel sequencing. Sanger sequencing was
performed for segregation analyses. Variants with a minimum count of five, minimum
coverage of 20, and minimum frequency of 20% were called using the “Basic Variant Caller”
function in CLC. Variants with minor allele frequencies >0.5% and >0.05% for recessive
and dominant hearing loss genes, respectively, in the dbSNP and gnomAD databases were
excluded. Genetic diagnoses were confirmed by a board of otolaryngologists and clinical
geneticists according to the hearing loss-specified American College of Medical Genetics
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and Genomics (ACMG) and the Association for Molecular Pathology (AMP) guidelines in
the Deafness Variation Database [28].

2.4. Statistical Analysis

All analyses were conducted using GraphPad Prism v8.0 (GraphPad Software, San Diego,
CA, USA).

3. Results
3.1. Clinical Characteristics of Patients with WFS1 Variants

We analyzed the clinical and genetic characteristics of 10 patients with pathogenic
variants of the WFS1 gene. The patient demographics are shown in Table 1. The pedigree
and audiogram of each patient are shown in Figure 1.
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Figure 1. Pedigrees and audiograms of patients with pathogenic variants of Wolfram syndrome 1
(WFS1). The pedigrees and pure-tone audiograms of individuals with pathogenic variants of WFS1
from 10 independent families are depicted. In the pure-tone audiogram, the red color indicates the
auditory thresholds in the right ear and the blue color indicates the auditory thresholds in the left ear.
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Table 1. Demographics of the enrolled patients.

Characteristics Value (n = 10)

Age (yr) 32.4 ± 19.9
Sex

Male 5 (50)
Female 5 (50)

Age of onset
1st decade 4 (40.0)
2nd decade 3 (30.0)
3rd decade 1 (10.0)
4th decade 1 (10.0)
5th decade 1 (10.0)

Side
Both 10 (100.0)

Pure tone average (dB HL)
Right 52.8 ± 25.3
Left 49.5 ± 25.1

Hearing loss severity
Normal (0–25 dB HL) 1 (10.0)
Mild (25–39 dB HL) 0 (0.0)

Moderate (40–69 dB HL) 7 (70.0)
Severe (70–89 dB HL) 1 (10.0)
Profound (>90 dB HL) 1 (10.0)

Pure tone audiometry pattern
Low/Mid 6 (60.0)
Flat/ski 4 (40.0)

Vestibular Symptoms
Yes 4 (40.0)
No 6 (60.0)

The age of onset varied, ranging from the first to the fifth decade. The hearing impair-
ment was bilateral and sensorineural. The average thresholds for the pure-tone audiogram
in the right and left ears were 52.8 ± 25.3 dB and 49.5 ± 25.1 dB, respectively, suggesting
moderate hearing loss in both ears. Specifically, seven patients (70.0%) had moderate
hearing loss (40–69 dB HL), one patient (10.0%) had severe hearing loss (70–89 dB HL),
and one patient (10.0%) had profound hearing loss with a hearing threshold >90 dB HL.
Although one patient (10.0%) had normal hearing at a pure-tone average, he had hearing
loss at low frequencies (40 dB HL at both 250 and 500 Hz) and reported subjective hearing
difficulties and vestibular symptoms. Bilateral involvement was observed in all patients
(100.0%, n = 10). Additionally, four of the ten patients (40.0%) had vestibular symptoms.

Among the 10 affected patients, seven pathogenic variants were identified. Of these,
three variants are novel and are reported here for the first time (Table 2), whereas the
remaining variants have been previously reported in the literature [29–32]. All the novel
variants were missense (p.C505S, p.R685C, and p.V839L) and have been classified as
pathogenic or likely pathogenic according to the ACMG/AMP guidelines.

Variants of the WFS1 gene are known to cause low-frequency sensorineural hearing
loss [33]. However, in this study, the audiometry patterns of our patients were diverse.
Four patients (40.0%) exhibited flat or ski-slope configurations (Figure 2A), whereas the re-
maining six patients (60.0%) exhibited low- or mid-frequency hearing loss (Figure 2B). This
suggests that the WFS1 gene can also contribute to high-frequency sensorineural hearing
loss. There was no genotype–phenotype correlation in the audiological configuration when
we compared all reported variants of the WFS1 gene (Figure 2C) [34]. Notably, variants in
the N-terminal domain were associated with low/mid-frequency hearing loss, whereas
those in the transmembrane and ER luminal domains were associated with both flat/ski-
slope and low/mid-frequency hearing loss. Therefore, we conclude that the location and
type of variants did not affect the pattern of hearing loss, and the factors that should be
considered when predicting the patterns of hearing loss remain unclear.



J. Clin. Med. 2024, 13, 4851 5 of 11

Table 2. Genetic variants of patients.

Gene
Symbol Individual Age Sex Nucleotide

Change
Amino Acid

Change Zygosity gnomAD
(EAS) SIFT Mutation

Taster PhyloP GERP++ REVEL CADD
Phred

ACMG/AMP
Guideline

WFS1 YUHL 30-21 14 F c.2419A>C p.Ser807Arg Het Absent Damaging Disease
Causing Conserved Conserved 0.521 25.6 [29]

WFS1 YUHL 173-21 24 M c.2515G>C p.Val839Leu Het Absent Deleterious Disease
Causing Conserved Conserved 0.622 24.2 Likely pathogenic

(PS2, PM2, PP3, PP4)

WFS1
YUHL 277-21
YUHL 292-21

YUHL 1115-21

2
62
51

M
M
F

c.1514G>C p.Cys505Ser Het 0.000381 Tolerated Disease
Causing Conserved Conserved 0.731 16.89 Likely pathogenic

(PM2, PM5, PM6)

WFS1 YUHL 613-21 53 M c.2053C>T p.Arg685Cys Het 0.000555 Damaging Disease
Causing

Non-
conserved Conserved 0.797 32 Likely pathogenic

(PM2, PM5, PP3, PP4)

WFS1 YUHL 914-21 24 F c.1480G>A p.Gly494Ser Het 0.000401 Tolerated Disease
Causing Conserved Conserved 0.862 23.6 [30]

WFS1 YUHL 1048-21 35 M c.1846G>T p.Ala616Ser Het 0.000163 Tolerated Polymorphism Conserved Conserved 0.570 13.98 [31]

WFS1 YUHL 1143-21 14 F c.1957C>T p.Arg653Cys Het 0.000551 Damaging Disease
Causing

Non-
conserved Conserved 0.817 32 [32]

WFS1, Wolfram syndrome 1.
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Figure 2. Audiogram configurations in patients with pathogenic variants of Wolfram syndrome 1
(WFS1). (A,B) The audiogram configuration comprises low/mid (low- and mid-frequency hearing
loss, n = 6) (A) and high/flat (high- and all-frequency hearing loss, n = 6) (B) types. (C) Domain
structure of WFS1 is depicted with variants in WFS1 and audiological configuration. The variants
labeled over the domain figure represent those identified in the present study, whereas those labeled
under the domain figure represent those reported previously [34]. Red color refers to the novel
variants identified in this study. Low/Mid, low- and mid-frequency hearing loss; Flat/Ski, all-
frequency and high-frequency hearing loss; ER, endoplasmic reticulum.

3.2. Vestibular Symptoms and Functions in DFNA6/14/38

Vestibular dysfunction has not been extensively studied in patients with DFNA6/14/38.
In addition, few studies have disclosed self-reported subjective vestibular symptoms, and
vestibular examinations in some patients yielded results within the normal range [35,36]. In
this study, vestibular symptoms were present in four patients (40.0%), whereas six patients
(60.0%) did not report any vestibular symptoms. Among the four patients with vestibular
symptoms, one underwent vestibular examination. Patient YUHS 613-21 with p.R685C
exhibited abnormal vestibular examination results; this patient showed decreased gain values
in the video head impulse test. The gain values for the anterior, lateral, and posterior canals
were 0.79, 0.66, 0.64/0.7, and 0.56/0.62, respectively (right/left). In addition, the patient
demonstrated a decreased caloric response in the left ear (canal paresis, 23%). Finally, the
VEMP results were abnormal, with no response in either ear. These data indicate that patients
with pathogenic variants of WFS1 commonly experience vestibular symptoms, which may be
attributable to abnormal vestibular function.

3.3. Progression of Hearing Loss in DFNA6/14/38

Providing patients with information regarding the progression of hearing loss is impor-
tant during genetic counseling. It is not well known whether hearing loss is progressive or the
extent to which hearing impairment worsens over one’s lifespan. In this study, we compared
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the severity of hearing loss among individuals with the same WFS1 variants. The hearing
levels in patients with p.S807R and p.C505S mutations were rarely progressive (Figure 3A,B).
The severity of hearing loss in patients with both p.S807R and p.C505S mutations was mod-
erate. Notably, a 62-year-old patient with the p.C505S variant of WFS1 exhibited a similar
level of hearing loss as a two-year-old patient with the same variant. Additionally, there
was a tendency for hearing thresholds at all frequencies to not change consistently with age
(Figure 3C,D). The non-progressive and stable nature of hearing loss does not differ between
low/mid-frequency and high/flat-frequency audiogram configurations. Therefore, we believe
that hearing loss in patients with DFNA6/14/38 is not progressive and remains at a mild to
moderate level.
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Figure 3. Progression of hearing loss in patients with pathogenic variants of Wolfram syndrome 1
(WFS1). (A,B) Comparisons of pure-tone audiograms among individuals of different ages. (A) Four-
teen and forty-five-year-old individuals with p.S807R are compared. (B) Two, fifty-one, and sixty-two-
year-old patients with p.C505S are compared. (C,D) Auditory thresholds at individual frequencies
are depicted according to the patient ages in high/flat type (C) and low/mid type (D) of hearing loss.

4. Discussion

We investigated the clinical characteristics of the audiological and vestibular pheno-
types in patients with pathogenic variants of the WFS1 gene. Ten patients with pathogenic
variants of WFS1 exhibited non-syndromic hearing loss with an autosomal dominant
inheritance pattern, consistent with DFNA6/14/38. Although the canonical pattern of
low-frequency hearing loss was found in only 60% of the patients, the remaining 40%
demonstrated hearing loss at high frequencies or across all frequencies. Notably, approx-
imately half of the patients experienced vestibular imbalance, and one patient exhibited
impaired vestibular function. Hearing loss was not progressive, and its severity was
generally mild to moderate.

More than 250 pathogenic variants of the WFS1 gene have been identified worldwide
(http://www.hgmd.cf.ac.uk/ac/index.php, accessed on 1 May 2024). Variants of the WFS1
gene are responsible for both Wolfram syndrome and autosomal dominant non-syndromic
hearing loss (DFNA6/14/38) [5,37,38]. Wolfram syndrome is an autosomal recessive disor-
der characterized by diabetes mellitus, diabetes insipidus, optic atrophy, and hearing loss.

http://www.hgmd.cf.ac.uk/ac/index.php
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In non-syndromic hearing loss, DFNA6/14/38 leads to LF-NSHL [33,37,39]. Although
variants associated with Wolfram syndrome can be nonsense, frameshift, or missense,
those associated with DFNA6/14/38 are predominantly missense, with the exception of
one frameshift variant that leads to a truncated wolframin lacking the ER luminal do-
main (p.Phe515LeufsTer28) [34]. This finding indicates that variants linked to Wolfram
syndrome are loss-of-function mutations, whereas variants linked to DFNA6/14/38 are
likely gain-of-function mutations (https://omim.org/, accessed on 1 May 2024). Regard-
ing the pathogenesis of DFNA6/14/38, a dominant-negative effect is less likely because
such effects are expected to cause Wolfram syndrome. Instead, variants associated with
DFNA6/14/38 lead to non-syndromic hearing loss without additional features of optic
atrophy, diabetes mellitus, or diabetes insipidus.

According to the literature and the summarized variant map in Figure 2C, the hotspot
region for mutations in the WFS1 gene is located in the ER luminal domain [31,34]. Specifi-
cally, the majority of variants associated with LF-NSHL are missense mutations in exon
8. Mutations responsible for LF-NSHL do not inactivate WFS1. Although the physiolog-
ical role of WFS1 in the inner ear remains unknown, variants in the ER luminal domain
cause misfolding of wolframin, leading to protein instability, ER stress, and cellular apop-
tosis [40,41]. However, it remains unclear why the cochlear apical turns responsible for
detecting lower frequencies are more vulnerable to cellular ER stress. In addition, the spe-
cific variants that are more strongly associated with low-frequency hearing deterioration
remain unknown. Generally, hair cells in the basal turn are more susceptible to ER stress
and are prone to damage from chronic noise exposure [42]. Nevertheless, several genetic
diseases, including DFNA6/14/38 and DFNA1, have been associated with low-frequency
hearing loss. Future studies investigating the biological connection between WFS1 linked
to DFNA6/14/38 and DIAPH1 linked to DFNA1 would be particularly interesting.

It is also worth noting that hearing loss in patients with DFNA6/14/38 was not
progressive, although there was significant variability in the severity of hearing loss. Specif-
ically, the severity of hearing loss did not exceed 60 dB in patients with low/mid-frequency
hearing loss. By contrast, the hearing threshold tended to be relatively higher in cases
with flat or ski-slope audiogram configurations than in those with low/mid-frequency
hearing loss (Figure 3C,D). The difference in the severity of hearing loss depending on the
audiological configuration suggests that variants leading to flat- or ski-slope-type hearing
loss may be more likely to cause a more severe degree of hearing loss than that of those
leading to low/mid-frequency hearing loss. These findings should be considered when
providing genetic counseling to patients.

Little is known regarding vestibular function and symptoms in patients with
DFNA6/14/38. Vestibular dysfunction in DFNA6/14/38 has not been extensively
evaluated. A recent report identified mild vestibular impairments in patients with
DFNA6/14/38, specifically otolith dysfunction in patients with the p.P838S variant,
although this finding may be incidental [35]. In the present study, 40% of patients
reported subjective vestibular impairment symptoms, and one patient (YUHL613-
21, p.R685C) exhibited decreased gains in both the video head impulse test and the
VEMP test, indicating impaired otolith function, which is consistent with findings
in a previous report. Notably, two variants associated with abnormal VEMP results
are located in the ER luminal domain. However, further case analyses are needed to
confirm whether variants in the ER luminal domain affect vestibular function.

In conclusion, LF-NSHL is typically the representative audiological feature of
DFNA6/14/38. However, flat or high-frequency types of hearing loss are also frequently
observed. Therefore, more caution should be exercised when ruling out the possibility
of DFNA6/14/38 in cases of flat or high-frequency hearing loss. Furthermore, given
that vestibular dysfunction can also be present in DFNA6/14/38, vestibular function
tests should be considered for evaluating vestibular function in patients with WFS1
variants. A comprehensive evaluation of both audiological and vestibular functions is
therefore necessary for patients with variants of WFS1.
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