Spectrum of Non-Obstructive Coronary Artery Disease and Its Relationship with Atrial Fibrillation
Abstract
:1. Introduction
2. Non-Obstructive Coronary Artery Disease: ANOCA, INOCA, and MINOCA
- Coronary Angiography: this remains the gold standard for visualizing coronary anatomy. In NOCAD, angiography reveals less than 50% stenosis in the coronary arteries [12].
- Non-Invasive Imaging: techniques such as stress echocardiography, cardiac MRI, positron emission tomography, and CCTA may identify ischemia and assess coronary anatomy without the need for invasive procedures [17].
- Microvascular dysfunction: impaired regulation of blood flow in the small coronary vessels, leading to insufficient oxygen supply to the myocardium caused by structural remodeling of the microvasculature, which will lead to fixed reduced microcirculatory conductance or vasomotor disorders affecting the coronary arterioles, which will cause dynamic arteriolar obstruction (the mechanism for microvascular angina) [21].
- Vasospasm: transient constriction of the epicardial coronary arteries, leading to reduced blood flow and ischemia (the mechanism for epicardial vasospastic angina) [22].
- coronary artery spasm: severe transient constriction of a coronary artery, potentially leading to myocardial infarction [33].
- microvascular dysfunction: similar to INOCA, impaired function of the microvasculature may contribute to ischemia and infarction [37].
- coronary embolism or thrombosis: embolic events or thrombus formation in non-obstructive coronary arteries [38].
3. Coronary Ischemia as Substrate in Atrial Fibrillation
3.1. Inflammation Due to Coronary Ischemia Leading to AF
3.2. Oxidative Stress Due to Coronary Ischemia Leading to Atrial Fibrillation
- sodium channels (Na⁺ Channels): ROS can reduce sodium current (INa) by modifying channel proteins, leading to slowed conduction and increased susceptibility to re-entry circuits [65].
- potassium channels (K⁺ Channels): ROS can affect several potassium channels involved in repolarization, such as IKs, IKr, and Ito. This can prolong or shorten action potential duration, creating a substrate for AF [66].
- calcium channels (Ca2⁺ Channels): ROS can increase L-type calcium current (ICa,L), contributing to abnormal calcium influx and triggered activity [67].
4. Atrial Fibrillation as Substrate for Microvascular Dysfunction
- Triggers and Drivers: AF may be triggered by ectopic beats originating from the pulmonary veins or other locations in the atria, such as the left atria posterior wall, the superior vena cava, the left atrial appendage, the coronary sinus, and the ligament of Marshall. These triggers, combined with areas of slowed conduction and functional re-entry circuits, create a substrate for the initiation and perpetuation of AF. In some cases, rapid firing of ectopic foci or localized reentrant circuits may also drive the arrhythmia [70].
- Catalyst: The catalyst may change refractory periods, in this way increasing autonomic activity, and it is represented by the autonomic nervous system, thyroid hormones, and illicit drugs. Sympathetic activation can increase the likelihood of AF episodes, while parasympathetic stimulation may promote the termination of AF; in this way, imbalances in autonomic tone can influence the susceptibility to AF [71].
- Substrate: The substrate is essential in maintaining the action of trigger and catalyst and it can be structural or electrical. The first one consists of structural modifications in the atria, such as fibrosis (excessive deposition of collagen and other extracellular matrix proteins) and dilation. These changes can disrupt normal electrical conduction pathways in the atrium and create conditions that are conducive to sustaining AF. The second one is created by abnormal electrical activity in the atria, characterized by alterations in ion channel function and intracellular signaling pathways. Modifications in the action potential duration, refractoriness, and conduction velocity can promote the re-entry of electrical impulses and the chaotic electrical activity seen in AF [72].
4.1. Microvascular Dysfunction in AF
4.2. Endothelial Dysfunction Due to Atrial Fibrillation
- Systemic inflammation and oxidative stress: On one hand, AF is associated with elevated levels of inflammatory markers such as C-reactive protein (CRP), IL-6, and TNF-α. These cytokines may cause direct damage to endothelial cells, impairing their function. On the other hand, the arrhythmic nature of AF leads to increased production of ROS, which is able to lead to cellular dysfunction and apoptosis [76,77].
- Hemodynamic shear stress: The irregular and rapid heart rate in AF results in abnormal shear stress on the blood vessel walls. This mechanical stress can disrupt the normal function of endothelial cells, reducing their ability to regulate vascular tone and blood flow [78].
- Endothelial nitric oxide synthase (eNOS) dysfunction: In AF, the bioavailability of NO, which is a critical vasodilator produced by endothelial cells, is reduced due to increased oxidative stress and inflammation, leading to impaired vasodilation and endothelial dysfunction. Moreover, under normal conditions, eNOS produces NO; however, in the presence of oxidative stress and reduced tetrahydrobiopterin (BH4), a cofactor for eNOS, the enzyme becomes uncoupled and produces superoxide instead of NO, further exacerbating oxidative stress and endothelial dysfunction [79].
4.3. Neurohormonal Activation Due to Atrial Fibrillation
4.4. Microthrombi Formation Due to Atrial Fibrillation
4.5. Impaired CFR Due to Atrial Fibrillation
5. NOCAD and AF: Challenges in Clinical Practice
5.1. Diagnostic Challenges
5.2. Therapeutic Challenges
5.3. Prognostic Challenges
6. Key Points
7. Conclusions
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gautier, A.; Picard, F.; Ducrocq, G.; Elbez, Y.; Fox, K.M.; Ferrari, R.; Ford, I.; Tardif, J.-C.; Tendera, M.; Steg, P.G.; et al. New-Onset Atrial Fibrillation and Chronic Coronary Syndrome in the CLARIFY Registry. Eur. Heart J. 2024, 45, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.-C.; Lee, H.; Yoon, Y.E.; Choi, I.-S.; Kim, H.-L.; Chang, H.-J.; Lee, J.Y.; Choi, J.A.; Kim, H.J.; Cho, G.-Y.; et al. Risk Stratification of Non-Obstructive Coronary Artery Disease for Guidance of Preventive Medical Therapy. Atherosclerosis 2019, 290, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Floria, M.; Oancea, A.F.; Morariu, P.C.; Burlacu, A.; Iov, D.E.; Chiriac, C.P.; Baroi, G.L.; Stafie, C.S.; Cuciureanu, M.; Scripcariu, V.; et al. An Overview of the Pharmacokinetics and Pharmacodynamics of Landiolol (an Ultra-Short Acting Β1 Selective Antagonist) in Atrial Fibrillation. Pharmaceutics 2024, 16, 517. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhu, S.; Xie, C.; Zhu, M.; Weng, F.; Wang, C.; Guo, C. Coronary Artery Disease and Atrial Fibrillation: A Bidirectional Mendelian Randomization Study. J. Cardiovasc. Dev. Dis. 2022, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Cappello, I.A.; Pannone, L.; Della Rocca, D.G.; Sorgente, A.; Del Monte, A.; Mouram, S.; Vetta, G.; Kronenberger, R.; Ramak, R.; Overeinder, I.; et al. Coronary Artery Disease in Atrial Fibrillation Ablation: Impact on Arrhythmic Outcomes. Europace 2023, 25, euad328. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.H.; Lerman, A. Angina Pectoris with a Normal Coronary Angiogram. Herz 2005, 30, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, K.; Roshdi Dizaji, S.; Kiah, M.; Rashid, M.; Miri, R.; Yousefifard, M. The Value of Coronary Artery Disease—Reporting and Data System (CAD-RADS) in Outcome Prediction of CAD Patients; a Systematic Review and Meta-Analysis. Arch. Acad. Emerg. Med. 2023, 11, e45. [Google Scholar] [CrossRef] [PubMed]
- Najib, K.; Boateng, S.; Sangodkar, S.; Mahmood, S.; Whitney, H.; Wang, C.E.; Racsa, P.; Sanborn, T.A. Incidence and Characteristics of Patients Presenting with Acute Myocardial Infarction and Non-obstructive Coronary Artery Disease. Catheter. Cardiovasc. Interv. 2015, 86, S23–S27. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Anderson, T. Coronary Endothelial Dysfunction in Non-Obstructive Coronary Artery Disease: Risk, Pathogenesis, Diagnosis and Therapy. Vasc. Med. 2016, 21, 146–155. [Google Scholar] [CrossRef]
- Tunc, E.; Eve, A.A.; Madak-Erdogan, Z. Coronary Microvascular Dysfunction and Estrogen Receptor Signaling. Trends Endocrinol. Metab. 2020, 31, 228–238. [Google Scholar] [CrossRef]
- Kissel, C.K.; Chen, G.; Southern, D.A.; Galbraith, P.D.; Anderson, T.J.; APPROACH investigators. Impact of Clinical Presentation and Presence of Coronary Sclerosis on Long-Term Outcome of Patients with Non-Obstructive Coronary Artery Disease. BMC Cardiovasc. Disord. 2018, 18, 173. [Google Scholar] [CrossRef]
- Rahman, H.; Corcoran, D.; Aetesam-ur-Rahman, M.; Hoole, S.P.; Berry, C.; Perera, D. Diagnosis of Patients with Angina and Non-Obstructive Coronary Disease in the Catheter Laboratory. Heart 2019, 105, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kawashima, H.; Hara, H.; Gao, C.; Wang, R.; Kogame, N.; Takahashi, K.; Chichareon, P.; Modolo, R.; Tomaniak, M.; et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front. Cardiovasc. Med. 2020, 7, 119. [Google Scholar] [CrossRef]
- Reiber, J.H.C.; Tu, S.; Tuinenburg, J.C.; Koning, G.; Janssen, J.P.; Dijkstra, J. QCA, IVUS and OCT in Interventional Cardiology in 2011. Cardiovasc. Diagn. Ther. 2011, 1, 57–70. [Google Scholar] [CrossRef]
- Tajeddini, F.; Nikmaneshi, M.R.; Firoozabadi, B.; Pakravan, H.A.; Ahmadi Tafti, S.H.; Afshin, H. High Precision Invasive FFR, Low-Cost Invasive iFR, or Non-Invasive CFR?: Optimum Assessment of Coronary Artery Stenosis Based on the Patient-Specific Computational Models. Int. J. Numer. Methods Biomed. Eng. 2020, 36, e3382. [Google Scholar] [CrossRef]
- Ghorbanniahassankiadeh, A.; Marks, D.S.; LaDisa, J.F. Correlation of Computational Instantaneous Wave-Free Ratio with Fractional Flow Reserve for Intermediate Multivessel Coronary Disease. J. Biomech. Eng. 2021, 143, 051011. [Google Scholar] [CrossRef]
- Gerbaud, E.; Harcaut, E.; Coste, P.; Erickson, M.; Lederlin, M.; Labèque, J.N.; Perron, J.M.; Cochet, H.; Santos, P.D.; Durrieu-Jaïs, C.; et al. Cardiac magnetic resonance imaging for the diagnosis of patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Int. J. Cardiovasc. Imaging 2012, 28, 783–794. [Google Scholar] [CrossRef]
- Almeida, A.G. MINOCA and INOCA: Role in Heart Failure. Curr. Heart Fail. Rep. 2023, 20, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Woudstra, J.; Vink, C.E.M.; Schipaanboord, D.J.M.; Eringa, E.C.; Den Ruijter, H.M.; Feenstra, R.G.T.; Boerhout, C.K.M.; Beijk, M.A.M.; De Waard, G.A.; Ong, P.; et al. Meta-Analysis and Systematic Review of Coronary Vasospasm in ANOCA Patients: Prevalence, Clinical Features and Prognosis. Front. Cardiovasc. Med. 2023, 10, 1129159. [Google Scholar] [CrossRef]
- Mehta, P.K.; Huang, J.; Levit, R.D.; Malas, W.; Waheed, N.; Bairey Merz, C.N. Ischemia and No Obstructive Coronary Arteries (INOCA): A Narrative Review. Atherosclerosis 2022, 363, 8–21. [Google Scholar] [CrossRef]
- Chen, W.; Ni, M.; Huang, H.; Cong, H.; Fu, X.; Gao, W.; Yang, Y.; Yu, M.; Song, X.; Liu, M.; et al. Chinese Expert Consensus on the Diagnosis and Treatment of Coronary Microvascular Diseases (2023 Edition). MedComm 2023, 4, e438. [Google Scholar] [CrossRef] [PubMed]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients with Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e023207. [Google Scholar] [CrossRef] [PubMed]
- Mayala, H.A.; Yan, W.; Jing, H.; Shuang-ye, L.; Gui-wen, Y.; Chun-xia, Q.; Ya, W.; Xiao-li, L.; Zhao-hui, W. Clinical Characteristics and Biomarkers of Coronary Microvascular Dysfunction and Obstructive Coronary Artery Disease. J. Int. Med. Res. 2019, 47, 6149–6159. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [CrossRef]
- De Lima, J.J.G.; Gowdak, L.H.W.; De Paula, F.J.; Muela, H.C.S.; David-Neto, E.; Bortolotto, L.A. Evaluation of a Protocol for Coronary Artery Disease Investigation in Asymptomatic Elderly Hemodialysis Patients. Int. J. Nephrol. Renov. Dis. 2018, 11, 303–311. [Google Scholar] [CrossRef]
- Fanning, J.P.; Nyong, J.; Scott, I.A.; Aroney, C.N.; Walters, D.L. Routine Invasive Strategies versus Selective Invasive Strategies for Unstable Angina and Non-ST Elevation Myocardial Infarction in the Stent Era. Cochrane Database Syst. Rev. 2016, 2016, CD004815. [Google Scholar] [CrossRef] [PubMed]
- Barbato, E.; Aarnoudse, W.; Aengevaeren, W.R.; Werner, G.; Klauss, V.; Bojara, W.; Herzfeld, I.; Oldroyd, K.G.; Pijls, N.H.J.; De Bruyne, B.; et al. Validation of Coronary Flow Reserve Measurements by Thermodilution in Clinical Practice. Eur. Heart J. 2004, 25, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Pijls, N.H.J.; De Bruyne, B.; Smith, L.; Aarnoudse, W.; Barbato, E.; Bartunek, J.; Bech, G.J.W.; Van De Vosse, F. Coronary Thermodilution to Assess Flow Reserve: Validation in Humans. Circulation 2002, 105, 2482–2486. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Jung, J.-H.; Hwang, D.; Park, J.; Fan, Y.; Na, S.-H.; Doh, J.-H.; Nam, C.-W.; Shin, E.-S.; Koo, B.-K. Coronary Flow Reserve and Microcirculatory Resistance in Patients with Intermediate Coronary Stenosis. J. Am. Coll. Cardiol. 2016, 67, 1158–1169. [Google Scholar] [CrossRef]
- Usui, E.; Murai, T.; Kanaji, Y.; Hoshino, M.; Yamaguchi, M.; Hada, M.; Hamaya, R.; Kanno, Y.; Lee, T.; Yonetsu, T.; et al. Clinical Significance of Concordance or Discordance between Fractional Flow Reserve and Coronary Flow Reserve for Coronary Physiological Indices, Microvascular Resistance, and Prognosis after Elective Percutaneous Coronary Intervention. EuroIntervention 2018, 14, 798–805. [Google Scholar] [CrossRef]
- Everaars, H.; De Waard, G.A.; Driessen, R.S.; Danad, I.; Van De Ven, P.M.; Raijmakers, P.G.; Lammertsma, A.A.; Van Rossum, A.C.; Knaapen, P.; Van Royen, N. Doppler Flow Velocity and Thermodilution to Assess Coronary Flow Reserve. JACC Cardiovasc. Interv. 2018, 11, 2044–2054. [Google Scholar] [CrossRef]
- Yildiz, M.; Ashokprabhu, N.; Shewale, A.; Pico, M.; Henry, T.D.; Quesada, O. Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA). Front. Cardiovasc. Med. 2022, 9, 1032436. [Google Scholar] [CrossRef]
- Bryniarski, K.; Gasior, P.; Legutko, J.; Makowicz, D.; Kedziora, A.; Szolc, P.; Bryniarski, L.; Kleczynski, P.; Jang, I.-K. OCT Findings in MINOCA. J. Clin. Med. 2021, 10, 2759. [Google Scholar] [CrossRef] [PubMed]
- Jigoranu, R.-A.; Roca, M.; Costache, A.-D.; Mitu, O.; Oancea, A.-F.; Miftode, R.-S.; Haba, M.Ș.C.; Botnariu, E.G.; Maștaleru, A.; Gavril, R.-S.; et al. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life 2023, 13, 1639. [Google Scholar] [CrossRef]
- Zhukova, N.S.; Shakhnovich, R.M.; Merkulova, I.N.; Sukhinina, T.S.; Pevzner, D.V.; Staroverov, I.I. Spontaneous Coronary Artery Dissection. Kardiologiia 2019, 59, 52–63. [Google Scholar] [CrossRef]
- Hayes, S.N.; Tweet, M.S.; Adlam, D.; Kim, E.S.H.; Gulati, R.; Price, J.E.; Rose, C.H. Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 961–984. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Cheema, A.N.; Yanagawa, B.; Verma, S.; Bagai, A.; Liu, S. Myocardial Infarction with Nonobstructive Coronary Artery Disease (MINOCA): A Review of Pathophysiology and Management. Curr. Opin. Cardiol. 2021, 36, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D. Myocardial Infarction with Nonobstructive Coronary Arteries: A Call for Individualized Treatment. J. Am. Heart Assoc. 2019, 8, e013361. [Google Scholar] [CrossRef] [PubMed]
- Sykes, R.; Doherty, D.; Mangion, K.; Morrow, A.; Berry, C. What an Interventionalist Needs to Know About MI with Non-Obstructive Coronary Arteries. Interv. Cardiol. 2021, 16, e10. [Google Scholar] [CrossRef]
- Amin, H.Z.; Amin, L.Z.; Pradipta, A. Takotsubo Cardiomyopathy: A Brief Review. J. Med. Life 2020, 13, 3–7. [Google Scholar] [CrossRef]
- Kogan, E.A.; Berezovskiy, Y.S.; Blagova, O.V.; Kukleva, A.D.; Bogacheva, G.A.; Kurilina, E.V.; Kalinin, D.V.; Bagdasaryan, T.R.; Semeyonova, L.A.; Gretsov, E.M.; et al. Miocarditis in Patients with COVID-19 Confirmed by Immunohistochemical. Kardiologiia 2020, 60, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Timpau, A.-S.; Miftode, R.-S.; Leca, D.; Timpau, R.; Miftode, I.-L.; Petris, A.O.; Costache, I.I.; Mitu, O.; Nicolae, A.; Oancea, A.; et al. A Real Pandora’s Box in Pandemic Times: A Narrative Review on the Acute Cardiac Injury Due to COVID-19. Life 2022, 12, 1085. [Google Scholar] [CrossRef] [PubMed]
- Minha, S.; Gottlieb, S.; Magalhaes, M.A.; Gavrielov-Yusim, N.; Krakover, R.; Goldenberg, I.; Vered, Z.; Blatt, A. Characteristics and Management of Patients with Acute Coronary Syndrome and Normal or Non-Significant Coronary Artery Disease: Results from Acute Coronary Syndrome Israeli Survey (ACSIS) 2004-2010. J. Invasive Cardiol. 2014, 26, 389–393. [Google Scholar] [PubMed]
- Turgeon, R.D.; Sedlak, T. Use of Preventive Medications in Patients with Nonobstructive Coronary Artery Disease: Analysis of the PROMISE Trial. CJC Open 2021, 3, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.F.; Chipăilă, E.D.; Iov, E.D.; Morariu, P.; Tănase, D.M.; Floria, M. Stem Cell Therapy in Myocardial Infarction: Still Therapeutic Hope? Rom. J. Cardiol. 2022, 32, 132–137. [Google Scholar] [CrossRef]
- Ashokprabhu, N.D.; Quesada, O.; Alvarez, Y.R.; Henry, T.D. INOCA/ANOCA: Mechanisms and Novel Treatments. Am. Heart J. Plus Cardiol. Res. Pract. 2023, 30, 100302. [Google Scholar] [CrossRef]
- Parwani, P.; Kang, N.; Safaeipour, M.; Mamas, M.A.; Wei, J.; Gulati, M.; Naidu, S.S.; Merz, N.B. Contemporary Diagnosis and Management of Patients with MINOCA. Curr. Cardiol. Rep. 2023, 25, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, G.; Guerra, F.; Pizzi, C.; Merlo, M.; Zilio, F.; Bianco, F.; Mancone, M.; Zaffalon, D.; Gioscia, R.; Bergamaschi, L.; et al. Characteristics of Patients with Recurrent Acute Myocardial Infarction after MINOCA. Prog. Cardiovasc. Dis. 2023, 81, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, T.C.; Dahm, C.C.; Preis, S.R.; Lin, H.; Trinquart, L.; Benjamin, E.J.; Kornej, J. The Bidirectional Association between Atrial Fibrillation and Myocardial Infarction. Nat. Rev. Cardiol. 2023, 20, 631–644. [Google Scholar] [CrossRef]
- Oancea, A.F.; Jigoranu, R.A.; Morariu, P.C.; Miftode, R.-S.; Trandabat, B.A.; Iov, D.E.; Cojocaru, E.; Costache, I.I.; Baroi, L.G.; Timofte, D.V.; et al. Atrial Fibrillation and Chronic Coronary Ischemia: A Challenging Vicious Circle. Life 2023, 13, 1370. [Google Scholar] [CrossRef] [PubMed]
- Carrick, R.T.; Benson, B.E.; Bates, O.R.J.; Spector, P.S. Competitive Drivers of Atrial Fibrillation: The Interplay Between Focal Drivers and Multiwavelet Reentry. Front. Physiol. 2021, 12, 633643. [Google Scholar] [CrossRef]
- Hiraya, D.; Sato, A.; Hoshi, T.; Watabe, H.; Yoshida, K.; Komatsu, Y.; Sekiguchi, Y.; Nogami, A.; Ieda, M.; Aonuma, K. Impact of Coronary Artery Disease and Revascularization on Recurrence of Atrial Fibrillation after Catheter Ablation: Importance of Ischemia in Managing Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2019, 30, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.M.F.L. Influence of Inflammation and Atherosclerosis in Atrial Fibrillation. Curr. Atheroscler. Rep. 2017, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, D.; Heijman, J.; Hiram, R.; Li, N.; Nattel, S. Inflammatory Signalling in Atrial Cardiomyocytes: A Novel Unifying Principle in Atrial Fibrillation Pathophysiology. Nat. Rev. Cardiol. 2023, 20, 145–167. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Nattel, S. Implications of Inflammation and Fibrosis in Atrial Fibrillation Pathophysiology. Card. Electrophysiol. Clin. 2021, 13, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-F.; Chen, Y.-J.; Lin, Y.-J.; Chen, S.-A. Inflammation and the Pathogenesis of Atrial Fibrillation. Nat. Rev. Cardiol. 2015, 12, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lip, G.Y.H.; Apostolakis, S. Inflammation in Atrial Fibrillation. J. Am. Coll. Cardiol. 2012, 60, 2263–2270. [Google Scholar] [CrossRef] [PubMed]
- Pahimi, N.; Rasool, A.H.G.; Sanip, Z.; Bokti, N.A.; Yusof, Z.; W. Isa, W.Y.H. An Evaluation of the Role of Oxidative Stress in Non-Obstructive Coronary Artery Disease. J. Cardiovasc. Dev. Dis. 2022, 9, 51. [Google Scholar] [CrossRef]
- Youn, J.-Y.; Zhang, J.; Zhang, Y.; Chen, H.; Liu, D.; Ping, P.; Weiss, J.N.; Cai, H. Oxidative Stress in Atrial Fibrillation: An Emerging Role of NADPH Oxidase. J. Mol. Cell. Cardiol. 2013, 62, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Karam, B.S.; Chavez-Moreno, A.; Koh, W.; Akar, J.G.; Akar, F.G. Oxidative Stress and Inflammation as Central Mediators of Atrial Fibrillation in Obesity and Diabetes. Cardiovasc. Diabetol. 2017, 16, 120. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Letsas, K.; Fragakis, N.; Tse, G.; Liu, T. Oxidative Stress and Atrial Fibrillation: An Update. Free Radic. Res. 2018, 52, 1199–1209. [Google Scholar] [CrossRef]
- Ping, Z.; Fangfang, T.; Yuliang, Z.; Xinyong, C.; Lang, H.; Fan, H.; Jun, M.; Liang, S. Oxidative Stress and Pyroptosis in Doxorubicin-Induced Heart Failure and Atrial Fibrillation. Oxid. Med. Cell. Longev. 2023, 2023, 4938287. [Google Scholar] [CrossRef]
- Ren, X.; Wang, X.; Yuan, M.; Tian, C.; Li, H.; Yang, X.; Li, X.; Li, Y.; Yang, Y.; Liu, N.; et al. Mechanisms and Treatments of Oxidative Stress in Atrial Fibrillation. Curr. Pharm. Des. 2018, 24, 3062–3071. [Google Scholar] [CrossRef] [PubMed]
- Avula, U.M.R.; Dridi, H.; Chen, B.; Yuan, Q.; Katchman, A.N.; Reiken, S.R.; Desai, A.D.; Parsons, S.; Baksh, H.; Ma, E.; et al. Attenuating Persistent Sodium Current–Induced Atrial Myopathy and Fibrillation by Preventing Mitochondrial Oxidative Stress. JCI Insight 2021, 6, e147371. [Google Scholar] [CrossRef] [PubMed]
- Sovari, A.A. Cellular and Molecular Mechanisms of Arrhythmia by Oxidative Stress. Cardiol. Res. Pract. 2016, 2016, 9656078. [Google Scholar] [CrossRef]
- Nattel, S.; Dobrev, D. The Multidimensional Role of Calcium in Atrial Fibrillation Pathophysiology: Mechanistic Insights and Therapeutic Opportunities. Eur. Heart J. 2012, 33, 1870–1877. [Google Scholar] [CrossRef]
- Yuan, M.; Gong, M.; He, J.; Xie, B.; Zhang, Z.; Meng, L.; Tse, G.; Zhao, Y.; Bao, Q.; Zhang, Y.; et al. IP3R1/GRP75/VDAC1 Complex Mediates Endoplasmic Reticulum Stress-Mitochondrial Oxidative Stress in Diabetic Atrial Remodeling. Redox Biol. 2022, 52, 102289. [Google Scholar] [CrossRef]
- Corban, M.T.; Toya, T.; Ahmad, A.; Lerman, L.O.; Lee, H.-C.; Lerman, A. Atrial Fibrillation and Endothelial Dysfunction. Mayo Clin. Proc. 2021, 96, 1609–1621. [Google Scholar] [CrossRef]
- Krummen, D.E.; Hebsur, S.; Salcedo, J.; Narayan, S.M.; Lalani, G.G.; Schricker, A.A. Mechanisms Underlying AF: Triggers, Rotors, Other? Curr. Treat. Options Cardiovasc. Med. 2015, 17, 14. [Google Scholar] [CrossRef]
- Carnagarin, R.; Kiuchi, M.G.; Ho, J.K.; Matthews, V.B.; Schlaich, M.P. Sympathetic Nervous System Activation and Its Modulation: Role in Atrial Fibrillation. Front. Neurosci. 2019, 12, 1058. [Google Scholar] [CrossRef]
- Corradi, D.; Callegari, S.; Maestri, R.; Benussi, S.; Alfieri, O. Structural Remodeling in Atrial Fibrillation. Nat. Rev. Cardiol. 2008, 5, 782–796. [Google Scholar] [CrossRef]
- Cameron, A.; Schwartz, M.J.; Kronmal, R.A.; Kosinski, A.S. Prevalence and Significance of Atrial Fibrillation in Coronary Artery Disease (CASS Registry). Am. J. Cardiol. 1988, 61, 714–717. [Google Scholar]
- Endothelial Dysfunction due to Atrial Fibrillation—Google Academic. Available online: https://scholar.google.ro/scholar?hl=ro&as_sdt=0%2C5&q=Endothelial+Dysfunction+Due+to++atrial+fibrillation&btnG= (accessed on 27 July 2024).
- Okawa, K.; Sogo, M.; Morimoto, T.; Tsushima, R.; Sudo, Y.; Saito, E.; Ozaki, M.; Takahashi, M. Relationship Between Endothelial Dysfunction and the Outcomes after Atrial Fibrillation Ablation. J. Am. Heart Assoc. 2023, 12, e028482. [Google Scholar] [CrossRef]
- Black, N.; Mohammad, F.; Saraf, K.; Morris, G. Endothelial Function and Atrial Fibrillation: A Missing Piece of the Puzzle? J. Cardiovasc. Electrophysiol. 2022, 33, 109–116. [Google Scholar] [CrossRef]
- Maida, C.D.; Vasto, S.; Di Raimondo, D.; Casuccio, A.; Vassallo, V.; Daidone, M.; Del Cuore, A.; Pacinella, G.; Cirrincione, A.; Simonetta, I. Inflammatory Activation and Endothelial Dysfunction Markers in Patients with Permanent Atrial Fibrillation: A Cross-Sectional Study. Aging 2020, 12, 8423. [Google Scholar]
- Guazzi, M.; Arena, R. Endothelial Dysfunction and Pathophysiological Correlates in Atrial Fibrillation. Heart 2009, 95, 102–106. [Google Scholar]
- Khan, A.A.; Thomas, G.N.; Lip, G.Y.H.; Shantsila, A. Endothelial Function in Patients with Atrial Fibrillation. Ann. Med. 2020, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Miftode, R.-S.; Costache, I.-I.; Constantinescu, D.; Mitu, O.; Timpau, A.-S.; Hancianu, M.; Leca, D.-A.; Miftode, I.-L.; Jigoranu, R.-A.; Oancea, A.-F.; et al. Syndecan-1: From a Promising Novel Cardiac Biomarker to a Surrogate Early Predictor of Kidney and Liver Injury in Patients with Acute Heart Failure. Life 2023, 13, 898. [Google Scholar] [CrossRef]
- Qin, S.; Boidin, M.; Buckley, B.J.R.; Lip, G.Y.H.; Thijssen, D.H.J. Endothelial Dysfunction and Vascular Maladaptation in Atrial Fibrillation. Eur. J. Clin. Investig. 2021, 51, e13477. [Google Scholar] [CrossRef]
- Linz, D.; Elliott, A.D.; Hohl, M.; Malik, V.; Schotten, U.; Dobrev, D.; Nattel, S.; Böhm, M.; Floras, J.; Lau, D.H. Role of Autonomic Nervous System in Atrial Fibrillation. Int. J. Cardiol. 2019, 287, 181–188. [Google Scholar]
- Olshansky, B. Interrelationships between the Autonomic Nervous System and Atrial Fibrillation. Prog. Cardiovasc. Dis. 2005, 48, 57–78. [Google Scholar] [PubMed]
- Parthenakis, F.I.; Patrianakos, A.P.; Skalidis, E.I.; Diakakis, G.F.; Zacharis, E.A.; Chlouverakis, G.; Karalis, I.K.; Vardas, P.E. Atrial Fibrillation Is Associated with Increased Neurohumoral Activation and Reduced Exercise Tolerance in Patients with Non-Ischemic Dilated Cardiomyopathy. Int. J. Cardiol. 2007, 118, 206–214. [Google Scholar]
- Pfenniger, A.; Geist, G.E.; Arora, R. Autonomic Dysfunction and Neurohormonal Disorders in Atrial Fibrillation. Card. Electrophysiol. Clin. 2021, 13, 183–190. [Google Scholar] [PubMed]
- Aroor, A.R.; DeMarco, V.G.; Jia, G.; Sun, Z.; Nistala, R.; Meininger, G.A.; Sowers, J.R. The Role of Tissue Renin-Angiotensin-Aldosterone System in the Development of Endothelial Dysfunction and Arterial Stiffness. Front. Endocrinol. 2013, 4, 161. [Google Scholar]
- El-Maraghi, N.; Genton, E. The Relevance of Platelet and Fibrin Thromboembolism of the Coronary Microcirculation, with Special Reference to Sudden Cardiac Death. Circulation 1980, 62, 936–944. [Google Scholar] [CrossRef]
- Kell, D.B.; Lip, G.Y.; Pretorius, E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024, 12, 891. [Google Scholar] [CrossRef]
- Heusch, G.; Skyschally, A.; Kleinbongard, P. Coronary Microembolization and Microvascular Dysfunction. Int. J. Cardiol. 2018, 258, 17–23. [Google Scholar]
- Kei, C.Y.; Singh, K.; Dautov, R.F.; Nguyen, T.H.; Chirkov, Y.Y.; Horowitz, J.D. Coronary “Microvascular Dysfunction”: Evolving Understanding of Pathophysiology, Clinical Implications, and Potential Therapeutics. Int. J. Mol. Sci. 2023, 24, 11287. [Google Scholar] [CrossRef]
- Camici, P.G.; d’Amati, G.; Rimoldi, O. Coronary Microvascular Dysfunction: Mechanisms and Functional Assessment. Nat. Rev. Cardiol. 2015, 12, 48–62. [Google Scholar]
- Bray, M.A.; Sartain, S.E.; Gollamudi, J.; Rumbaut, R.E. Microvascular Thrombosis: Experimental and Clinical Implications. Transl. Res. 2020, 225, 105–130. [Google Scholar]
- Pintea Bentea, G.; Berdaoui, B.; Samyn, S.; Morissens, M.; van de Borne, P.; Castro Rodriguez, J. Particularities of Coronary Physiology in Patients with Atrial Fibrillation: Insights from Combined Pressure and Flow Indices Measurements. Front. Cardiovasc. Med. 2023, 10, 1206743. [Google Scholar]
- Kochiadakis, G.E.; Skalidis, E.I.; Kalebubas, M.D.; Igoumenidis, N.E.; Chrysostomakis, S.I.; Kanoupakis, E.M.; Simantirakis, E.N.; Vardas, P.E. Effect of Acute Atrial Fibrillation on Phasic Coronary Blood Flow Pattern and Flow Reserve in Humans. Eur. Heart J. 2002, 23, 734–741. [Google Scholar] [PubMed]
- Range, F.T.; Schäfers, M.; Acil, T.; Schäfers, K.P.; Kies, P.; Paul, M.; Hermann, S.; Brisse, B.; Breithardt, G.; Schober, O. Impaired Myocardial Perfusion and Perfusion Reserve Associated with Increased Coronary Resistance in Persistent Idiopathic Atrial Fibrillation. Eur. Heart J. 2007, 28, 2223–2230. [Google Scholar] [PubMed]
- Scarsoglio, S.; Gallo, C.; Saglietto, A.; Ridolfi, L.; Anselmino, M. Impaired Coronary Blood Flow at Higher Heart Rates during Atrial Fibrillation: Investigation via Multiscale Modelling. Comput. Methods Programs Biomed. 2019, 175, 95–102. [Google Scholar] [PubMed]
- Sugimoto, Y.; Kato, S.; Fukui, K.; Iwasawa, T.; Utsunomiya, D.; Kimura, K.; Tamura, K. Impaired Coronary Flow Reserve Evaluated by Phase-Contrast Cine Magnetic Resonance Imaging in Patients with Atrial Fibrillations. Heart Vessel. 2021, 36, 775–781. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Everett, B.M.; Murthy, V.L.; Gaber, M.; Foster, C.R.; Hainer, J.; Blankstein, R.; Dorbala, S.; Di Carli, M.F. Interaction of Impaired Coronary Flow Reserve and Cardiomyocyte Injury on Adverse Cardiovascular Outcomes in Patients without Overt Coronary Artery Disease. Circulation 2015, 131, 528–535. [Google Scholar] [CrossRef]
- Widmer, R.J.; Samuels, B.; Samady, H.; Price, M.J.; Jeremias, A.; Anderson, R.D.; Jaffer, F.A.; Escaned, J.; Davies, J.; Prasad, M. The Functional Assessment of Patients with Non-Obstructive Coronary Artery Disease: Expert Review from an International Microcirculation Working Group. EuroIntervention 2019, 14, 1694–1702. [Google Scholar]
- Pedersen, T.G.B.; Sundbøll, J.; Becker, S.W.; Grove, E.L.; Terkelsen, C.J.; Pryds, K. Chronic coronary syndrome. Ugeskr Laeger 2021, 183, V01210028. [Google Scholar]
- Ferdinand, K.C.; Samson, R. Nonobstructive Coronary Artery Disease in Women: Risk Factors and Noninvasive Diagnostic Assessment. Cardiovasc. Innov. Appl. 2019, 3, 349. [Google Scholar]
- Rottländer, D.; Saal, M.; Degen, H.; Gödde, M.; Horlitz, M.; Haude, M. Diagnostic Role of Coronary CT Angiography in Paroxysmal or First Diagnosed Atrial Fibrillation. Open Heart 2021, 8, e001638. [Google Scholar]
- Lv, W.-H.; Dong, J.-Z.; Du, X.; Hu, R.; He, L.; Long, D.-Y.; Sang, C.-H.; Jia, C.-Q.; Feng, L.; Li, X.; et al. Antithrombotic Strategy and Its Relationship with Outcomes in Patients with Atrial Fibrillation and Chronic Coronary Syndrome. J. Thromb. Thrombolysis 2022, 53, 868–877. [Google Scholar] [CrossRef]
- Cheung, C.C.; Nattel, S.; Macle, L.; Andrade, J.G. Management of Atrial Fibrillation in 2021: An Updated Comparison of the Current CCS/CHRS, ESC, and AHA/ACC/HRS Guidelines. Can. J. Cardiol. 2021, 37, 1607–1618. [Google Scholar] [PubMed]
- Kany, S.; Schnabel, R. Adding to the Evidence or to the Confusion: Dual Antithrombotic Therapy in Chronic Coronary Syndrome and Atrial Fibrillation. Heart 2021, 107, 1690–1691. [Google Scholar] [PubMed]
- Lopes, R.D.; Vora, A.N.; Liaw, D.; Granger, C.B.; Darius, H.; Goodman, S.G.; Mehran, R.; Windecker, S.; Alexander, J.H. An Open-Label, 2 × 2 Factorial, Randomized Controlled Trial to Evaluate the Safety of Apixaban vs. Vitamin K Antagonist and Aspirin vs. Placebo in Patients with Atrial Fibrillation and Acute Coronary Syndrome and/or Percutaneous Coronary Intervention: Rationale and Design of the AUGUSTUS Trial. Am. Heart J. 2018, 200, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Manocha, P.; Bavikati, V.; Langberg, J.; Lloyd, M.S. Coronary Artery Disease Potentiates Response to Dofetilide for Rhythm Control of Atrial Fibrillation. Pacing Clin. Electrophis 2012, 35, 170–173. [Google Scholar] [CrossRef]
- Pantlin, P.G.; Bober, R.M.; Bernard, M.L.; Khatib, S.; Polin, G.M.; Rogers, P.A.; Morin, D.P. Class 1C Antiarrhythmic Drugs in Atrial Fibrillation and Coronary Artery Disease. J. Cardiovasc. Electrophysiol. 2020, 31, 607–611. [Google Scholar] [CrossRef]
- Zhang, H.-D.; Ding, L.; Mi, L.-J.; Zhang, A.-K.; Zhang, K.; Jiang, Z.-H.; Yu, F.-Y.; Yan, X.-X.; Shen, Y.-J.; Tang, M. Sodium–Glucose Co-Transporter-2 Inhibitors for the Prevention of Atrial Fibrillation: A Systemic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2024, 31, 770–779. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Popovic, D.S.; Pamporis, K.; Theofilis, P.; Nasoufidou, A.; Stachteas, P.; Samaras, A.; Tzikas, A.; Giannakoulas, G.; et al. Effects of Mineralocorticoid Receptor Antagonists on New-Onset or Recurrent Atrial Fibrillation: A Bayesian and Frequentist Network Meta-Analysis of Randomized Trials. Curr. Probl. Cardiol. 2024, 49, 102742. [Google Scholar] [CrossRef]
- Haegeli, L.M.; Calkins, H. Catheter Ablation of Atrial Fibrillation: An Update. Eur. Heart J. 2014, 35, 2454–2459. [Google Scholar]
- Akboğa, M.K.; Yılmaz, S.; Yalçın, R. Prognostic Value of CHA2DS2-VASc Score in Predicting High SYNTAX Score and in-Hospital Mortality for Non-ST Elevation Myocardial Infarction in Patients without Atrial Fibrillation. Anatol. J. Cardiol. 2021, 25, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Wojszel, Z.B.; Kuźma, Ł.; Rogalska, E.; Kurasz, A.; Dobrzycki, S.; Sobkowicz, B.; Tomaszuk-Kazberuk, A. A Newly Defined CHA2DS2-VA Score for Predicting Obstructive Coronary Artery Disease in Patients with Atrial Fibrillation—A Cross-Sectional Study of Older Persons Referred for Elective Coronary Angiography. J. Clin. Med. 2022, 11, 3462. [Google Scholar] [CrossRef] [PubMed]
- Worme, M.D.; Tan, M.K.; Armstrong, D.W.; Yan, A.T.; Tan, N.S.; Brieger, D.; Budaj, A.; Gore, J.M.; López-Sendón, J.; Van de Werf, F. Previous and New Onset Atrial Fibrillation and Associated Outcomes in Acute Coronary Syndromes (from the Global Registry of Acute Coronary Events). Am. J. Cardiol. 2018, 122, 944–951. [Google Scholar] [PubMed]
- Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int. J. Mol. Sci. 2020, 21, 8118. [Google Scholar] [CrossRef]
- Nso, N.; Bookani, K.R.; Metzl, M.; Radparvar, F. Role of Inflammation in Atrial Fibrillation: A Comprehensive Review of Current Knowledge. J. Arrhythmia 2021, 37, 1–10. [Google Scholar] [CrossRef]
- Oktay, V. The Effect of Oxidative Stress Related with Ischemia-Reperfusion Damage on the Pathogenesis of Atrial Fibrillation Developing after Coronary Artery Bypass Graft Surgery. Arch. Turk. Soc. Cardiol. 2014, 42, 419–425. [Google Scholar] [CrossRef]
- Charitakis, E.; Walfridsson, H.; Nylander, E.; Alehagen, U. Neurohormonal Activation After Atrial Fibrillation Initiation in Patients Eligible for Catheter Ablation: A Randomized Controlled Study. J. Am. Heart Assoc. 2016, 5, e003957. [Google Scholar] [CrossRef]
- Violi, F.; Pastori, D.; Pignatelli, P. Mechanisms and Management of Thrombo-Embolism in Atrial Fibrillation. J. Atr. Fibrillation 2014, 7, 1112. [Google Scholar] [CrossRef]
- Ozcan, C.; Allan, T.; Besser, S.A.; de la Pena, A.; Blair, J. The Relationship between Coronary Microvascular Dysfunction, Atrial Fibrillation and Heart Failure with Preserved Ejection Fraction. Am. J. Cardiovasc. Dis. 2021, 11, 29–38. [Google Scholar]
Diagnostic Tool | Role of the Diagnostic Tool |
---|---|
Cardiac biomarkers (especially high-sensitive troponin) [23] | May differentiate ANOCA and INOCA from MINOCA by showing the status of myocardial injury |
Non-invasive tests to detect ischemia: exercise tolerance test, transthoracic doppler echocardiography, myocardial contrast echocardiography, myocardial perfusion imaging, positron emission tomography, stress echocardiography, and cardiac MRI [24] | May differentiate ANOCA (without signs of ischemia) from INOCA (the signs of ischemia are present) |
Coronary angiography [25] | Gold standard to exclude obstructive CAD |
Invasive tests during coronary angiography: vasoreactivity test using intracoronary acetylcholine, FFR, IFR, CFR, IMR, HMR [26] | May differentiate the type of NOCAD regarding its physiopathology |
Type of SCAD | Description |
---|---|
Type 1 (contrast staining of false lumen) | It has contrast stains in the arterial wall with multiple radiolucent lumens with or without slow contrast clearing. |
Type 2 (long diffuse and smooth narrowing) | It shows diffuse, smooth, usually, 20–30 mm narrowing with varying severity. |
Type 3 (focal/tubular stenosis) | It shows focal or tubular stenosis that mimics atherosclerosis. |
Type 4 (occlusion of the vessel) | There is no antegrade flux distal to the lesion. |
Trial | Mechanism | Methods | Conclusions | |
---|---|---|---|---|
| Coronary ischemia as substrate in AF | Inflammation | An in-depth review of the available literature criteria number | The inflammatory cascade induces fibrotic changes in the myocardium, an arrhythmogenic process that may promote AF |
| Oxidative stress | Single-center study with 118 patients | The role of oxidative stress related to ischemia-reperfusion damage may be a key to the pathogenesis of AF | |
| AF as a substrate for microvascular dysfunction | Endothelial Dysfunction | An in-depth review of the available literature criteria number | Experimental and clinical studies have shown that AF is associated with systemic vascular and atrial endothelial dysfunction |
| Neurohormonal Activation | Randomized Controlled Study including 45 patients | AF is a strong stimulus that causes an immediate activation of different biomarkers and has an immediate effect on hemodynamics leading to neurohormonal activation | |
| Microthrombi Formation | Review | AF is characterized by a constellation of atherosclerotic risk factors, including hypertension, dyslipidemia, and diabetes, which may predispose to serious clinical complications of atherosclerosis | |
| Impaired CFR | Cohort of 80 patients | Patients with AF were more likely to have coronary microvascular dysfunction | |
| Challenges in clinical practice | Diagnostic challenge | A 5-year single-center retrospective analysis with 566 patients | Patients with paroxysmal or first-diagnosed AF are at risk for CAD, while CCTA is a feasible diagnostic tool for CAD |
| Therapeutic challenge | Pilot study with 78 patients | In a limited population of AF patients with preserved left ventricle function and PET-CFC indicating occult CAD, treatment with 1C AADs appears not to increase mortality | |
| Prognostic challenge | A cross-sectional study with 452 patients | Several older AF patients who are advised to undergo elective CAG have nonobstructive CAD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oancea, A.-F.; Morariu, P.C.; Buburuz, A.M.; Miftode, I.-L.; Miftode, R.S.; Mitu, O.; Jigoranu, A.; Floria, D.-E.; Timpau, A.; Vata, A.; et al. Spectrum of Non-Obstructive Coronary Artery Disease and Its Relationship with Atrial Fibrillation. J. Clin. Med. 2024, 13, 4921. https://doi.org/10.3390/jcm13164921
Oancea A-F, Morariu PC, Buburuz AM, Miftode I-L, Miftode RS, Mitu O, Jigoranu A, Floria D-E, Timpau A, Vata A, et al. Spectrum of Non-Obstructive Coronary Artery Disease and Its Relationship with Atrial Fibrillation. Journal of Clinical Medicine. 2024; 13(16):4921. https://doi.org/10.3390/jcm13164921
Chicago/Turabian StyleOancea, Alexandru-Florinel, Paula Cristina Morariu, Ana Maria Buburuz, Ionela-Larisa Miftode, Radu Stefan Miftode, Ovidiu Mitu, Alexandru Jigoranu, Diana-Elena Floria, Amalia Timpau, Andrei Vata, and et al. 2024. "Spectrum of Non-Obstructive Coronary Artery Disease and Its Relationship with Atrial Fibrillation" Journal of Clinical Medicine 13, no. 16: 4921. https://doi.org/10.3390/jcm13164921
APA StyleOancea, A. -F., Morariu, P. C., Buburuz, A. M., Miftode, I. -L., Miftode, R. S., Mitu, O., Jigoranu, A., Floria, D. -E., Timpau, A., Vata, A., Plesca, C., Botnariu, G., Burlacu, A., Scripcariu, D. -V., Raluca, M., Cuciureanu, M., Tanase, D. M., Costache-Enache, I. I., & Floria, M. (2024). Spectrum of Non-Obstructive Coronary Artery Disease and Its Relationship with Atrial Fibrillation. Journal of Clinical Medicine, 13(16), 4921. https://doi.org/10.3390/jcm13164921