Impact of Exposure to Hand-Held Vibrating Tools on Patient-Reported Outcome Measures after Open Carpal Tunnel Release: A Retrospective Cohort Study with Matched Controls
Abstract
:1. Introduction
2. Materials and Methods
Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rydberg, M.; Zimmerman, M.; Gottsäter, A.; Svensson, A.M.; Eeg-Olofsson, K.; Dahlin, L.B. Diabetic hand: Prevalence and incidence of diabetic hand problems using data from 1.1 million inhabitants in southern Sweden. BMJ Open Diabetes Res. Care 2022, 10, e002614. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.R.; Link, R.C.; Cheng, A.L.; Sinclair, M.K.; Sorensen, A.A. Carpal tunnel syndrome and sleep, a systematic review and meta-analysis. Hand Surg. Rehabil. 2024, 43, 101698. [Google Scholar] [CrossRef]
- Dahlin, L.B.; Zimmerman, M.; Calcagni, M.; Hundepool, C.A.; van Alfen, N.; Chung, K.C. Carpal tunnel syndrome. Nat. Rev. Dis. Primers 2024, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, A.; Ng, M.; Schmid, A.B.; Smillie, R.W.; Baskozos, G.; Holmes, M.V.; Künnapuu, K.; Mägi, R.; Bennett, D.L.; Furniss, D. A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome. Nat. Commun. 2019, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Lam, N.; Thurston, A. Association of obesity, gender, age and occupation with Carpal tunnel syndrome. Aust. N. Z. J. Surg. 1998, 68, 190–193. [Google Scholar] [CrossRef]
- Geoghegan, J.M.; Clark, D.I.; Bainbridge, L.C.; Smith, C.; Hubbard, R. Risk factors in carpal tunnel syndrome. J. Hand Surg. Br. 2004, 29, 315–320. [Google Scholar] [CrossRef]
- Hou, W.H.; Li, C.Y.; Chen, L.H.; Wang, L.Y.; Kuo, K.N.; Shen, H.N.; Chang, M.F. Prevalence of hand syndromes among patients with diabetes mellitus in Taiwan: A population-based study. J. Diabetes 2017, 9, 622–627. [Google Scholar] [CrossRef]
- Roquelaure, Y.; Garlantézec, R.; Evanoff, B.A.; Descatha, A.; Fassier, J.B.; Bodin, J. Personal, biomechanical, psychosocial, and organizational risk factors for carpal tunnel syndrome: A structural equation modeling approach. Pain 2020, 161, 749–757. [Google Scholar] [CrossRef]
- Zimmerman, M.; Nilsson, P.; Rydberg, M.; Dahlin, L.B. Risk of hand and forearm conditions due to vibrating hand-held tools exposure—A retrospective cohort study from Sweden. BMJ Open 2024, 14, e080777. [Google Scholar] [CrossRef]
- Miettinen, L.; Ryhänen, J.; Shiri, R.; Karppinen, J.; Miettunen, J.; Auvinen, J.; Hulkkonen, S. Work-related risk factors for ulnar nerve entrapment in the Northern Finland Birth Cohort of 1966. Sci. Rep. 2021, 11, 10010. [Google Scholar] [CrossRef]
- Nyman, E.; Dahlin, L.B. The Unpredictable Ulnar Nerve-Ulnar Nerve Entrapment from Anatomical, Pathophysiological, and Biopsychosocial Aspects. Diagnostics 2024, 14, 489. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, N.O.; Mojaddidi, M.; Malik, R.A.; Dahlin, L.B. Reduced myelinated nerve fibre and endoneurial capillary densities in the forearm of diabetic and non-diabetic patients with carpal tunnel syndrome. Acta Neuropathol. 2009, 118, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Strömberg, T.; Dahlin, L.B.; Brun, A.; Lundborg, G. Structural nerve changes at wrist level in workers exposed to vibration. Occup. Environ. Med. 1997, 54, 307–311. [Google Scholar] [CrossRef]
- Tamburin, S.; Cacciatori, C.; Praitano, M.L.; Cazzarolli, C.; Foscato, C.; Fiaschi, A.; Zanette, G. Median nerve small- and large-fiber damage in carpal tunnel syndrome: A quantitative sensory testing study. J. Pain 2011, 12, 205–212. [Google Scholar] [CrossRef]
- Lundborg, G.; Dahlin, L.B.; Hansson, H.A.; Kanje, M.; Necking, L.E. Vibration exposure and peripheral nerve fiber damage. J. Hand Surg. Am. 1990, 15, 346–351. [Google Scholar] [CrossRef]
- de Krom, M.C.; Kester, A.D.; Knipschild, P.G.; Spaans, F. Risk factors for carpal tunnel syndrome. Am. J. Epidemiol. 1990, 132, 1102–1110. [Google Scholar] [CrossRef]
- Newington, L.; Harris, E.C.; Walker-Bone, K. Carpal tunnel syndrome and work. Best Pract. Res. Clin. Rheumatol. 2015, 29, 440–453. [Google Scholar] [CrossRef]
- Jeremy, D.P.; Bland, F. Do nerve conduction studies predict the outcome of carpal tunnel decompression. Muscle Nerve 2001, 24, 935–940. [Google Scholar]
- Dahlin, E.; Zimmerman, M.; Bjorkman, A.; Thomsen, N.O.; Andersson, G.S.; Dahlin, L.B. Impact of smoking and preoperative electrophysiology on outcome after open carpal tunnel release. J. Plast. Surg. Hand Surg. 2016, 51, 329–335. [Google Scholar] [CrossRef]
- Allmänläkarkonsult Region Skåne. Vårdprogram Karpaltunnelsyndrom. Region Skåne: Vårdgivare Skåne. 2021. Updated 2022-09-21. Available online: https://vardgivare.skane.se/vardriktlinjer/rorelseorgan/ako/karpaltunnelsyndrom/ (accessed on 5 June 2024).
- Swedish Work Environment Authority. Statistics on Vibrations. 2023. Available online: https://www.av.se/halsa-och-sakerhet/vibrationer/statistik-om-vibrationer/ (accessed on 2 August 2024).
- Wieslander, G.; Norbäck, D.; Göthe, C.J.; Juhlin, L. Carpal tunnel syndrome (CTS) and exposure to vibration, repetitive wrist movements, and heavy manual work: A case-referent study. Br. J. Ind. Med. 1989, 46, 43–47. [Google Scholar] [CrossRef]
- Vihlborg, P.; Pettersson, H.; Makdoumi, K.; Wikstrom, S.; Bryngelsson, I.L.; Selander, J.; Graff, P. Carpal Tunnel Syndrome and Hand-Arm Vibration: A Swedish National Registry Case-Control Study. J. Occup. Environ. Med. 2022, 64, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Schulze, D.G.; Nilsen, K.B.; Clemm, T.; Grotle, M.; Zwart, J.A.; Ulvestad, B.; Nordby, K.C. Influence of ergonomic factors on peripheral neuropathy under HAV exposure. Occup. Med. 2023, 73, 13–18. [Google Scholar] [CrossRef]
- Sandén, H.; Jonsson, A.; Wallin, B.G.; Burström, L.; Lundström, R.; Nilsson, T.; Hagberg, M. Nerve conduction in relation to vibration exposure—A non-positive cohort study. J. Occup. Med. Toxicol. 2010, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, L.; Sanden, H.; Dahlin, E.; Zimmerman, M.; Thomsen, N.; Bjorkman, A. Low myelinated nerve-fibre density may lead to symptoms associated with nerve entrapment in vibration-induced neuropathy. J. Occup. Med. Toxicol. 2014, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Stirling, P.H.C.; Jenkins, P.J.; Clement, N.D.; Duckworth, A.D.; McEachan, J.E. The Influence of Self-Reported Hand-Arm Vibration Exposure on Functional Outcomes Following Carpal Tunnel Release. J. Hand Surg. Am. 2020, 45, 1029–1036. [Google Scholar] [CrossRef]
- Boström, L.; Göthe, C.J.; Hansson, S.; Lugnegård, H.; Nilsson, B.Y. Surgical treatment of carpal tunnel syndrome in patients exposed to vibration from handheld tools. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1994, 28, 147–149. [Google Scholar] [CrossRef]
- The Swedish Translated Version of QuickDASH. Available online: http://www.dash.iwh.on.ca/assets/images/pdfs/QuickDASH_Swedish.pdf (accessed on 15 January 2019).
- Hunsaker, F.; Cioffi, D.; Amadio, P.; Wright, J.; Caughlin, B. The American academy of orthopaedic surgeons outcomes instruments: Normative values from the general population. J. Bone Jt. Surg. 2002, 84, 208–215. [Google Scholar] [CrossRef]
- Mintken, P.E.; Glynn, P.; Cleland, J.A. Psychometric properties of the shortened disabilities of the Arm, Shoulder, and Hand Questionnaire (QuickDASH) and Numeric Pain Rating Scale in patients with shoulder pain. J. Shoulder Elb. Surg. 2009, 18, 920–926. [Google Scholar] [CrossRef]
- Aasheim, T.; Finsen, V. The DASH and the QuickDASH instruments. Normative values in the general population in Norway. J. Hand Surg. Eur. Vol. 2014, 39, 140–144. [Google Scholar] [CrossRef]
- Zimmerman, M.; Dahlin, E.; Thomsen, N.O.; Andersson, G.S.; Bjorkman, A.; Dahlin, L.B. Outcome after carpal tunnel release: Impact of factors related to metabolic syndrome. J. Plast. Surg. Hand Surg. 2017, 51, 165–171. [Google Scholar] [CrossRef]
- Padua, L.; Lo Monaco, M.; Padua, R.; Gregori, B.; Tonali, P. Neurophysiological classification of carpal tunnel syndrome: Assessment of 600 symptomatic hands. Ital. J. Neurol. Sci. 1997, 18, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.; Eeg-Olofsson, K.; Svensson, A.; Astrom, M.; Arner, M.; Dahlin, L. Open carpal tunnel release and diabetes: A retrospective study using PROMs and national quality registries. BMJ Open 2019, 9, e030179. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, N.O.B.; Cederlund, R.; Rosén, I.; Björk, J.; Dahlin, L.B. Clinical Outcomes of Surgical Release Among Diabetic Patients with Carpal Tunnel Syndrome: Prospective Follow-Up with Matched Controls. J. Hand Surg. 2009, 34, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Gillibrand, S.; Ntani, G.; Coggon, D. Do exposure limits for hand-transmitted vibration prevent carpal tunnel syndrome? Occup. Med. 2016, 66, 399–402. [Google Scholar] [CrossRef]
- Sauni, R.; Pääkkönen, R.; Virtema, P.; Toppila, E.; Uitti, J. Dose-response relationship between exposure to hand-arm vibration and health effects among metalworkers. Ann. Occup. Hyg. 2009, 53, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Gerhardsson, L.; Ahlstrand, C.; Ersson, P.; Gustafsson, E. Vibration-induced injuries in workers exposed to transient and high frequency vibrations. J. Occup. Med. Toxicol. 2020, 15, 18. [Google Scholar] [CrossRef]
- Maghsoudipour, M.; Moghimi, S.; Dehghaan, F.; Rahimpanah, A. Association of occupational and non-occupational risk factors with the prevalence of work related carpal tunnel syndrome. J. Occup. Rehabil. 2008, 18, 152–156. [Google Scholar] [CrossRef]
- Stirling, P.H.C.; Jenkins, P.J.; Clement, N.D.; Duckworth, A.D.; McEachan, J.E. Occupation classification predicts return to work after carpal tunnel decompression. Occup. Med. 2020, 70, 415–420. [Google Scholar] [CrossRef]
- Thomsen, N.O.; Cederlund, R.; Björk, J.; Dahlin, L.B. Health-related quality of life in diabetic patients with carpal tunnel syndrome. Diabet. Med. J. Br. Diabet. Assoc. 2010, 27, 466–472. [Google Scholar] [CrossRef]
- Sauni, R.; Virtema, P.; Pääkkönen, R.; Toppila, E.; Pyykkö, I.; Uitti, J. Quality of life (EQ-5D) and hand-arm vibration syndrome. Int. Arch. Occup. Environ. Health 2010, 83, 209–216. [Google Scholar] [CrossRef]
- Boström, L.; Göthe, C.J.; Hansson, S.; Lugnegård, H.; Nilsson, B.Y. Vibration-induced carpal-tunnel syndrome. Lancet 1991, 337, 744–745. [Google Scholar] [CrossRef]
- Strömberg, T.; Dahlin, L.B.; Rosén, I.; Lundborg, G. Neurophysiological findings in vibration-exposed male workers. J. Hand Surg. Br. 1999, 24, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, T.; Wahlström, J.; Burström, L. Hand-arm vibration and the risk of vascular and neurological diseases-A systematic review and meta-analysis. PLoS ONE 2017, 12, e0180795. [Google Scholar] [CrossRef] [PubMed]
- Rolke, R.; Rolke, S.; Vogt, T.; Birklein, F.; Geber, C.; Treede, R.D.; Letzel, S.; Voelter-Mahlknecht, S. Hand-arm vibration syndrome: Clinical characteristics, conventional electrophysiology and quantitative sensory testing. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2013, 124, 1680–1688. [Google Scholar] [CrossRef]
- Sunderland, S. The intraneural topography of the radial, median and ulnar nerves. Brain J. Neurol. 1945, 68, 243–299. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.T.; Haward, B.; Griffin, M.J.; Bendall, H.; Coggon, D. Validity of self reported occupational exposures to hand transmitted and whole body vibration. Occup. Environ. Med. 2000, 57, 237–241. [Google Scholar] [CrossRef]
- Gerhardsson, L.; Balogh, I.; Hambert, P.A.; Hjortsberg, U.; Karlsson, J.E. Vascular and nerve damage in workers exposed to vibrating tools. The importance of objective measurements of exposure time. Appl. Ergon. 2005, 36, 55–60. [Google Scholar] [CrossRef]
- Industrial Injuries Advisory Council Hand-Arm Vibration Syndrome and Assessment of Vibration Exposure. 2023. Available online: https://www.gov.uk/government/publications/hand-arm-vibration-syndrome-and-assessment-of-vibration-exposure/hand-arm-vibration-syndrome-and-assessment-of-vibration-exposure (accessed on 2 August 2024).
Vibration-Exposed Individuals with CTS (n = 23) | Individuals with CTS and without Vibration Exposure (n = 23) | p-Value | ||
---|---|---|---|---|
Age, years | 61 ± 14 | 61 ± 13 | ||
Diabetes | 3 (13) | 3 (13) | ||
Smoking | 4 (17) | 4 (17) | ||
Sex | ||||
Male | 17 (74) | 17 (74) | ||
Female | 6 (26) | 6 (26) | ||
BMI | 27 [24–30] | 30 [26–31] | 0.28 | |
SCV at carpal tunnel, median nerve (m/s) | 27 [20–34] | 32 [28–35] | 0.54 | |
SNAP thumb (mV) | 3 [0–9] | 4 [2–5] | 0.89 | |
SNAP long finger (mV) | 3 [0–6] | 2 [2–5] | 0.68 |
Vibration-Exposed Individuals with CTS (n = 23) | Individuals with CTS and without Vibration Exposure (n = 23) | p-Value | |
---|---|---|---|
Preoperative QuickDASH | 45 [30–61] | 43 [25–64] | 0.68 |
Postoperative QuickDASH | 20 [2–45] | 14 [5–34] | 0.87 |
Difference in QuickDASH score from pre- operative to 12 months postoperative | 18 [3–32] | 20 [0–30] | 0.98 |
B-Coefficient (95% CI) | |
---|---|
Vibration exposure (no exposure is reference) | 2.81 (−12.3–17.9) |
Age (years) | −0.096 (−0.68–0.49) |
Sex (male is reference) | 17.9 (−0.61–36.4) |
Diabetes (no diabetes is reference) | 22.0 (−1.07–45.1) |
Smoking (no smoking is reference) | 9.57 (−11.3–30.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmerman, M.; Åselius, L.; Dahlin, E.; Andersson, G.S.; Dahlin, L.B. Impact of Exposure to Hand-Held Vibrating Tools on Patient-Reported Outcome Measures after Open Carpal Tunnel Release: A Retrospective Cohort Study with Matched Controls. J. Clin. Med. 2024, 13, 4954. https://doi.org/10.3390/jcm13164954
Zimmerman M, Åselius L, Dahlin E, Andersson GS, Dahlin LB. Impact of Exposure to Hand-Held Vibrating Tools on Patient-Reported Outcome Measures after Open Carpal Tunnel Release: A Retrospective Cohort Study with Matched Controls. Journal of Clinical Medicine. 2024; 13(16):4954. https://doi.org/10.3390/jcm13164954
Chicago/Turabian StyleZimmerman, Malin, Lisa Åselius, Erik Dahlin, Gert S. Andersson, and Lars B. Dahlin. 2024. "Impact of Exposure to Hand-Held Vibrating Tools on Patient-Reported Outcome Measures after Open Carpal Tunnel Release: A Retrospective Cohort Study with Matched Controls" Journal of Clinical Medicine 13, no. 16: 4954. https://doi.org/10.3390/jcm13164954
APA StyleZimmerman, M., Åselius, L., Dahlin, E., Andersson, G. S., & Dahlin, L. B. (2024). Impact of Exposure to Hand-Held Vibrating Tools on Patient-Reported Outcome Measures after Open Carpal Tunnel Release: A Retrospective Cohort Study with Matched Controls. Journal of Clinical Medicine, 13(16), 4954. https://doi.org/10.3390/jcm13164954