Osteoporosis and Bone Fragility in Children: Diagnostic and Treatment Strategies
Abstract
:1. Introduction
2. Methods
Literature Search Strategy and Selection Criteria
3. Discussion
3.1. Primary Osteoporosis
3.2. Secondary Osteoporosis
4. Evaluation of Bone Health and Bone Density in Children
4.1. Physical Examination and Biochemical Exams
4.2. Skeletal Imaging Techniques
4.3. Ultrasound Evaluation of BMD
5. Treatment and Prevention
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMD | bone mineral density |
DXA | dual-energy X-ray absorptiometry |
OI | osteogenesis imperfecta |
EDCs | endocrine-disrupting chemicals |
QCT | quantitative computed tomography |
QUS | quantitative ultrasound |
REMS | radiofrequency echographic multi-spectrometry |
MRI | magnetic resonance imaging |
BPs | bisphosphonates |
DB | denosumab |
References
- Ciancia, S.; van Rijn, R.R.; Högler, W.; Appelman-Dijkstra, N.M.; Boot, A.M.; Sas, T.C.J.; Renes, J.S. Osteoporosis in children and adolescents: When to suspect and how to diagnose it. Eur. J. Pediatr. 2022, 181, 2549–2561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gordon, C.M.; Leonard, M.B.; Zemel, B.S.; International Society for Clinical Densitometry. 2013 Pediatric Position Development Conference: Executive summary and reflections. J. Clin. Densitom. 2014, 17, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Zavala, R.; Bou-Torrent, R.; Magallares-López, B.; Mir-Perelló, C.; Palmou-Fontana, N.; Sevilla-Pérez, B.; Medrano-San Ildefonso, M.; González-Fernández, M.I.; Román-Pascual, A.; Alcañiz-Rodríguez, P.; et al. Expert panel consensus recommendations for diagnosis and treatment of secondary osteoporosis in children. Pediatr. Rheumatol. Online J. 2020, 18, 20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bakirhan, H.; Karabudak, E. Effects of inulin on calcium metabolism and bone health. Int. J. Vitam. Nutr. Res. 2023, 93, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Unger, S.; Ferreira, C.R.; Mortier, G.R.; Ali, H.; Bertola, D.R.; Calder, A.; Cohn, D.H.; Cormier-Daire, V.; Girisha, K.M.; Hall, C.; et al. Nosology of genetic skeletal disorders: 2023 revision. Am. J. Med. Genet. Part A 2023, 191, 1164–1209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, H.; Aryal, A.C.S.; Marini, J.C. Osteogenesis imperfecta: New genes reveal novel mechanisms in bone dysplasia. Transl. Res. 2017, 181, 27–48. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, F.S.; Pals, G.; Van Rijn, R.R.; Nikkels, P.G.; Cobben, J.M. Classification of Osteogenesis Imperfecta revisited. Eur. J. Med. Genet. 2010, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, F.S.; Sillence, D.O. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. Part A 2014, 164A, 1470–1481, Erratum in Am. J. Med. Genet. Part A 2015, 167A, 1178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ohata, Y.; Kitaoka, T.; Ishimi, T.; Yamada, C.; Nakano, Y.; Yamamoto, K.; Takeyari, S.; Nakayama, H.; Fujiwara, M.; Kubota, T.; et al. Association of trabecular bone score and bone mineral apparent density with the severity of bone fragility in children and adolescents with osteogenesis imperfecta: A cross-sectional study. PLoS ONE 2023, 18, e0290812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Dijk, F.S.; Byers, P.H.; Dalgleish, R.; Malfait, F.; Maugeri, A.; Rohrbach, M.; Symoens, S.; Sistermans, E.A.; Pals, G. EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. Eur. J. Hum. Genet. 2012, 20, 11–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deguchi, M.; Tsuji, S.; Katsura, D.; Kasahara, K.; Kimura, F.; Murakami, T. Current Overview of Osteogenesis Imperfecta. Medicina 2021, 57, 464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cannalire, G.; Pilloni, S.; Esposito, S.; Biasucci, G.; Di Franco, A.; Street, M.E. Alkaline phosphatase in clinical practice in childhood: Focus on rickets. Front. Endocrinol. 2023, 14, 1111445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saito, M.; Marumo, K. The Effects of Homocysteine on the Skeleton. Curr. Osteoporos. Rep. 2018, 16, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Alkaissi, H.; McFarlane, S.I. Hyperhomocysteinemia and Accelerated Aging: The Pathogenic Role of Increased Homocysteine in Atherosclerosis, Osteoporosis, and Neurodegeneration. Cureus 2023, 15, e42259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herrmann, M.; Widmann, T.; Herrmann, W. Homocysteine--a newly recognised risk factor for osteoporosis. Clin. Chem. Lab. Med. 2005, 43, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Biha, N.; Ghaber, S.M.; Hacen, M.M.; Collet, C. Osteoporosis-Pseudoglioma in a Mauritanian Child due to a Novel Mutation in LRP5. Case Rep. Genet. 2016, 2016, 9814928. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robinson, M.E.; Rauch, F. Mendelian bone fragility disorders. Bone 2019, 126, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Trifirò, G.; Marelli, S.; Viecca, M.; Mora, S.; Pini, A. Areal bone mineral density in children and adolescents with Marfan syndrome: Evidence of an evolving problem. Bone. 2015, 73, 176–810. [Google Scholar] [CrossRef] [PubMed]
- Basalom, S.; Rauch, F. Bone Disease in Patients with Ehlers-Danlos Syndromes. Curr. Osteoporos. Rep. 2020, 18, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Whyte, M.P. Hypophosphatasia—Aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 2016, 12, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, R.; Vincenzi, M.; Camilot, M.; Antoniazzi, F.; Freemont, A.J.; Adams, J.E.; Laine, C.; Makitie, O.; Mughal, M.Z. Idiopathic juvenile osteoporosis: Clinical experience from a single centre and screening of LRP5 and LRP6 genes. Calcif. Tissue Int. 2015, 96, 575–579. [Google Scholar] [CrossRef]
- Rouleau, C.; Malorie, M.; Collet, C.; Porquet-Bordes, V.; Gennero, I.; Eddiry, S.; Laroche, M.; Salles, J.P.; Couture, G.; Edouard, T. Diagnostic yield of bone fragility gene panel sequencing in children and young adults referred for idiopathic primary osteoporosis at a single regional reference centre. Bone Rep. 2022, 16, 101176. [Google Scholar] [CrossRef]
- Mora, S. Celiac disease in children: Impact on bone health. Rev. Endocr. Metab. Disord. 2008, 9, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Lungaro, L.; Manza, F.; Costanzini, A.; Barbalinardo, M.; Gentili, D.; Caputo, F.; Guarino, M.; Zoli, G.; Volta, U.; De Giorgio, R.; et al. Osteoporosis and Celiac Disease: Updates and Hidden Pitfalls. Nutrients 2023, 15, 1089. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zacay, G.; Weintraub, I.; Regev, R.; Modan-Moses, D.; Levy-Shraga, Y. Fracture risk among children and adolescents with celiac disease: A nationwide cohort study. Pediatr. Res. 2023, 95, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Benchimol, E.I.; Ward, L.M.; Gallagher, J.C.; Rauch, F.; Barrowman, N.; Warren, J.; Beedle, S.; Mack, D.R. Effect of calcium and vitamin D supplementation on bone mineral density in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Mostoufi-Moab, S.; Ward, L.M. Skeletal Morbidity in Children and Adolescents during and following Cancer Therapy. Horm. Res. Paediatr. 2019, 91, 137–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verwaaijen, E.J.; Ma, J.; de Groot-Kruseman, H.A.; Pieters, R.; van der Sluis, I.M.; van Atteveld, J.E.; Halton, J.; Fernandez, C.V.; Hartman, A.; de Jonge, R.; et al. DCOG-ALL9 and Canadian STOPP Consortia. A Validated Risk Prediction Model for Bone Fragility in Children with Acute Lymphoblastic Leukemia. J. Bone Min. Res. 2021, 36, 2290–2299. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; Coppola, G.; Parisi, P.; Mohn, A.; Chiarelli, F. Bone and calcium metabolism and antiepileptic drugs. Clin. Neurol. Neurosurg. 2010, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Misra, M. Effects of hypogonadism on bone metabolism in female adolescents and young adults. Nat. Rev. Endocrinol. 2012, 8, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Kenkre, J.S.; Bassett, J. The bone remodelling cycle. Ann. Clin. Biochem. 2018, 55, 308–327. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R.; Bassett, J.H.D. Thyroid diseases and bone health. J. Endocrinol. Invest. 2018, 41, 99–109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sakka, S.D. Osteoporosis in children and young adults. Best Pract. Res. Clin. Rheumatol. 2022, 36, 101776. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.A.; Manolagas, S.C. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 2015, 80, 67–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ward, L.M. Glucocorticoid-Induced Osteoporosis: Why Kids Are Different. Front. Endocrinol 2020, 11, 576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cohen, A.; Shane, E. Osteoporosis after solid organ and bone marrow transplantation. Osteoporos. Int. 2003, 14, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Fleishman, N.; Richardson, T.; Attard, T. The Clinical Characteristics of Fractures in Pediatric Patients Exposed to Proton Pump Inhibitors. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Y.X.; Zhu, J.M.; Zhang, J.M.; Zheng, Z. Effects of antiepileptic drugs on bone mineral density and bone metabolism in children: A meta-analysis. J. Zhejiang Univ. Sci. B 2015, 16, 611–621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- LaBrie, J.W.; Boyle, S.; Earle, A.; Almstedt, H.C. Heavy Episodic Drinking Is Associated with Poorer Bone Health in Adolescent and Young Adult Women. J. Stud. Alcohol Drugs 2018, 79, 391–398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dorn, L.D.; Pabst, S.; Sontag, L.M.; Kalkwarf, H.J.; Hillman, J.B.; Susman, E.J. Bone mass, depressive, and anxiety symptoms in adolescent girls: Variation by smoking and alcohol use. J. Adolesc. Health 2011, 49, 498–504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perrone, S.; Caporilli, C.; Grassi, F.; Ferrocino, M.; Biagi, E.; Dell’Orto, V.; Beretta, V.; Petrolini, C.; Gambini, L.; Street, M.E.; et al. Prenatal and Neonatal Bone Health: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients 2023, 15, 3515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buckley, J.P.; Kuiper, J.R.; Lanphear, B.P.; Calafat, A.M.; Cecil, K.M.; Chen, A.; Xu, Y.; Yolton, K.; Kalkwarf, H.J.; Braun, J.M. Associations of Maternal Serum Perfluoroalkyl Substances Concentrations with Early Adolescent Bone Mineral Content and Density: The Health Outcomes and Measures of the Environment (HOME) Study. Environ. Health Perspect. 2021, 129, 97011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shulhai, A.M.; Palanza, P.; Street, M.E. Current Evidence on the Effects of Endocrine-Disrupting Chemicals (EDCs) on Bone Growth and Health. Expo Health 2023, 16, 1001–1025. [Google Scholar] [CrossRef]
- Formosa, M.M.; Christou, M.A.; Mäkitie, O. Bone fragility and osteoporosis in children and young adults. J. Endocrinol. Invest. 2024, 47, 285–298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. IOF-IFCC Bone Marker Standards Working Group. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef] [PubMed]
- Bachrach, L.K.; Gordon, C.M.; Section on Endocrinology. Bone Densitometry in Children and Adolescents. Pediatrics 2016, 138, e20162398. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, N.J.; Arabi, A.; Bachrach, L.K.; Fewtrell, M.; El-Hajj Fuleihan, G.; Kecskemethy, H.H.; Jaworski, M.; Gordon, C.M.; International Society for Clinical Densitometry. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: The revised 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 2014, 17, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Madhuchani, D.; Seneviratne, S.N.; Ward, L.M. Bone health in childhood and adolescence: An overview on dual-energy X-ray absorptiometry scanning, fracture surveillance and bisphosphonate therapy for low-middle-income countries. Front. Endocrinol. 2023, 14, 1082413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kindler, J.M.; Lappe, J.M.; Gilsanz, V.; Oberfield, S.; Shepherd, J.A.; Kelly, A.; Winer, K.K.; Kalkwarf, H.J.; Zemel, B.S. Lumbar Spine Bone Mineral Apparent Density in Children: Results from the Bone Mineral Density in Childhood Study. J. Clin. Endocrinol. Metab. 2019, 104, 1283–1292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Iorgi, N.; Maruca, K.; Patti, G.; Mora, S. Update on bone density measurements and their interpretation in children and adolescents. Best. Pr. Res. Clin. Endocrinol. Metab. 2018, 32, 477–498. [Google Scholar] [CrossRef] [PubMed]
- Raum, K.; Grimal, Q.; Varga, P.; Barkmann, R.; Glüer, C.C.; Laugier, P. Ultrasound to assess bone quality. Curr. Osteoporos. Rep. 2014, 12, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, S.; Peccarisi, M.; Pisani, P.; Franchini, R.; Greco, A.; De Marco, T.; Grimaldi, A.; Quarta, L.; Quarta, E.; Muratore, M.; et al. An Advanced Quantitative Echosound Methodology for Femoral Neck Densitometry. Ultrasound Med. Biol. 2016, 42, 1337–1356. [Google Scholar] [CrossRef] [PubMed]
- Engelke, K. Quantitative Computed Tomography-Current Status and New Developments. J. Clin. Densitom. 2017, 20, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Zemel, B.S. Quantitative computed tomography and computed tomography in children. Curr. Osteoporos. Rep. 2011, 9, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, M.; Kobylińska, M.; Graff, K. Peripheral quantitative computed tomography of the lower leg in children and adolescents: Bone densities, cross-sectional sizes and muscle distribution reference data. J. Musculoskelet. Neuronal Interact. 2021, 21, 215–236. [Google Scholar] [PubMed] [PubMed Central]
- Modlesky, C.M.; Whitney, D.G.; Carter, P.T.; Allerton, B.M.; Kirby, J.T.; Miller, F. The pattern of trabecular bone microarchitecture in the distal femur of typically developing children and its effect on processing of magnetic resonance images. Bone 2014, 60, 1–7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baroncelli, G.I. Quantitative ultrasound methods to assess bone mineral status in children: Technical characteristics, performance, and clinical application. Pediatr. Res. 2008, 63, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Shalof, H.; Dimitri, P.; Shuweihdi, F.; Offiah, A.C. Which skeletal imaging modality is best for assessing bone health in children and young adults compared to DXA? A systematic review and meta-analysis. Bone 2021, 150, 116013. [Google Scholar] [CrossRef] [PubMed]
- Gazzotti, S.; Aparisi Gómez, M.P.; Schileo, E.; Taddei, F.; Sangiorgi, L.; Fusaro, M.; Miceli, M.; Guglielmi, G.; Bazzocchi, A. High-resolution peripheral quantitative computed tomography: Research or clinical practice? Br. J. Radiol. 2023, 96, 20221016. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chalcraft, J.R.; Cardinal, L.M.; Wechsler, P.J.; Hollis, B.W.; Gerow, K.G.; Alexander, B.M.; Keith, J.F.; Larson-Meyer, D.E. Vitamin D Synthesis Following a Single Bout of Sun Exposure in Older and Younger Men and Women. Nutrients 2020, 12, 2237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciancia, S.; Högler, W.; Sakkers, R.J.B.; Appelman-Dijkstra, N.M.; Boot, A.M.; Sas, T.C.J.; Renes, J.S. Osteoporosis in children and adolescents: How to treat and monitor? Eur. J. Pediatr. 2023, 182, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.M.; Choudhury, A.; Alos, N.; Cabral, D.A.; Rodd, C.; Sbrocchi, A.M.; Taback, S.; Padidela, R.; Shaw, N.J.; Hosszu, E.; et al. Zoledronic Acid vs. Placebo in Pediatric Glucocorticoid-induced Osteoporosis: A Randomized, Double-blind, Phase 3 Trial. J. Clin. Endocrinol. Metab. 2021, 106, e5222–e5235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ding, Y.; Yang, J.; Luo, Y.; Xu, Z.; Miao, J. Efficacy and safety of bisphosphonates on childhood osteoporosis secondary to chronic illness or its treatment: A meta-analysis. Ther. Adv. Chronic. Dis. 2022, 13, 20406223221129163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biasucci, G.; Donini, V.; Cannalire, G. Rickets Types and Treatment with Vitamin D and Analogues. Nutrients 2024, 16, 416. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kawahara, M.; Kuroshima, S.; Sawase, T. Clinical considerations for medication-related osteonecrosis of the jaw: A comprehensive literature review. Int. J. Implant Dent. 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pang, K.L.; Low, N.Y.; Chin, K.Y. A Review on the Role of Denosumab in Fracture Prevention. Drug Des. Devel. Ther. 2020, 14, 4029–4051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, D.; Tang, X.; Shi, Q.; Wang, R.; Ji, T.; Tang, X.; Guo, W. Denosumab in pediatric bone disorders and the role of RANKL blockade: A narrative review. Transl. Pediatr. 2023, 12, 470–486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kendler, D.L.; Cosman, F.; Stad, R.K.; Ferrari, S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv. Ther. 2022, 39, 58–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nasomyont, N.; Keefe, C.; Tian, C.; Hornung, L.; Khoury, J.; Tilden, J.C.; Hochwalt, P.; Jackson, E.; Rybalsky, I.; Wong, B.L.; et al. Safety and efficacy of teriparatide treatment for severe osteoporosis in patients with Duchenne muscular dystrophy. Osteoporos. Int. 2020, 31, 2449–2459. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.P.; Shulman, D.I.; Levine, M.A. Recombinant human parathyroid hormone (1-84) is effective in CASR-associated hypoparathyroidism. Eur. J. Endocrinol. 2020, 183, K13–K21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, F.; Yang, J.; Wang, J.; Li, T.; Wang, E.; Zhang, D.; Liu, X.; Zhou, C. The role and applications of extracellular vesicles in osteoporosis. Bone Res. 2024, 12, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antoniazzi, F.; Monti, E.; Venturi, G.; Franceschi, R.; Doro, F.; Gatti, D.; Zamboni, G.; Tatò, L. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur. J. Endocrinol. 2010, 163, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Głuszko, P.; Sewerynek, E.; Misiorowski, W.; Konstantynowicz, J.; Marcinowska-Suchowierska, E.; Blicharski, T.; Jabłoński, M.; Franek, E.; Kostka, T.; Jaworski, M.; et al. Guidelines for the diagnosis and management of osteoporosis in Poland. Update 2022. Endokrynol. Pol. 2023, 74, 5–15. [Google Scholar] [CrossRef] [PubMed]
Nomenclature | Gene | Clinical Classification by Severity Grading Scale | |
---|---|---|---|
Non-deforming OI with blue sclerae | 1. COL1A1 2. COL1A2 | MILD OI: Bone problems
| Bone density and other features:
|
Common Variable with normal sclerae | 1. COL1A1 2. COL1A2 3. WNT1a 1. CRTAP 2. PPIB 3. SP7 1. PLS3 | MODERATE OI: Bone problems:
| Bone density and other features:
|
OI with interosseous membranes Calcifications | 1. IFITM5 | ||
Progressively deforming | 1. COL1A1 2. COL1A2 1. BMP1 2. CRTAP 3. FKBP10 4. LEPRE1 5. PLOD2 6. PPIB 7. SERPINF1 8. SERPINH1 9. MEM38B 10. WNT1 11. CREB3L1 | SEVERE OI: Bone problems:
| Bone density and other features:
|
Letal perinatal OI | 1. COL1A1 2. COL1A2 1. CRTAP 2. LEPRE1 3. PPIB | EXTREMELY SEVERE OI: Bone problems:
| Bone density and other features:
|
MAIN IMAGING MODALITIES FOR BONE HEALTH EVALUATION IN CHILDREN | |||
---|---|---|---|
Imaging Modality | Sites of Application | Relevant Advantages | Relevant Disadvantages |
DXA |
| Gold standard |
|
CT Includes QCT, pQCT (and HR-pQCT) and vQCT |
|
| Radiation |
QUS |
|
|
|
MRI Includes micro-MRI |
|
| |
REMS |
|
|
|
Age | Calcium (mg) | 25 OH Vitamin D (IU) |
---|---|---|
0–6 months | 200 | 400 |
6–12 months | 260 | 400 |
1–3 years | 700 | 600 |
4–8 years | 1000 | 600 |
9–18 years | 1300 | 600 |
Drug | Contraindications | Administration | Dose |
---|---|---|---|
Pamidronate (2nd generation) | Hypocalcemia, severe renal failure, hypersensitivity | IV, diluted in 100–250 mL physiological saline solution for 3–4 h | <1 year: 0.5 mg/kg every 2 months 1–2 years: 0.25–0.5 mg/kg/day for 3 days every 3 months 2–3 years: 0.375–0.75 mg/kg/day for 3 days every 3 months >3 years: 0.5–1 mg/kg/day for 3 days every 4 months Maximum dose: 60 mg/dose and 11.5 mg/kg/year |
Neridronate (3rd generation) | Hypocalcemia, severe renal failure, hypersensitivity | IV, diluted in 200–250 mL physiological saline solution for 3 h | 1–2 mg/kg every 3–4 months |
Zolendronate (3rd generation) | Hypocalcemia, severe renal failure, hypersensitivity | IV, diluted in 50 mL physiological saline solution for 30−45 min | 0.0125–0.05 mg/kg every 6–12 months (maximum dose: 4 mg) |
Alendronate (2nd generation) | Hypocalcemia, delayed esophageal emptying, severe renal failure, hypersensitivity, inability to stand or sit for at least 30 min | Oral | 1–2 mg/kg/week <40 kg: 5 mg/day or 35 mg/week >40 kg: 10 mg/day or 70 mg/week Maximum dose: 70 mg/week |
Risendronate (3rd generation) | Hypocalcemia, delayed esophageal emptying, severe renal failure, hypersensitivity, inability to stand or sit for at least 30 min | Oral | 15 mg/week (<40 kg); 30 mg/week (>40 kg) Maximum dose: 30 mg/week |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannalire, G.; Biasucci, G.; Bertolini, L.; Patianna, V.; Petraroli, M.; Pilloni, S.; Esposito, S.; Street, M.E. Osteoporosis and Bone Fragility in Children: Diagnostic and Treatment Strategies. J. Clin. Med. 2024, 13, 4951. https://doi.org/10.3390/jcm13164951
Cannalire G, Biasucci G, Bertolini L, Patianna V, Petraroli M, Pilloni S, Esposito S, Street ME. Osteoporosis and Bone Fragility in Children: Diagnostic and Treatment Strategies. Journal of Clinical Medicine. 2024; 13(16):4951. https://doi.org/10.3390/jcm13164951
Chicago/Turabian StyleCannalire, Giuseppe, Giacomo Biasucci, Lorenzo Bertolini, Viviana Patianna, Maddalena Petraroli, Simone Pilloni, Susanna Esposito, and Maria Elisabeth Street. 2024. "Osteoporosis and Bone Fragility in Children: Diagnostic and Treatment Strategies" Journal of Clinical Medicine 13, no. 16: 4951. https://doi.org/10.3390/jcm13164951
APA StyleCannalire, G., Biasucci, G., Bertolini, L., Patianna, V., Petraroli, M., Pilloni, S., Esposito, S., & Street, M. E. (2024). Osteoporosis and Bone Fragility in Children: Diagnostic and Treatment Strategies. Journal of Clinical Medicine, 13(16), 4951. https://doi.org/10.3390/jcm13164951