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Abstract: Background: Acute appendicitis (AA) is a major cause of acute abdominal pain requiring
surgical intervention. Approximately 20% of AA cases are diagnosed neither early nor accurately,
leading to an increased risk of appendiceal perforation and postoperative sequelae. AA can be
identified with good accuracy using computed tomography (CT). However, some studies have
found that a false-negative AA diagnosis made using CT can cause surgical therapy to be delayed.
Deep learning experiments are aimed at minimizing false-negative diagnoses. However, the success
rates reported in these studies are far from 100%. In addition, the methods used to divide patients
into groups do not adequately reflect situations in which accurate radiological diagnosis is difficult.
Therefore, in this study, we propose a novel deep-learning approach for the automatic diagnosis
of AA using CT based on establishing a new strategy for classification according to the difficulties
encountered in radiological diagnosis. Methods: A total of 266 patients with a pathological diagnosis
of AA who underwent appendectomy were divided into two groups based on CT images and
radiology reports. A deep learning analysis was performed on the CT images and clinical and
laboratory parameters that contributed to the diagnosis of both the patient and age- and sex-adjusted
control groups. Results: The deep learning diagnosis success rate was 96% for the group with
advanced radiological findings and 83.3% for the group with radiologically suspicious findings that
could be considered normal. Conclusions: Using deep learning, successful results can be achieved
in cases in which the appendix diameter has not increased significantly and there is no significant
edema effect.
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1. Introduction

Acute appendicitis (AA) is a major cause of acute abdominal pain requiring surgical
intervention and is prevalent among individuals aged 20–30 years [1]. In emergency
departments with high patient congestion, the aim is to swiftly and effectively diagnose or
rule out AA. Approximately 20% of AA cases are diagnosed neither early nor accurately,
leading to an increased risk of appendiceal perforation and postoperative complications [2].
Appendectomy is the definitive treatment for AA. Morbidity is 100 times higher in cases of
appendiceal perforation than in cases of simple AA, with corresponding mortality rates of
10% vs. 0.1%. Therefore, early diagnosis and surgical intervention are crucial [3].

Anamnesis and physical examination are the most important steps in the diagnosis of
AA [4]. In 1986, Alfredo Alvarado developed a 10-point scoring system called MANTRELS,
which is based on clinical and laboratory findings, to diagnose AA in symptomatic patients.
The scoring system recommended that patients with ≥7 points should undergo surgery,
whereas those with <7 points should be followed. However, the Alvarado scoring system
results in increased complications, mortality, and morbidity in older patients with AA
owing to inaccurate and delayed diagnosis [5].
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In most patients, diagnosis can be made through clinical observations and laboratory
tests. Despite the high rate of negative appendectomy diagnoses in procedures based on
medical history, physical examination, and test results, delays in atypical cases can lead to
major consequences such as abscess, perforation, peritonitis, and plastron in 4–15% of all
cases. Therefore, more efficient techniques are required for early and accurate diagnoses [6].

The most preferred imaging tool for diagnosing AA is ultrasonography (US), although
magnetic resonance imaging (MRI) is considered equally essential [7]. The diagnosis of
AA using computed tomography (CT) is fairly accurate, with a rate ranging from 93%
to 98%. Furthermore, some studies have found that enhanced-contrast CT has greater
sensitivity than non-contrast CT in diagnosing AA, supporting the use of contrast ma-
terial. CT findings relevant to AA include an enlarged appendix (>6 mm in diameter),
enhanced contrast material on the appendiceal wall, indistinguishable wall borders, and
the presence of appendicoliths. Peri-appendiceal findings may involve thickening of the
cecal wall (>3 mm), increased density due to fatty tissue inflammation, and the presence of
inflammatory collections. These findings can be categorized into two groups depending on
symptom presentation. In 42% of patients who are asymptomatic, the appendiceal diameter
exceeds 6 mm, which hinders its use in diagnosing AA. In addition, a comparable increase
in the appendiceal diameter is observed in cases of ovarian cyst rupture and inflammatory
bowel illness. The high sensitivity and specificity of CT make it crucial for therapeutic
planning. CT has been found to positively impact diagnosis and/or treatment for 45.6% of
patients [8], decreasing the rate of unnecessary appendectomies, particularly in cases of
uncertain diagnosis. The negative appendectomy rate is 16–24% without CT but only 5%
with CT [6]. Coursey et al. found that CT decreases the rate of unnecessary appendectomies
only in female patients aged <45 years, whereas the rate is comparable between males
and older women [9]. The high sensitivity of peri-appendiceal inflammation, which is
enhanced by pericecal adipose tissue acting as an intrinsic contrast agent, may contribute
to variations in the diagnosis of appendicitis among different sexes and age groups. A
review of the effect of obesity on postoperative outcomes in children undergoing appen-
dectomy for AA concluded that this effect is unclear; therefore, it is not possible to draw
a confident conclusion with the available data [10]. Furthermore, it reduces treatment ex-
penses by preventing unnecessary surgeries in addition to enabling the distinction between
appendiceal abscesses and epiploic appendicitis. An appendiceal abscess is managed with
surgery, whereas epiploic appendicitis is treated with medication [11]. Therefore, a more
accurate diagnosis of AA is required. The surgeon initiates surgery based on an accurate
diagnosis, facilitating patient consent. This assists in identifying the precise location for
surgical incision. Precisely managing the affected area in cases of perforated appendicitis
is important because it reduces the incidence of perforated appendicitis by preventing
unnecessary follow-up appointments and wasted time. This helps in diagnosing cases in
which AA is undetectable using US [12] and is also useful for identifying abnormalities in
the abdomen [4,13].

Artificial intelligence (AI) has tremendous potential to revolutionize and accelerate
the development of diagnostics and treatments in regenerative medicine. From improving
drug discovery to optimizing tissue engineering and cellular therapies, AI can provide
insights by analyzing large molecular and genomic datasets that would be impossible for
humans to understand [14]. On the other hand, there is a need to ensure that learning
models are interpretable. Higher model interpretability means that future predictions
are easier to understand and explain to end users. Furthermore, interpretable learning
models enable healthcare professionals to make reasoned and data-driven decisions to
provide personalized decisions that can ultimately lead to higher-quality healthcare. In
general, interpretability approaches can be divided into two groups: the first focuses on
personalized interpretation (local interpretability), and the second summarizes predictive
models at the population level (global interpretability) [15].

There are numerous recent studies demonstrating the significant advancements made
in using artificial intelligence (AI) for detecting AA. Deep learning (DL) and image pro-
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cessing techniques have emerged as promising approaches in this field. DL algorithms
have demonstrated heightened sensitivity and specificity in diagnosing appendicitis based
on ultrasound images compared to expert clinicians. In one study, a machine learning
model was used to predict perforated and non-perforated AA. The study utilized data
from 1797 patients, achieving an accuracy rate of 88.2% in distinguishing AA from other
conditions. Moreover, the accuracy rate was 92% for differentiating between perforated
and non-perforated cases. The researchers employed explainable AI methods to highlight
important biochemical markers, making the model’s predictions more transparent and
understandable [13].

In another study, a novel approach was introduced for differentiating between com-
plicated and uncomplicated cases of AA. The researchers aimed to enhance diagnostic
accuracy by integrating DL and radiomics. DL was employed to extract relevant features
from medical images, while radiomics provided additional quantitative and qualitative
data. The combined model demonstrated promising results in differentiating between
the two types of appendicitis, suggesting its potential for improving clinical decision
making [16,17]. Studies have been conducted on the diagnosis of AA using CT and deep
learning techniques, where the focus was on using images [18] where radiologists had
diagnosed AA with confidence. However, in certain images, radiologists could not make a
definitive classification as normal or AA. Within this group, some exhibited an intermediate
diameter at the point where the normal and pathological groups overlapped, and there
were instances when inflammation in the peri-appendiceal fatty tissue was subtle, which
hindered identification. This is the group specifically targeted in our study. In addition,
studies have indicated the existence of a group in which the appendix is not visible on CT.
In our study, we partially characterize this group and offer suggestions.

This study investigates the integration of a hybrid Convolutional Neural Network
(CNN) model with ensemble learning techniques to improve the detection of acute ap-
pendicitis from CT images. The hybrid CNN models used are DenseNet, VGG16, and
MobileNet; these models are combined with ensemble learning classifiers, including SVM,
KNN, and Random Forest. The novelty of this work lies in the significant enhancement of
detection performance achieved by integrating these models and classifiers with a compre-
hensive feature vector that includes clinical, radiological, and biochemical features. This
approach provides a meaningful improvement over existing methods, demonstrating that
advanced techniques can offer higher diagnostic accuracy.

2. Materials and Methods
2.1. Ethical Approval and Informed Consent

The study was approved by the ethics committee of the local university hospital
(decision number: 2020/17) and conducted in accordance with the principles outlined in
the Declaration of Helsinki. In this retrospective study, CT images were analyzed on PACS.

2.2. Patients

Patients included in this study were those with a preliminary diagnosis of AA who
underwent surgery at the Kahramanmaraş Sütçü İmam University School of Medicine and
whose diagnosis was pathologically confirmed as AA. Patients who underwent preopera-
tive contrast-enhanced abdominal CT were eligible for inclusion. There were 6 patients who
had AA but were not observed by a radiologist, meaning they had negative CT scans. These
patients were excluded from the analysis due to insufficient data. In these patients, the
appendix was also superimposed with bowel loops. Wall thickness and surrounding edema
could not be identified. They were considered a group and suggested for future studies.
Despite the varying degrees of superimposition, those with observed wall thickness and
surrounding edema were included in Group 1 or Group 2. The control group consisted of
an equal number of participants as in the patient group and was standardized based on
the patients’ age and sex data. The patients were initially categorized into three groups.
However, one group was omitted owing to the insufficient number of patients in this group.
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Thus, this study involved images from two groups of patients, 266 in total (101 females
and 165 males), aged 13–68 years. Similarly, a control group containing 266 individuals
(110 males and 156 females) was created. The control group had the same age distribution
as the patient group. Presented in Table 1 are the radiological, laboratory, and clinical data
of Groups 1 and 2 and the control group.

Table 1. Radiological, laboratory, and clinical findings.

Group 1 Group 2 Control

Appendix double-wall
thickness (mm)

IQR 0 4 1
Mean (std) 7.8 (0.4) 12.1 (2.7) 6.6 (1.18)

Min 6 6 4
Max 9 20 10

WBC

IQR 5.1 5 2
Mean (std) 5.6 (12.6) 14.5 (3.91) 5.7 (1.37)

Min 3.9 1.2 4
Max 22.8 25.1 9

CRP

IQR 51.7 89.8 1
Mean (std) 37.4 (52.3) 63.5 (77) 3.5 (0.9)

Min 3.1 6.3 1
Max 255.3 409 5

Lower right quadrant pain Yes Yes No

Age 14–65 13–68 13–67

Sex Male: 34
Female: 32

Male: 103
Female: 97

Male: 145
Female: 121

Radiologist CT report
Normal (20)

Definite AA (18)
Suspicious (28)

Definite AA Normal

Rebound Yes Yes N/A

Defense Yes Yes N/A

Peri-appendiceal edema None/Minimal Significant N/A
WBC—white blood cells; CRP—C-reactive protein. N/A—Not available.

Group 1 included 66 patients, whereas Group 2 included 200 patients. The study
criteria for Groups 1 and 2 are illustrated in Figures 1 and 2, respectively.
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Figure 2. Study criteria for Group 2 (Left to right: 1. Significant edema with increased diameter;
2. Increased diameter without obvious edema; 3. Significant edema without a significant increase in
diameter; 4. Slight increase in diameter with significant edema; and 5. Significant edema, increased
diameter, and presence of fecaloid).

2.3. Clinical and Laboratory Parameters

Patients commonly presented with right lower quadrant pain, fever, increased leuko-
cyte counts, and elevated C-reactive protein (CRP) levels.

2.4. Significant Parameters in the Control Group

The control group was standardized based on patients’ age and sex. Participants
in the control group showed no pathological findings in the right lower quadrant on CT.
Furthermore, their CRP levels and leukocyte counts were within normal ranges. For the
control group, the anamnesis and physical examination findings were disregarded.

2.5. Computer-Aided Deep Learning Method

In this study, a hybrid convolutional neural network (CNN) model was developed
using ensemble learning. In the Feature Extraction stage CT images were input into
VGG16, MobileNet, and DenseNet models, which were pre-trained on the ImageNet dataset.
Each model extracted high-level features from the images. During feature extraction, the
1 × 1000-dimensional features obtained from the fully connected layers of each CNN model
were combined, resulting in a deep feature vector (DF) with dimensions of 1 × 3000.

In the Feature selection stage, to reduce the dimensionality of the comprehensive
feature vector and improve performance, the Minimum Redundancy Maximum Relevance
(MRMR) algorithm was used. MRMR selected the most relevant 1000 features with minimal
redundancy, ensuring the model operated more efficiently and effectively. The number of
1000 features was determined manually.

In the Feature Combination stage, the feature vectors obtained from VGG16, Mo-
bileNet, and DenseNet were combined to create a comprehensive feature vector. This
combined vector aimed to provide a richer representation by integrating different per-
spectives offered by each model. Additionally, features obtained from clinical findings,
radiological findings, and biochemical analyses were included in the comprehensive feature
vector. Features from radiological findings include the presence of fecaloid and edema,
labeled as Rf1 and Rf2, respectively. Features from clinical findings indicate the presence or
absence of defense and rebound tenderness, labeled as Cf1 and Cf2, respectively. Features
from biochemical analyses include C-reactive protein (CRP) and white blood cell count
(WBC), labeled as Bf1 and Bf2, respectively. As a result, a feature vector with dimensions
of 1 × 1006 was created, consisting of 1000 deep features (DF), 2 clinical features (CF),
2 radiological features (RF), and 2 biochemical features.

In the classification stage, to further enhance the performance of the classification
model, ensemble learning was utilized. Ensemble learning has been shown to significantly
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enhance performance by effectively combining multiple models, a concept well-supported
by numerous studies that highlight its widespread application and effectiveness in improv-
ing diagnostic accuracy [19]. In this study, an ensemble learning approach was created that
includes SVM, KNN, and Random Forest classifiers. In Weight Assignment, the weights
were determined based on the classifiers’ individual performance, such as accuracy or
other relevant metrics. Classifiers that demonstrated higher performance were assigned
greater weights. In the voting process, for each prediction, the output from each classifier
was multiplied by its respective weight. These weighted predictions were then summed,
and the final classification decision was made based on the weighted average.

This ensemble approach aimed to leverage the strengths of each classifier while
mitigating their individual weaknesses, leading to a more robust and accurate classification
outcome. A flowchart including these techniques is shown in Figure 3.
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AA—acute appendicitis; SVM—support vector machine; RF—random forest; KNN—k-nearest neighbor.

We focused on the region where the appendix is typically situated, which is the
right side of the body (left in the figure). Raw images were partitioned into four sections
according to the Cartesian plane system. The appendix in the dataset images is situated
in the upper-left section and measures 250 × 600 pixels. Appendicitis was excluded from
other regions where the appendix could not be located. The image size was therefore
reduced from 1255 × 515 pixels to 250 × 600 pixels for analysis (Figure 4).
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2.6. Model Analysis

We used 70% of the dataset (186 patients and 186 controls) for training and 30%
(80 patients and 80 controls) for testing. A confusion matrix was used to examine the
model. True positive refers to the number of cases correctly classified as AA, false positive
refers to the number of cases that were not AA but were misclassified as AA, true negative
(TN) refers to the number of cases correctly classified as not AA, and false negative (FN)
refers to the number of cases that were AA but were not classified as AA. Equations (1)–(4)
show the formulas for calculating sensitivity, specificity (recall), precision, and the F1
score, respectively.

Sensitivity =
TP

TP + FN
× 100% (1)

Speci f icity =
TN

TN + FP
× 100% (2)

Precision =
TP

TP + FP
× 100% (3)

F1 =
2 × TP

2 × TP + FN + FP
(4)

3. Results

The performance of the deep learning-based AA diagnosis model was assessed using
comparative analysis. Table 2 presents the results of the three CNN models and the hybrid
model in which they are integrated. Artificial intelligence proved to be successful in
diagnosing AA as demonstrated by the hybrid model, which is based on a combination
of the VGG16, DenseNet, and MobileNet models. The sensitivity indicates the model’s
ability to detect AA, and the sensitivity values for MobileNet, VGG16, and DenseNet were
91.4%, 92.3%, and 91.7%, respectively. The hybrid model with the SVM setup achieved a
sensitivity of 94.1%. In this study, we found that the sensitivity of the ensemble learning
categorization based on decisions made by several classifiers was 95.7%.

Table 2. Comparison of the proposed model and other models.

Sensitivity (%) Specificity (%) Precision (%) F1 Score

Mobile Net 0.914 0.583 0.871 0.891
Vgg16 0.923 0.554 0.887 0.904

DenseNet 0.917 0.496 0.855 0.884
Hybrid 0.941 0.572 0.894 0.916

Hybrid + EL (Proposed) 0.957 0.697 0.928 0.942
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Specificity is the ability to correctly identify cases that were not AA. The proposed
model achieved a specificity of 69.7%. This value is lower than the sensitivity, precision,
and F1 score values because of the similarities between specific AA and non-AA images
in Group 2. It is expected that additional data from Group 1 and individuals without AA
would enhance the specificity.

Table 3 presents the accuracy of appendicitis (AA) diagnosis in Groups 1 and 2. Of
the 66 patients in Group 1, 55 were true positives (TP) and 11 were false negatives (FN). In
Group 2, out of 200 patients, 192 were true positives (TP) and 8 were false negatives (FN).
Specifically, false negatives in the hybrid model were 13 for Group 1 and 9 for Group 2.
However, with the implementation of ensemble learning, there was a reduction in false
negatives. Additionally, the proportion of patients in Group 2 was higher than in other
groups, and radiologists had no difficulty in making diagnoses. In Group 1, the patient
proportion was lower, posing challenges for radiologists in diagnosing them, although
deep learning methods remained effective.

Table 3. Sensitivity of the proposed model in AA groups.

AA (TP) Non-AA (FN) Sensitivity

Group 1 55 11 83.3%
Group 2 192 8 96%

AA—acute appendicitis; TP—true positive; FN—false negative.

4. Discussion

The unique classification and deep learning system in this study, which utilizes anam-
nesis, physical examination, laboratory, and imaging data, outperformed existing methods
in diagnosing AA. The diverse background, sensitivity, and specificity data crucial for the
successful diagnosis of AA are outlined in this study. The high success rate of sensitivity
starkly contrasts with the minimal improvement in specificity, which may be attributed
to the constraints related to the selection of the control group. Alternatively, this may
be attributed to other factors, such as the emphasis on numerous differential diagnostic
alternatives in this study. An in-depth examination of the established diagnostic criteria for
AA outlined in the literature would clarify the relationship between these criteria and the
data from this study.

4.1. A Look at the Study According to the Important Points in AA Diagnosis in Clinical Practice
4.1.1. Anamnesis and Physical Examinations

Anamnesis and physical examinations are crucial in diagnosing AA. In this study,
anamnesis and physical examination data were collected, including symptoms such as
abdominal discomfort, temperature, defense, and rebound in the right lower quadrant.
However, these parameters were universal in all patients but not assessed in the control
group. Describing criteria, such as stomach discomfort, fever, defense, and rebound, as
either present or absent is therefore a limitation that may result in different interpretations.

4.1.2. Laboratory Results

According to the laboratory results, all patients exhibited elevated leukocyte counts
and CRP levels, whereas the control group comprised individuals with standard levels.
Although this approach resulted in precise conclusions, it also posed constraints. Studies
that include control group cases with elevated leukocyte counts and CRP levels may
provide valuable information, as both markers increase in many types of inflammation.
One limitation of this study is that information about the levels of certain parameters was
included, but the relationships between these different levels were not explored.

4.1.3. Patient Age

Studies have discussed how patient age affects the ease or complexity of diagnosis.
This study included patients of a wide range of ages, from children to older individuals.
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Thus, it had the advantage of reporting a high success rate in a patient population repre-
senting a wide age range. In future studies, further analysis of the differences among age
groups should be conducted for categorizing these groups. At our center, pediatric patients
are mostly diagnosed using anamnesis and physical examination. When radiography is
necessary, the US is the preferred imaging modality, with CT being performed in a few
patients. Thus, the corresponding number of pediatric patients was very low (the number
of patients aged <18 was one in Group 1 and five in Group 2).

4.1.4. Patient’s Sex

The diagnostic success of CT is influenced by the patient’s sex [6,9,20]. Although we
indicated the patient sex in this study, the diagnostic success was not assessed on the basis
of patient sex.

4.1.5. Radiological Imaging

In cases of suspected AA, imaging approaches are more effective for accurate diagnosis
than analyzing medical history, physical examinations, laboratory results, or scores [21,22].
Notably, the US is the most preferred imaging technique [23], while MRI is also crucial
for diagnosing AA [7]. CT is highly accurate in diagnosing appendicitis, with an accuracy
rate of 93–98%; however, it has certain established limitations [4,9,24]. These limitations
are contingent on the patient, CT images, or the radiologist’s interpretation. From the
radiologist’s perspective, we have achieved significant success using deep learning. From
the patient’s perspective, intestinal superposition may contribute to limitations. The
number of patients included in this study was limited.

Previous studies have indicated that the use of intravenous contrast material in CT
improves the diagnosis of abdominal aortic aneurysms. Contrast-enhanced CT has demon-
strated higher sensitivity than non-contrast CT, suggesting the use of contrast material is
beneficial. In this study, only contrast-enhanced CT images were assessed. Future research
including non-contrast CT is necessary for patients for whom contrast materials cannot
be used.

4.2. Overview of Study Groups and AA Diagnostic Parameters in These Groups

The study groups were selected to align with the primary goal of addressing the
challenges in AA diagnosis during routine radiography. The groups were established
according to the three cases of AA diagnosis observed during routine radiological practice:
(1) cases that the radiologists deemed normal or could not definitively diagnose despite
a preliminary clinical diagnosis; (2) cases of diagnosis confirmed by a radiologist; and
(3) cases in which radiologists encountered challenges in interpreting or identifying the
appendix because of superimposition.

4.2.1. Group 1

Group 1 included cases with borderline and moderate appendiceal double-wall thick-
ness, ambiguous peri-appendiceal edema indicating inflammation, and no appendicoliths.
No radiologist reported a conclusive diagnosis of AA based on the patient’s CT image.
Notably, some reports omitted the appendix, some stated that it was normal, and others
had ambiguous references, such as possible signs of appendicitis, and advised further
examinations. Group 1 included cases in which the radiologists were uncertain about the
presence of AA, highlighting the importance of this study. Multiple radiologist remarks,
such as a normal appendix and suspicion of AA, were grouped for analysis. Subsequent
research should consider analyzing these reports individually.

Appendiceal Diameter

The appendiceal diameter was assessed in this study as follows: in the control group,
the maximum appendiceal double-wall thickness was 10 mm. The threshold was set to
9 mm because only a few participants in the control group had a diameter of 10 mm.
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Briefly, the appendiceal diameter did not serve as a distinguishing parameter in this group
because the double-wall thickness ranged from 6 mm to 9 mm in both the patient and
control groups. Appendiceal diameter is a straightforward sonographic criterion that
exhibits good agreement among radiologists in cases of suspected AA [25]. Notably, some
studies have found that the appendiceal diameter is not influenced by age and can exceed
6 mm in 42% of asymptomatic patients, hindering its effectiveness in diagnosing AA.
Some studies also indicate that 23% of adult men have appendages that are healthy in
terms of the cecum and larger than 6 mm in diameter. Therefore, they suggest that when
an appendix is found with a diameter between 6 and 9 mm, it should be considered
“undetermined” and other findings of AA should be investigated [26]. Conversely, it
has been reported that the appendiceal diameter does not play a major role in ruling out
complex appendicitis [27]. The results for appendiceal diameter in this study are consistent
with those of previous studies. Furthermore, a comparable increase in the appendiceal
diameter may be observed in cases of ovarian cyst rupture and inflammatory bowel disease.
In this study, we deliberately excluded patients with different primary conditions in the
right lower quadrant. We identified patients with AA based on comparison with a healthy
control group. Future research on this quadrant should aim at distinguishing between AA
and other disorders.

Pericecal Fat Tissue

Pericecal fat tissue acts as an inherent contrast agent, making peri-appendiceal inflam-
mation the most notable finding on non-contrast CT, with a sensitivity of 98–100%. This
criterion was prioritized in our classification because of this significance. Edema in this
region was assessed as a basis for classification into Group 1, and the subjectivity involved
with assessing peri-appendiceal inflammation was addressed through the establishment of
three quantifiable criteria: (1) having thinner edema compared to the thickness of the single
appendiceal wall or the opposing wall; (2) restricted distribution of edema throughout
the wall; and (3) edema not entirely encircling the wall. If at least one of these criteria
was met, the edema was classified as mild, and the patient was placed in Group 1. These
criteria were helpful in providing some level of objectivity; however, they were still based
on personal opinions. For example, widespread occurrence is indicated in the second
requirement. These criteria could be more explicitly articulated.

The success rate of deep learning for Group 1 diagnosis was 83.3%, which is relatively
high. However, this approach did not result in diagnosis for a substantial proportion of
cases. Fewer patients were included in this group than in the other groups. Increasing the
number of cases and studies using various methodologies could enhance the diagnosis rate.

4.2.2. Group 2

Group 2 consisted of cases that could be identified as AA by any radiologist based on
CT. All patients in this group had CT findings that clearly indicated AA. The radiologists
did not encounter any diagnostic challenges with this patient cohort.

Within this group, the following CT imaging criteria were established: appendiceal
double-wall thickness ≥10 mm, wall thickness ≥6 mm, considerable peripheral inflamma-
tion, or the existence of appendicoliths.

Appendicoliths

This study focused only on the significance of the presence of appendicoliths and did
not consider modifications in the diameter and lumen before and after nor the specific
characteristics of the appendicolith, such as size, count, or position within the appendix.
For all patients, identification was based on the presence of appendicoliths.

The success rate of AA diagnosis using deep learning was 96%. However, this rate
should be increased to 100%. This rate can be enhanced by increasing the number of cases
and/or studies conducted using various methodologies.
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4.2.3. Group 3

There was also a third group of patients. The inclusion criteria for this group were as
follows: (1) the fat tissue around the appendix could not be seen due to bowel superposition
(in this case, an edema assessment could not be made). (2) The appendix wall could not
be clearly defined due to bowel superposition (in this case, the wall thickness could not
be clearly assessed). Moreover, in this group, radiologists could not precisely localize
the appendix. Therefore, they could not comment on the appendix. Patients with these
characteristics were collected in one group. However, since there were only six patients in
this group, they were excluded from the study because it was thought that it would not
be sufficient for analysis. However, we wanted to remind the researchers that artificial
intelligence studies conducted with these cases, which present radiologists with a high
degree of difficulty in making a diagnosis, would perhaps represent the most advanced
level in the diagnosis of AA.

4.3. Some Other Situations in AA
4.3.1. Uncomplicated Appendicitis

Recent findings have indicated that antibiotic [28] or probiotic [29] treatment may
serve as a substitute for surgery in patients with uncomplicated appendicitis. Patients
were selected for antibiotic treatment on the basis of having a straightforward finding
of AA on CT. A previous study [27] focused on distinguishing between patients with
and without complications using deep learning algorithms. However, in this study, this
distinction varied. The patients in Group 1 had no complications, whereas those in Group 2
exhibited radiographic signs of appendicitis. However, these patients were not categorized
based on the presence or absence of complications. In this study, we aimed to conduct
identification in the group that exhibited substandard radiological results. This group
may be the most crucial segment, without any difficulties, and expected to mainly benefit
from antibiotic treatment. Notably, our groups may also be skewed regarding selection
for antibiotic therapy. In addition, interaction between specialties (pediatric surgeons,
pediatricians, radiologists, microbiologists, infectious disease specialists, and molecular
biologists) should be a prerequisite in the diagnosis, treatment, and management of AA
in order to increase success in the fight against bacteria. The era of accepting a single
decision-making physician as the authority should be a thing of the past [28].

4.3.2. Perforated Appendicitis

A wider control region is necessary in cases of perforated appendicitis. In such cases,
the surgeon’s choice of incision location is crucial [6]. This indicates that basic diagnosis
would be inadequate, and perforation data should therefore be included. In this study,
perforated cases were not separately categorized but included in the group with a definitive
diagnosis of AA (Group 2).

4.3.3. Epiploic Appendicitis, and Mesenteric Lymphadenopathy

Differentiating between AA, epiploic appendicitis, and mesenteric lymphadenopathy
is crucial. AA can be surgically addressed, whereas the other conditions can be treated
medically. However, this distinction was omitted from this study. We ensured that patients
with epiploic appendicitis and mesenteric lymphadenopathy were excluded from the
control group. Thus, these differences should be incorporated into future studies.

4.3.4. Location of the Appendix

In this study, the location of the appendix (for example, retrocecal) and the direction in
which the findings extended in the abdomen were not specified. These findings may extend
in multiple directions, including medial, lateral, inferior, and proximal. Such information
may enhance the surgeon’s preoperative preparation [30]. In this study, diagnostic accuracy
was deemed to be substantially independent of the direction of extension. The success rate
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was acceptably high regardless of the direction of the appendage tip. As the direction was
not specified, the findings cannot contribute to surgical orientation.

4.3.5. Pathological Findings

The strength of our study is that all trial data were validated based on pathological
findings. However, the pathological subgroups were not specified, which is another limitation.

4.4. A Look at the Study from the Perspective of Deep Learning Methods

Our proposed method outperformed existing deep learning methods in terms of all
parameters, underscoring the significance of method selection.

While applying this approach, the bottom-right quadrant, where the appendix is
located, was accurately marked as the primary position of the appendix. Marking the
position may limit the opportunity to identify potential atypical locations of appendiceal
extension, particularly at the tip. The limited variety and number of our CT images may af-
fect the generalization ability of the model. Data obtained from different centers to increase
the data variety may increase the performance of the model. Another limitation is the
use of pre-trained models to avoid time-consuming and high computational requirements.
However, retraining the model with the existing dataset can significantly improve the
performance. Another limitation is that the presence of AA is investigated in a manually
selected region from the right quadrant of the CT images. The fact that AAs outside this
region cannot be detected can be considered as another deficiency.

Hybrid CNN models consolidate the strengths of different architectures to achieve
higher accuracy rates and better generalization capabilities. A hybrid CNN model can
achieve higher accuracy in medical image classification compared to individually using the
component models [31]. Additionally, hybrid models become more resilient to noise by
integrating information from various data sources. This is particularly crucial in reducing
the impact of noise and artifacts in medical images. The combination of different CNN
layers allows for the extraction of richer and more distinctive features, which is especially
useful in detecting complex structures and details. In one study, a hybrid CNN-SVM model
was proposed for classifying lung cancer medical images. By combining a convolutional
neural network (CNN) for feature extraction and a support vector machine (SVM) for
classification, it was observed that the model had improved accuracy in lung cancer
diagnosis [32].

A similar phenomenon applies in this study. The proposed hybrid model consists
of the combination of three different CNN models. Although each of these models in-
dividually achieves high performance, the proposed hybrid model leads to a significant
improvement in the detection of AA.

In this study, we focused on the region in which acute appendicitis is commonly
observed. We achieved a high success rate in detecting AA within this region. However,
our model may fail to detect possible appendicitis cases outside of this region. Therefore, it
provides local and limited reliability [33]. We examined interquartile range (IQR) values to
observe the effect of outliers in the dataset. IQR is a method used in statistics to observe
the impact of outliers or extreme values in a dataset. When the obtained IQR values
and standard deviation values were examined together, the wall thickness, WBC, and
CRP values showed consistency with each other. The other focus of this study was to
extract maximum features from CT images to describe AA. The outcome of this study was
significantly influenced by CT data. In Group 1, 20 patients were categorized as normal and
28 patients as suspicious by the radiologist. Therefore, the AA detection performance in
Group 1 was lower compared to Group 2. Some patients in Group 1 showed similarities in
WBC values to the control group, which could negatively affect the system’s performance.
However, due to the structure of CNN models, increasing the amount of data will reduce
the impact of this similarity on performance over time.

The performances of CNN models and the accuracy and reliability of these perfor-
mances are directly associated with the dataset. Two primary approaches were used to
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determine the accuracy of the model: holdout validation and cross-validation. In holdout
validation, the dataset is divided into training and testing sets in a certain proportion, while
in cross-validation, the entire dataset undergoes both training and testing by changing
the test data each time. Since cross-validation is a more time-consuming process, holdout
validation was used in this study. However, for the reliability of the proposed model, it is
beneficial to implement both methods [34].

As can be seen in Table 2, the model’s performance metrics, including its sensitivity,
specificity, precision, and F1 score, were obtained separately. Sensitivity measures the
accuracy of the model’s positive predictions. Specificity indicates the model’s accuracy
in identifying negative examples and is usually evaluated in tandem with sensitivity.
High specificity means that the model has a low false positive rate and can correctly
distinguish negative examples [35]. Precision shows how many of the positive predictions
are actually positive. The F1 score represents the balance between precision and sensitivity.
To accurately evaluate a model, these four scores need to be examined together. MobileNet
exhibits the highest performance in terms of sensitivity (91.4%), but it has lower specificity
and accuracy compared to other models. VGG16 provides slightly higher sensitivity
(92.3%) and accuracy (88.7%) but lower specificity than MobileNet. DenseNet demonstrates
a similar performance to MobileNet and VGG16 in terms of sensitivity and accuracy, but it
has lower specificity. Based on a comparison, the hybrid model has the highest sensitivity
(94.1%) and accuracy (89.4%). However, its specificity still lags. The Hybrid+ EL (proposed)
model demonstrates the highest performance across all metrics, achieving the highest
sensitivity (95.7%), specificity (69.7%), accuracy (92.8%), and F1 score (94.2%). The Hybrid+
EL model provides a balanced performance, yielding generally better results compared to
other models. In conclusion, this study demonstrates that hybrid models can provide more
successful results compared to singular models. In this regard, it serves as a basis for future
research. However, to generalize the accuracy of the model further, data from different
centers are required. Additionally, employing cross-validation can enhance the model’s
performance and accuracy. In an upcoming study, data will be collected from Group 3,
which consists of cases in which it is nearly impossible for a radiologist to distinguish AA
using CT scans. A new detection system will be developed based on these data.

5. Conclusions

The accurate diagnosis of AA is important for early surgical intervention and to avoid
complications. For this purpose, the possibility of using deep learning to contribute to the
diagnosis of AA has been investigated for a long time. In this study, CT images of patients
who were pathologically confirmed to have AA were classified by taking into account the
difficulties encountered by radiologists in diagnosis. Over 80% success was achieved using
the deep learning technique in a patient group whose appendix diameter and peripheral
edema, which are the most important clues for radiologists in diagnosis, were almost
similar to a non-AA control group. In another group of patients with a significant diameter
increase and significant peripheral edema in which radiologists did not have difficulties
making a diagnosis, the diagnostic success rate with deep learning was almost 100%. This
success rate can be further increased by increasing the number of patients. In addition,
research can be conducted using deep learning techniques in cases where disassembly
cannot be achieved due to superposition, a circumstance in which radiologists encounter
difficulties in identifying the appendix.
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