A Narrative Review of the Association between Dental Abnormalities and Chemotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
- -
- Articles that could be viewed in their entirety;
- -
- Articles with their full text in English;
- -
- Clinical investigations that were not case reports or reviews;
- -
- Studies that investigated the prevalence of dental abnormalities using panoramic radiography.
2.3. Exclusion Criteria
- -
- Articles that were not suitable for the objective of this review or used the wrong study design;
- -
- Studies that investigated the prevalence of dental abnormalities using cone beam computed tomography imaging;
- -
- Articles about congenital diseases such as syndromes or those with a limited number of subjects or insufficient data; however, a control group was only included when the prevalence of a healthy group was described.
2.4. Study Selection
2.5. Data Extraction
2.6. Quality Assessment
3. Results
4. Discussion
4.1. Dental Anomalies
4.2. Tooth Agenesis and Hypodontia
4.3. Microdonts
4.4. Dental Abnormalities in the General Population
4.5. Dental Abnormalities in Patients Who Have Undergone Cancer Treatment or Chemotherapy
4.6. Oral Care during Cancer Treatment
4.7. Oral Care after Cancer Treatment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massler, M.; Schour, I. Atlas of the Mouth; American Dental Association: Chicago, IL, USA, 1944. [Google Scholar]
- Akitomo, T.; Asao, Y.; Iwamoto, Y.; Kusaka, S.; Usuda, M.; Kametani, M.; Ando, T.; Sakamoto, S.; Mitsuhata, C.; Kajiya, M.; et al. A Third Supernumerary Tooth Occurring in the Same Region: A Case Report. Dent. J. 2023, 11, 49. [Google Scholar] [CrossRef]
- Akitomo, T.; Kusaka, S.; Iwamoto, Y.; Usuda, M.; Kametani, M.; Asao, Y.; Nakano, M.; Tachikake, M.; Mitsuhata, C.; Nomura, R. Five-Year Follow-Up of a Child with Non-Syndromic Oligodontia from before the Primary Dentition Stage: A Case Report. Children 2023, 10, 717. [Google Scholar] [CrossRef]
- Usuda, M.; Akitomo, T.; Kametani, M.; Kusaka, S.; Mitsuhata, C.; Nomura, R. Dens invaginatus of fourteen teeth in a pediatric patient. Pediatr. Dent. J. 2023, 33, 240–245. [Google Scholar] [CrossRef]
- Patil, S.; Doni, B.; Kaswan, S.; Rahman, F. Prevalence of dental anomalies in Indian population. J. Clin. Exp. Dent. 2013, 5, e183–e186. [Google Scholar] [CrossRef]
- Anthonappa, R.P.; King, N.M.; Rabie, A.B. Diagnostic tools used to predict the prevalence of supernumerary teeth: A meta-analysis. Dentomaxillofac. Radiol. 2012, 41, 444–449. [Google Scholar] [CrossRef]
- Di Spirito, F.; Scelza, G.; Amato, A.; Rosa, D.; Gallotti, A.; Martina, S. Prevalence of dental anomalies in a sample of growing subjects: A retrospective study. Epidemiol. Prev. 2022, 46, 376–381. [Google Scholar] [PubMed]
- Brook, A.H.; Griffin, R.C.; Smith, R.N.; Townsend, G.C.; Kaur, G.; Davis, G.R.; Fearne, J. Tooth size patterns in patients with hypodontia and supernumerary teeth. Arch. Oral Biol. 2009, 54, S63–S70. [Google Scholar] [CrossRef]
- Talaat, D.M.; Hachim, I.Y.; Afifi, M.M.; Talaat, I.M.; ElKateb, M.A. Assessment of risk factors and molecular biomarkers in children with supernumerary teeth: A single-center study. BMC Oral Health 2022, 22, 117. [Google Scholar] [CrossRef]
- Goho, C. Chemoradiation therapy: Effect on dental development. Pediatr. Dent. 1993, 15, 6–12. [Google Scholar] [PubMed]
- Talekar, A.L.; Musale, P.K.; Kothare, S.S. Dental Caries and Dental Anomalies in Children Undergoing Chemotherapy for Malignant Diseases. Int. J. Clin. Pediatr. Dent. 2022, 15, 428–432. [Google Scholar]
- Proc, P.; Szczepańska, J.; Skiba, A.; Zubowska, M.; Fendler, W.; Młynarski, W. Dental Anomalies as Late Adverse Effect among Young Children Treated for Cancer. Cancer Res. Treat. 2016, 48, 658–667. [Google Scholar] [CrossRef]
- Jodłowska, A.; Postek-Stefańska, L. Duration and dose of chemotherapy and dental development. Dent. Med. Probl. 2022, 59, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Lohr, K.N.; Atkins, D.; Treadwell, J.R.; Reston, J.T.; Bass, E.B.; Chang, S.; Helfand, M. AHRQ series paper 5: Grading the strength of a body of evidence when comparing medical interventions—Agency for healthcare research and quality and the effective health-care program. J. Clin. Epidemiol. 2010, 63, 513–523. [Google Scholar] [CrossRef]
- Lexner, M.O.; Bardow, A.; Hertz, J.M.; Nielsen, L.A.; Kreiborg, S. Anomalies of tooth formation in hypohidrotic ectodermal dysplasia. Int. J. Paediatr. Dent. 2007, 17, 10–18. [Google Scholar] [CrossRef]
- Chung, C.J.; Han, J.H.; Kim, K.H. The pattern and prevalence of hypodontia in Koreans. Oral Dis. 2008, 14, 620–625. [Google Scholar] [CrossRef]
- Paulsson, L.; Söderfeldt, B.; Bondemark, L. Malocclusion traits and orthodontic treatment needs in prematurely born children. Angle Orthod. 2008, 78, 786–792. [Google Scholar] [CrossRef]
- Abe, R.; Endo, T.; Shimooka, S. Maxillary first molar agenesis and other dental anomalies. Angle Orthod. 2010, 80, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Ajami, B.A.; Shabzendedar, M.; Mehrjerdian, M. Prevalence of hypodontia in nine- to fourteen-year-old children who attended the Mashhad School of Dentistry. Indian J. Dent. Res. 2010, 21, 549–551. [Google Scholar]
- Gupta, S.K.; Saxena, P.; Jain, S.; Jain, D. Prevalence and distribution of selected developmental dental anomalies in an Indian population. J. Oral Sci. 2011, 53, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H. Investigation of hypodontia as clinically related dental anomaly: Prevalence and characteristics. ISRN Dent. 2011, 2011, 246135. [Google Scholar] [CrossRef]
- Lauritano, D.; Petruzzi, M. Decayed, missing and filled teeth index and dental anomalies in long-term survivors leukaemic children: A prospective controlled study. Med. Oral Patol. Oral Cir. Bucal 2012, 17, e977–e980. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Mitra, S. Anomalies in primary dentition: Their distribution and correlation with permanent dentition. J. Nat. Sci. Biol. Med. 2014, 5, 139–143. [Google Scholar] [CrossRef]
- Fekonja, A. Hypodontia prevalence over four decades in a Slovenian population. J. Esthet. Restor. Dent. 2015, 27, 37–43. [Google Scholar] [CrossRef]
- Medina, A.C.; Pozo, R.D.; de Cedres, L.B. Radiographic Assessment of Dental Maturation in Children with Dental Agenesis. J. Clin. Pediatr. Dent. 2016, 40, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Yassin, S.M. Prevalence and distribution of selected dental anomalies among saudi children in Abha, Saudi Arabia. J. Clin. Exp. Dent. 2016, 8, e485–e490. [Google Scholar] [CrossRef] [PubMed]
- Fekonja, A. Prevalence of dental developmental anomalies of permanent teeth in children and their influence on esthetics. J. Esthet. Restor. Dent. 2017, 29, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Gracco, A.L.T.; Zanatta, S.; Forin Valvecchi, F.; Bignotti, D.; Perri, A.; Baciliero, F. Prevalence of dental agenesis in a sample of Italian orthodontic patients: An epidemiological study. Prog. Orthod. 2017, 18, 33. [Google Scholar] [CrossRef]
- Park, M.K.; Shin, M.K.; Kim, S.O.; Lee, H.S.; Lee, J.H.; Jung, H.S.; Song, J.S. Prevalence of delayed tooth development and its relation to tooth agenesis in Korean children. Arch. Oral Biol. 2017, 73, 243–247. [Google Scholar] [CrossRef]
- Dallel, I.; Marwen, W.; Ben Abdallah, S.; Tobji, S.; Ben Amor, A.; Canal, P. Agenesis of the upper lateral incisors: Study of an orthodontic population and clinical illustration. Int. Orthod. 2018, 16, 384–407. [Google Scholar] [CrossRef]
- Fernandez, C.C.A.; Pereira, C.V.C.A.; Luiz, R.R.; Vieira, A.R.; De Castro Costa, M. Dental anomalies in different growth and skeletal malocclusion patterns. Angle Orthod. 2018, 88, 195–201. [Google Scholar] [CrossRef]
- Septer, S.; Bohaty, B.; Onikul, R.; Kumar, V.; Williams, K.B.; Attard, T.M.; Friesen, C.A.; Friesen, L.R. Dental anomalies in pediatric patients with familial adenomatous polyposis. Fam. Cancer. 2018, 17, 229–234. [Google Scholar] [CrossRef]
- Kılınç, G.; Bulut, G.; Ertuğrul, F.; Ören, H.; Demirağ, B.; Demiral, A.; Aksoylar, S.; Kamer, E.S.; Ellidokuz, H.; Olgun, N. Long-term Dental Anomalies after Pediatric Cancer Treatment in Children. Turk. J. Haematol. 2019, 36, 155–161. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.; Yu, W. Incidental findings in a consecutive series of digital panoramic radiographs. Imaging Sci. Dent. 2020, 50, 53–64. [Google Scholar] [CrossRef]
- Wagner, V.P.; Arrué, T.; Hilgert, E.; Arús, N.A.; da Silveira, H.L.D.; Martins, M.D.; Rodrigues, J.A. Prevalence and distribution of dental anomalies in a paediatric population based on panoramic radiographs analysis. Eur. J. Paediatr. Dent. 2020, 21, 292–298. [Google Scholar] [PubMed]
- Jankowski, T.; Jedliński, M.; Schmeidl, K.; Grocholewicz, K.; Janiszewska-Olszowska, J. Sella Turcica Abnormalities, Dental Age and Dental Abnormalities in Polish Children. Int. J. Environ. Res. Public Health 2021, 18, 10101. [Google Scholar] [CrossRef] [PubMed]
- Aboujaoude, S.; Rizk, C.; Sokhn, S.; Moukarzel, C.; Aoun, G. Dental Anomalies in a Sample of Lebanese Children: A Retrospective Study. Mater. Sociomed. 2023, 35, 319–324. [Google Scholar] [CrossRef] [PubMed]
- AlHudaithi, F.S.; AlDuhayan, N.A.; AlJohani, L.N.; AlJohani, S.N.; AlQarni, H.S.; AlSawadi, M.H. Prevalence of Dental Anomalies Among Orthodontic Patients: A Retrospective Study in Saudi Arabia. Cureus 2023, 15, e49893. [Google Scholar] [CrossRef]
- Alanzi, A.; Bufersen, N.; Haider, S.; Abdulrahim, M. Prevalence and Distribution of Dental Anomalies in Schoolchildren in Kuwait. Int. Dent. J. 2024, 74, 566–572. [Google Scholar] [CrossRef]
- Matošić, Ž.; Šimunović, L.; Jukić, T.; Granić, R.; Meštrović, S. “Examining the link between tooth agenesis and papillary thyroid cancer: Is there a risk factor?” Observational study. Prog. Orthod. 2024, 25, 12. [Google Scholar] [CrossRef]
- Mohan, R.; Puranik, C.P.; Kaci, P.; Moore, T.; Katechia, B.; Schulman, G.S.; Tadinada, A. Prescription of panoramic radiographs in children using age-based prevalence of dental anomalies and pathologies. Int. J. Paediatr. Dent. 2024, 34, 125–134. [Google Scholar] [CrossRef]
- Tanaka, M.; Kamata, T.; Yanagisawa, R.; Morita, D.; Saito, S.; Sakashita, K.; Shiohara, M.; Kurita, H.; Koike, K.; Nakazawa, Y. Increasing Risk of Disturbed Root Development in Permanent Teeth in Childhood Cancer Survivors Undergoing Cancer Treatment at Older Age. J. Pediatr. Hematol. Oncol. 2017, 39, e150–e154. [Google Scholar] [CrossRef]
- Kang, C.M.; Hahn, S.M.; Kim, H.S.; Lyu, C.J.; Lee, J.H.; Lee, J.; Han, J.W. Clinical Risk Factors Influencing Dental Developmental Disturbances in Childhood Cancer Survivors. Cancer Res. Treat. 2018, 50, 926–935. [Google Scholar] [CrossRef]
- Immonen, E.; Nikkilä, A.; Peltomäki, T.; Aine, L.; Lohi, O. Late adverse effects of childhood acute lymphoblastic leukemia treatment on developing dentition. Pediatr. Blood Cancer 2021, 68, e29200. [Google Scholar] [CrossRef]
- Akitomo, T.; Ogawa, M.; Kaneki, A.; Nishimura, T.; Usuda, M.; Kametani, M.; Kusaka, S.; Asao, Y.; Iwamoto, Y.; Tachikake, M.; et al. Dental Abnormalities in Pediatric Patients Receiving Chemotherapy. J. Clin. Med. 2024, 13, 2877. [Google Scholar] [CrossRef] [PubMed]
- Renugalakshmi, A.; Vinothkumar, T.S.; Bokhari, A.M.; Almahdi, S.; Almalki, A.; Balla, S.B.; Tadakamadla, S.K.; Hakami, Z. Prevalence of Dental Anomalies and Its Role in Sex Estimation among Children of Jazan Region, Saudi Arabia. Children 2023, 10, 759. [Google Scholar] [CrossRef]
- Bilge, N.H.; Yeşiltepe, S.; Törenek Ağırman, K.; Çağlayan, F.; Bilge, O.M. Investigation of prevalence of dental anomalies by using digital panoramic radiographs. Folia Morphol. 2018, 77, 323–328. [Google Scholar] [CrossRef]
- Ragodos, R.; Wang, T.; Padilla, C.; Hecht, J.T.; Poletta, F.A.; Orioli, I.M.; Buxó, C.J.; Butali, A.; Valencia-Ramirez, C.; Restrepo Muñeton, C.; et al. Dental anomaly detection using intraoral photos via deep learning. Sci. Rep. 2022, 12, 11577. [Google Scholar] [CrossRef]
- Yang, J.; Lu, X.; Liu, S.; Zhao, S. The involvement of genes related to bile secretion pathway in rat tooth germ development. J. Mol. Histol. 2020, 51, 99–107. [Google Scholar] [CrossRef]
- Murashima-Suginami, A.; Kiso, H.; Tokita, Y.; Mihara, E.; Nambu, Y.; Uozumi, R.; Tabata, Y.; Bessho, K.; Takagi, J.; Sugai, M.; et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling. Sci. Adv. 2021, 7, eabf1798. [Google Scholar] [CrossRef]
- Goutham, B.; Bhuyan, L.; Chinnannavar, S.N.; Kundu, M.; Jha, K.; Behura, S.S. Prevalence of Dental Anomalies in Odisha Population: A Panoramic Radiographic Study. J. Contemp. Dent. Pract. 2017, 18, 549–553. [Google Scholar]
- Akitomo, T.; Asao, Y.; Mitsuhata, C.; Kozai, K. A new supernumerary tooth occurring in the same region during follow-up after supernumerary tooth extraction: A case report. Pediatr. Dent. 2021, 32, 100–107. [Google Scholar] [CrossRef]
- Al-Ani, A.H.; Antoun, J.S.; Thomson, W.M.; Merriman, T.R.; Farella, M. Hypodontia: An Update on Its Etiology, Classification, and Clinical Management. Biomed Res. Int. 2017, 2017, 9378325. [Google Scholar] [CrossRef] [PubMed]
- Gkantidis, N.; Katib, H.; Oeschger, E.; Karamolegkou, M.; Topouzelis, N.; Kanavakis, G. Patterns of non-syndromic permanent tooth agenesis in a large orthodontic population. Arch. Oral Biol. 2017, 79, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Baba, R.; Sato, A.; Arai, K. Consecutive tooth agenesis patterns in non-syndromic oligodontia. Odontology 2022, 110, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Palaska, P.K.; Antonarakis, G.S. Prevalence and patterns of permanent tooth agenesis in individuals with Down syndrome: A meta-analysis. Eur. J. Oral Sci. 2016, 124, 317–328. [Google Scholar] [CrossRef]
- De Santis, D.; Sinigaglia, S.; Faccioni, P.; Pancera, P.; Luciano, U.; Bertossi, D.; Lucchese, A.; Albanese, M.; Nocini, P.F. Syndromes associated with dental agenesis. Minerva Stomatol. 2019, 68, 42–56. [Google Scholar] [CrossRef]
- Ritwik, P.; Patterson, K.K. Diagnosis of Tooth Agenesis in Childhood and Risk for Neoplasms in Adulthood. Ochsner J. 2018, 18, 345–350. [Google Scholar] [CrossRef]
- Silveira, G.S.; de Almeida, N.V.; Pereira, D.M.; Mattos, C.T.; Mucha, J.N. Prosthetic replacement vs space closure for maxillary lateral incisor agenesis: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 228–237. [Google Scholar] [CrossRef]
- Dos Santos, C.C.O.; Melo, D.L.; da Silva, P.P.; Normando, D. What is the survival rate of deciduous molars in cases with agenesis of premolar successors? A systematic review. Angle Orthod. 2022, 92, 110–117. [Google Scholar] [CrossRef]
- King, N.M.; Tongkoom, S.; Itthagarun, A.; Wong, H.M.; Lee, C.K. A catalogue of anomalies and traits of the primary dentition of southern Chinese. J. Clin. Pediatr. Dent. 2008, 32, 139–146. [Google Scholar] [CrossRef]
- Shafer, W.G.; Hine, M.K.; Levy, B.M. A Textbook of Oral Pathology, 3rd ed.; WB Saunders Co.: Philadelphia, PA, USA, 1974; pp. 34–46. [Google Scholar]
- Hans, M.K.; Chander, S.; Ahluwalia, A.S.; Chinna, H. Non syndromic bilateral microdontia of maxillary second molars: A very rare finding. J. Clin. Diagn. Res. 2015, 9, ZJ03–ZJ04. [Google Scholar] [CrossRef] [PubMed]
- Laverty, D.P.; Thomas, M.B. The restorative management of microdontia. Br. Dent. J. 2016, 221, 160–166. [Google Scholar] [CrossRef]
- Tirone, F.; Salzano, S.; Rolando, E. Adhesive esthetic treatment of non-syndromic maxillary anterior microdontia in young high-demanding patients: A case series. Int. J. Esthet. Dent. 2016, 11, 520–537. [Google Scholar] [PubMed]
- Yamasaki, Y.; Iwasaki, T.; Hayasaki, H.; Saitoh, I.; Tokutomi, J.; Yawaka, Y.; Inoue, M.; Asada, Y.; Tamura, Y.; Kanomi, R.; et al. Frequency of Congenitally Missing Permanent Teeth in Japanese Children. Jpn. J. Pediatr. Dent. 2010, 48, 29–39. [Google Scholar]
- Fulda, S.; Debatin, K.M. Targeting apoptosis pathways in cancer therapy. Curr. Cancer Drug Targets 2004, 4, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Nakatsugawa, K.; Kurosaka, H.; Inubushi, T.; Aoyama, G.; Isogai, Y.; Usami, Y.; Toyosawa, S.; Yamashiro, T. Stage- and tissue-specific effect of cyclophosphamide during tooth development. Eur. J. Orthod. 2019, 41, 519–530. [Google Scholar] [CrossRef]
- Gómez-Figueroa, E.; Gutierrez-Lanz, E.; Alvarado-Bolaños, A.; Casallas-Vanegas, A.; Garcia-Estrada, C.; Zabala-Angeles, I.; Cadena-Fernandez, A.; Veronica, R.A.; Irene, T.F.; Flores-Rivera, J. Cyclophosphamide treatment in active multiple sclerosis. Neurol. Sci. 2021, 42, 3775–3780. [Google Scholar] [CrossRef]
- Kawakami, T.; Nakamura, Y.; Karibe, H. Cyclophosphamide-Induced Morphological Changes in Dental Root Development of ICR Mice. PLoS ONE 2015, 10, e0133256. [Google Scholar] [CrossRef]
- Nishimura, S.; Inada, H.; Sawa, Y.; Ishikawa, H. Risk factors to cause tooth formation anomalies in chemotherapy of paediatric cancers. Eur. J. Cancer Care 2013, 22, 353–360. [Google Scholar] [CrossRef]
- Chien, H.I.; Chen, L.W.; Liu, W.C.; Lin, C.T.; Ho, Y.Y.; Tsai, W.H.; Yang, K.C. Bisphosphonate-Related Osteonecrosis of the Jaw. Ann. Plast Surg. 2021, 86, S78–S83. [Google Scholar] [CrossRef]
- Malmgren, B.; Thesleff, I.; Dahllöf, G.; Åström, E.; Tsilingaridis, G. Abnormalities in Tooth Formation after Early Bisphosphonate Treatment in Children with Osteogenesis Imperfecta. Calcif. Tissue Int. 2021, 109, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Pedretti, L.; Massa, S.; Leardini, D.; Muratore, E.; Rahman, S.; Pession, A.; Esposito, S.; Masetti, R. Role of Nutrition in Pediatric Patients with Cancer. Nutrients 2023, 15, 710. [Google Scholar] [CrossRef] [PubMed]
- Olczak-Kowalczyk, D.; Danko, M.; Banaś, E.; Gozdowski, D.; Popińska, K.; Krasuska-Sławińska, E.; Książyk, J. Parenteral nutrition in childhood and consequences for dentition and gingivae. Eur. J. Paediatr. Dent. 2017, 18, 69–76. [Google Scholar] [PubMed]
- Elamin, F.; Liversidge, H.M. Malnutrition has no effect on the timing of human tooth formation. PLoS ONE 2013, 8, e72274. [Google Scholar] [CrossRef]
- Hölttä, P.; Alaluusua, S.; Saarinen-Pihkala, U.M.; Peltola, J.; Hovi, L. Agenesis and microdontia of permanent teeth as late adverse effects after stem cell transplantation in young children. Cancer 2005, 103, 181–190. [Google Scholar] [CrossRef]
- Tewogbade, A.; FitzGerald, K.; Prachyl, D.; Zurn, D.; Wilson, C. Attitudes and practices of nurses on a pediatric cancer and stem cell transplant ward: Adaptation of an oral care protocol. Spec. Care Dent. 2008, 28, 12–18. [Google Scholar] [CrossRef]
- Yamada, S.I.; Soutome, S.; Hasegawa, T.; Tojyo, I.; Nakahara, H.; Kawakami, M.; Hirose, M.; Fujita, S.; Komori, T.; Kirita, T.; et al. A multicenter retrospective investigation on the efficacy of perioperative oral management in cancer patients. Medicine 2020, 99, e19129. [Google Scholar] [CrossRef]
- Hong, B.Y.; Sobue, T.; Choquette, L.; Dupuy, A.K.; Thompson, A.; Burleson, J.A.; Salner, A.L.; Schauer, P.K.; Joshi, P.; Fox, E.; et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome 2019, 7, 66. [Google Scholar] [CrossRef]
- Hogan, R. Implementation of an oral care protocol and its effects on oral mucositis. J. Pediatr. Oncol. Nurs. 2009, 26, 125–135. [Google Scholar] [CrossRef]
- Cheng, K.K.; Molassiotis, A.; Chang, A.M.; Wai, W.C.; Cheung, S.S. Evaluation of an oral care protocol intervention in the prevention of chemotherapy-induced oral mucositis in paediatric cancer patients. Eur. J. Cancer 2001, 37, 2056–2063. [Google Scholar] [CrossRef]
- Düzkaya, D.S.; Uysal, G.; Bozkurt, G.; Yakut, T. The Effect of Oral Care Using an Oral Health Care Guide on Preventing Mucositis in Pediatric Intensive Care. J. Pediatr. Nurs. 2017, 36, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Yamamori, I.; Takamori, S.; Kitabatake, K.; Edamatsu, K.; Sugano, A.; Oizumi, H.; Kato, H.; Suzuki, J.; Sato, K.; et al. Evaluation of effects of perioperative oral care intervention on hospitalization stay and postoperative infection in patients undergoing lung cancer intervention. Support. Care Cancer 2021, 29, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Nobuhara, H.; Matsugu, Y.; Soutome, S.; Hayashida, S.; Hasegawa, T.; Akashi, M.; Yamada, S.I.; Kurita, H.; Nakahara, H.; Nakahara, M.; et al. Perioperative oral care can prevent surgical site infection after colorectal cancer surgery: A multicenter, retrospective study of 1,926 cases analyzed by propensity score matching. Surgery 2022, 172, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Gianferante, M.; Karyadi, D.M.; Hartley, S.W.; Frone, M.N.; Luo, W.; Robison, L.L.; Armstrong, G.T.; Bhatia, S.; Dean, M.; et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in the Childhood Cancer Survivor Study. JNCI Cancer Spectr. 2021, 5, pkab007. [Google Scholar] [CrossRef]
- Proc, P.; Szczepańska, J.; Herud, A.; Zubowska, M.; Fendler, W.; Młynarski, W. Dental caries among childhood cancer survivors. Medicine 2019, 98, e14279. [Google Scholar] [CrossRef]
- Stolze, J.; Teepen, J.C.; Raber-Durlacher, J.E.; Loonen, J.J.; Kok, J.L.; Tissing, W.J.E.; de Vries, A.C.H.; Neggers, S.J.C.M.M.; van Dulmen-den Broeder, E.; van den Heuvel-Eibrink, M.M.; et al. Prevalence and Risk Factors for Hyposalivation and Xerostomia in Childhood Cancer Survivors Following Different Treatment Modalities-A Dutch Childhood Cancer Survivor Study Late Effects 2 Clinical Study (DCCSS LATER 2). Cancers 2022, 14, 3379. [Google Scholar] [CrossRef]
- Kametani, M.; Akitomo, T.; Usuda, M.; Kusaka, S.; Asao, Y.; Nakano, M.; Iwamoto, Y.; Tachikake, M.; Ogawa, M.; Kaneki, A.; et al. Evaluation of Periodontal Status and Oral Health Habits with Continual Dental Support for Young Patients with Hemophilia. Appl. Sci. 2024, 14, 1349. [Google Scholar] [CrossRef]
- Daly, A.; Lewis, R.W.; Vangile, K.; Masker, K.W.; Effinger, K.E.; Meacham, L.R.; Mertens, A.C. Survivor clinic attendance among pediatric- and adolescent-aged survivors of childhood cancer. J. Cancer Surviv. 2019, 13, 56–65. [Google Scholar] [CrossRef]
- Effinger, K.E.; Migliorati, C.A.; Hudson, M.M.; McMullen, K.P.; Kaste, S.C.; Ruble, K.; Guilcher, G.M.; Shah, A.J.; Castellino, S.M. Oral and dental late effects in survivors of childhood cancer: A Children’s Oncology Group report. Support. Care Cancer 2014, 22, 2009–2019. [Google Scholar] [CrossRef]
Author | Quality of Evidence | Subject | Mean Age [Years (Range)] | Dental Abnormalities (%) | Tooth Agenesis or Hypodontia (%) | Microdonts (%) |
---|---|---|---|---|---|---|
Lexner MO, 2007 [15] | Low | Female controls (n = 73) | 29 * (15–58) | - | 9 * | - |
Chung CJ, 2008 [16] | High | Patients with mixed to permanent dentition (n = 1622) | - | - | 11.2 | - |
Paulsson L, 2008 [17] | Low | Control group with full-term normal birth weight (n = 41) | 9.5 | - | 4.9 | - |
Abe R, 2010 [18] | Low | Control group (n = 32) | 8.8 | - | 6.3 | - |
Ajami BA, 2010 [19] | Moderate | Children aged 9–14 years (n = 600) | 10.6 | - | 9.0 | - |
Gupta SK, 2011 [20] | Moderate | Indian subjects (n = 1123) | - | 34.3 | 4.5 | 2.6 |
Kim YH, 2011 [21] | High | Korean orthodontic patients (n = 3055) | 15.1 (9–30) | - | 11.3 | - |
Lauritano D, 2012 [22] | Low | Control group (n = 52) | 11.0 | - | 3.8 | 7.6 |
Mukhopadhyay S, 2014 [23] | Low | Bengali-speaking nursery children (n = 2757) | - (4–6) | 1.8 | 0.5 | - |
Fekonja A, 2015 [24] | Moderate | Caucasian subjects born in 1966, 1976, 1986, and 1996 (n = 2546) | - | 11.5 | 6.9 | - |
Medina AC, 2016 [25] | Low | Healthy Venezuelan children (n = 1188) | - (5–12) | - | 5.6 | - |
Yassin SM, 2016 [26] | Low | Saudi children (n = 1252) | - (5–12) | 25.4 | 9.7 | 2.6 |
Fekonja A, 2017 [27] | Moderate | Patients treated at the orthodontic department (n = 473) | 14.2 | 16.7 | 7.2 | 2.5 |
Gracco ALT, 2017 [28] | High | Caucasian orthodontic patients (n = 4006) | - (9–16) | - | 9.0 | - |
Park MK, 2017 [29] | Moderate | Patients with no systemic diseases (n = 4611) | - (6.0–12.9) | - | 9.1 | - |
Dallel I, 2018 [30] | Moderate | Orthodontic patients (n = 1000) | 20 * | - | 7.8 | - |
Fernandez CCA, 2018 [31] | Moderate | Orthodontic records of patients (n = 1047) | 16.4 | 15.7 | 9.7 | 5.3 |
Septer S, 2018 [32] | Low | Control group (n = 46) | 13.7 | 54.3 | 6.5 | - |
Kılınç G, 2019 [33] | Low | Healthy siblings of pediatric patients treated for cancer (n = 93) | 10.6 (8–16) | 9.7 | 0.0 | 0.0 |
MacDonald D, 2020 [34] | High | New patient examination (n = 6252) | - (7–90) | 32.1 | 1.5 | - |
Wagner VP, 2020 [35] | Moderate | Patients who received panoramic examination 2014–2016 (n = 512) | 8.8 (6–12) | 61.3 | 29.3 | 0.6 |
Jankowski T, 2021 [36] | Low | Control group (n = 100) | 10.3 (6–15) | 3.0 | 1.0 | - |
Aboujaoude S, 2023 [37] | Low | Lebanese children (n = 112) | 10.5 (8–15) | 75.0 | 16.1 | - |
AlHudaithi FS, 2023 [38] | Moderate | Orthodontic patients (n = 384) | - (12–) | - | 7.3 | - |
Alanzi A, 2024 [39] | Moderate | Pediatric patients (n = 586) | - (8–12) | 20.1 | 9.3 | 0.5 |
Matošić Ž, 2024 [40] | Moderate | Female control group (n = 424) | - (20–40) | - | 3.5 | 0.9 |
Mohan R, 2024 [41] | Moderate | Non-syndromic pediatric patients (n = 581) | - (6–18) | 73.8 | 15.1 | 1.0 |
Author | Quality of Evidence | Subject | Mean Age [Years (Range)] | Dental Abnormalities (%) | Tooth Agenesis or Hypodontia (%) | Microdonts (%) |
---|---|---|---|---|---|---|
Lauritano D, 2012 [22] | Moderate | Children in long-term remission after leukemia treatment (n = 52) | 11.5 | - | 13.4 | 23.1 |
Tanaka M, 2017 [42] | Low | Childhood cancer survivors (n = 56) | 13.9 (4.6–32.7) | 46.4 | 16.1 | 21.4 |
Kang CM, 2018 [43] | Moderate | Childhood cancer survivors (n = 196) | 15.6 | 55.6 | 20.4 | 30.6 |
Kılınç G, 2019 [33] | Moderate | Pediatric patients diagnosed with cancer and treated (n = 93) | 9.5 (8–13) | 83.9 | 22.6 | 64.5 |
Immonen E, 2021 [44] | Moderate | Leukemia survivors (n = 178) | 5.0 | 39.3 | - | - |
Akitomo T, 2024 [45] | Moderate | Patients who received chemotherapy (n = 32) | - (7–) | 46.9 | 25.0 | 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akitomo, T.; Tsuge, Y.; Mitsuhata, C.; Nomura, R. A Narrative Review of the Association between Dental Abnormalities and Chemotherapy. J. Clin. Med. 2024, 13, 4942. https://doi.org/10.3390/jcm13164942
Akitomo T, Tsuge Y, Mitsuhata C, Nomura R. A Narrative Review of the Association between Dental Abnormalities and Chemotherapy. Journal of Clinical Medicine. 2024; 13(16):4942. https://doi.org/10.3390/jcm13164942
Chicago/Turabian StyleAkitomo, Tatsuya, Yasuko Tsuge, Chieko Mitsuhata, and Ryota Nomura. 2024. "A Narrative Review of the Association between Dental Abnormalities and Chemotherapy" Journal of Clinical Medicine 13, no. 16: 4942. https://doi.org/10.3390/jcm13164942
APA StyleAkitomo, T., Tsuge, Y., Mitsuhata, C., & Nomura, R. (2024). A Narrative Review of the Association between Dental Abnormalities and Chemotherapy. Journal of Clinical Medicine, 13(16), 4942. https://doi.org/10.3390/jcm13164942