Somatic Structure and Ultrasound Parameters of the Calcaneus Bone in Combat Sports Athletes in Relation to Vitamin D3 Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Practical Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stokłosa, H. Budowa somatyczna i struktura tkanki kostnej zawodniczek akrobatyki sportowej (abstrakt). Anthropol. Rev. 2011, 7, 102. [Google Scholar]
- Forwood, M.R.; Burr, D.B. Physical activity and bone mass: Exercises in futility? Bone Miner. 1993, 21, 89–112. [Google Scholar] [CrossRef]
- Nordstrom, P.; Thorsen, K.; Nordstrom, G.; Bergstrom, E.; Lorentzon, R. Bone Mass, Muscle Strength, and Different Body Constitutional Parameters in Adolescent Boys With a Low or Moderate Exercise Level. Bone 1995, 17, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.L.; Snow-Harter, C.; Taaffe, D.R.; Gillis, D.; Shaw, J.; Marcus, R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrha. J. Bone Miner. Res. 1995, 10, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Carruth, B.R.; Skinner, J.D. Bone Mineral Status in Adolescent Girls: Effects of Eating Disorders and Exercise. J. Adolesc. Health 2000, 26, 322–329. [Google Scholar] [CrossRef]
- Kemper, H.C.G.; Twisk, J.W.R.; van Mechelen, W.; Post, G.B.; Roos, J.C.; Lips, P. A fifteen-year longitudinal study in young adults on the relation of physical activity and fitness with the development of the bone mass: The Amsterdam Growth and Health Longitudinal Study. Bone 2000, 27, 847–853. [Google Scholar] [CrossRef]
- Khan, K.; McKay, H.A.; Haapasalo, H.; Bennell, K.L.; Forwood, M.R.; Kannus, P.; Wark, J.D. Does childhood and adolescence provide a unique opportunity for exercise to strengthen the skeleton? J. Sci. Med. Sport 2000, 3, 150–164. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D.G.; Mirwald, R.L.; McKay, H.A.; Bailey, D.A. A longitudinal analysis of sex differences in bone mineral accrual in healthy 8–19-year-old boys and girls. Ann. Hum. Biol. 2003, 30, 160–175. [Google Scholar] [CrossRef]
- Eliakim, A.; Beyth, Y. Exercise Training, Menstrual Irregularities and Bone Development in Children and Adolescents. J. Pediatr. Adolesc. Gynecol. 2003, 16, 201–206. [Google Scholar] [CrossRef]
- Barkai, H.-S.; Nichols, J.F.; Rauh, M.J.; Barrack, M.T.; Lawson, M.J.; Levy, S.S. Influence of sports participation and menarche on bone mineral density of female high school athletes. J. Sci. Med. Sport 2007, 10, 170–179. [Google Scholar] [CrossRef]
- Janz, K.F.; Eichenberger Gilmore, J.M.; Levy, S.M.; Letuchy, E.M.; Burns, T.L.; Beck, T.J. Physical activity and femoral neck bone strength during childhood: The Iowa Bone Development Study. Bone 2007, 41, 216–222. [Google Scholar] [CrossRef]
- Hind, K.; Truscott, J.G.; Conway, S.P. Exercise during childhood and adolescence: A prophylaxis against cystic fibrosis-related low bone mineral density? Exercise for bone health in children with cystic fibrosis. J. Cyst. Fibros. 2008, 7, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Jackowski, S.A.; Faulkner, R.A.; Farthing, J.P.; Kontulainen, S.A.; Beck, T.J.; Baxter-Jones, A.D.G. Peak lean tissue mass accrual precedes changes in bone strength indices at the proximal femur during the pubertal growth spurt. Bone 2009, 44, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- El Hage, R.; Moussa, E.; Jacob, C.H. Bone Mineral Content and Density in Obese, Overweight, and Normal-Weighted Sedentary Adolescent Girls. J. Adolesc. Health 2010, 47, 591–595. [Google Scholar] [CrossRef]
- Falk, B.; Braid, S.; Moore, M.; Yao, M.; Sullivan, P.; Klentrou, N. Bone properties in child and adolescent male hockey and soccer players. J. Sci. Med. Sport. 2010, 13, 387–391. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bianchi, M.L.; Garabédian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef]
- Micklesfield, L.K.; Norris, S.A.; Pettifor, J.M. Determinants of bone size and strength in 13-year-old South African children: The influence of ethnicity, sex and pubertal maturation. Bone 2011, 48, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Seabra, A.; Marques, E.; Britoa, J.; Krustrup, P.; Abreub, S.; Oliveira, J.; Rêgo, C.; Mota, J.; Rebelo, A. Muscle strength and soccer practice as major determinants of bone mineral density in adolescents. Jt. Bone Spine 2011, 79, 403–408. [Google Scholar] [CrossRef]
- Taaffe, D.R.; Snow-Harter, C.; Connolly, D.A.; Robinson, T.L.; Brown, M.D.; Marcus, R. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J. Bone Miner. Res. 1995, 10, 586–593. [Google Scholar] [CrossRef]
- Snow-Harter, C.; Bouxsein, M.L.; Lewis, B.T.; Carter, D.R.; Marcus, R. Effects of resistance and endurance exercise on bone mineral status of young women: A randomized exercise intervention trial. J. Bone Miner. Res. 1992, 7, 761–769. [Google Scholar] [CrossRef]
- Daly, R.M.; Saxon, L.; Turner, C.H.; Robling, A.G.; Bass, S.L. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 2004, 43, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Schoenau, E.; Saggese, G.; Peter, F.; Baroncelli, G.I.; Shaw, N.J.; Carbtree, N.J.; Zadik, Z.; Neu, C.M.; Noordam, C.; Radetti, G.; et al. From bone biology to bone analysis. Horm. Res. 2004, 61, 257–269. [Google Scholar] [CrossRef]
- Hans, D.; Dargent-Molina, P.; Schott, A.M.; Sebert, J.L.; Cormier, C.; Kotzki, P.O.; Delmas, P.D.; Pouilles, J.M.; Breart, G.; Meunier, P.J. Ultrasonographic heel measurements to predict hip fracture in elderly women: The EPIDOS prospective study. Lancet 1996, 348, 511–514. [Google Scholar] [CrossRef]
- Riggs, B.L.; Melton, L.J., III. The prevention and treatment of osteoporosis. N. Engl. J. Med. 1992, 327, 620–627. [Google Scholar] [PubMed]
- Maïmoun, L.; Coste, O.; Mariano-Goulart, D.; Galtier, F.; Mura, T.; Philibert, P.; Briot, K.; Paris, F.; Sultan, C. In peripubertal girls, artistic gymnastics improves areal bone mineral density and femoral bone geometry without affecting serum OPG/RANKL levels. Osteoporos. Int. 2011, 22, 3055–3066. [Google Scholar] [CrossRef]
- Shin, Y.H.; Jung, H.L.; Kang, H.Y. Effects of Taekwondo Training on Bone Mineral Density of High School Girls in Korea. Biol. Sport 2011, 28, 195. [Google Scholar]
- Glinkowski, W.M.; Żukowska, A.; Glinkowska, B. Quantitative ultrasound examination (QUS) of the calcaneus in long-term martial arts training on the example of long-time practitioners of Okinawa Kobudo/Karate Shorin-Ryu. Int. J. Environ. Res. Public. Health 2023, 20, 2708. [Google Scholar] [CrossRef]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.E.L.; Heath, B.H. Somatotyping—Development and applications. In Cambridge Studies in Biological Anthropology; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Marfell-Jones, M.J.; Stewart, A.D.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012. [Google Scholar]
- Mondry, A.; Hetzel, G.R.; Willers, R.; Feldkamp, J.; Grabensee, B. Quantitative heel ultrasound in assessment of bone structure in renal transplant recipients. Am. J. Kidney Dis. 2001, 37, 932–937. [Google Scholar] [CrossRef]
- Janz, K.F.; Thomas, D.Q.; Ford, M.A.; Williams, S.M. Top 10 research questions related to physical activity and bone health in children and adolescents. Res. Q. Exerc. Sport 2015, 86, 5–12. [Google Scholar] [CrossRef]
- Malina, R.M. The effect of exercise on specific tissues, dimensions, and functions during growth. Stud. Phys. Anthropol. 1979, 5, 21–52. [Google Scholar]
- Glinkowski, W.M. Quantitative ultrasound (QUS) of bone in sport. Pol. J. Sport Med. 2022, 38, 215–226. [Google Scholar] [CrossRef]
- Métrailler, A.; Hans, D.; Lamy, O.; Gonzalez Rodriguez, E.; Shevroja, E. Heel quantitative ultrasound (QUS) predicts incident fractures independently of trabecular bone score (TBS), bone mineral density (BMD), and FRAX: The OsteoLaus Study. Osteoporos. Int. 2023, 34, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, A.; Moore, S.; Fielding, K.T.; Nix, D.A.; Kiratli, J.; Bachrach, L.K. Calcaneus ultrasound measurements in a convenience sample of healthy youth. J. Clin. Densitom. 2001, 4, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Yung, P.; Lai, Y.M.; Tung, P.Y.; Tsui, H.T.; Wong, C.K.; Hung, V.W.Y.; Qin, L. Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br. J. Sports Med. 2005, 39, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Niewczas, M.; Rydzik, Ł.; Ambroży, T.; Wąsacz, W.; Spieszny, M.; Perliński, J.; Javdaneh, N. Gait Parameters of Elite Kickboxing Athletes. Symmetry 2023, 15, 1774. [Google Scholar] [CrossRef]
- Perliński, J.; Bukowska, J.M.; Rydzik, Ł.; Wąsacz, W.; Kruczkowski, D.; Ambroży, T.; Czarny, W.; Jaszczur-Nowicki, J. Gait analysis of male professional boxers. Balt. J. Health Phys. Act. 2024, 16, 1. [Google Scholar] [CrossRef]
- Niedźwiedzki, T.; Kuryszko, J. Biologia Kości; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2007. [Google Scholar]
- Ambroży, T.; Wąsacz, W.; Koteja, A.; Żyłka, T.; Stradomska, J.; Piwowarski, J.; Rydzik, Ł. Special fitness level of combat sports athletes: Mixed martial arts (MMA) and thai boxing (muay thai) in the aspect of training experience. J. Kinesiol. Exerc. Sci. 2021, 31, 25–37. [Google Scholar] [CrossRef]
- Ambroży, T.; Rydzik, Ł.; Wąsacz, W.; Małodobry, Z.; Cynarski, W.J.; Ambroży, D.; Kędra, A. Analysis of Combat in Sport JU-JITSU during the World Championships in Fighting Formula. Appl. Sci. 2023, 13, 11417. [Google Scholar] [CrossRef]
- Rydzik, Ł. Fitness profile of Oyama karate and kickboxing athletes–initial concept. Arch. Budo Sci. Martial Arts Extrem. Sports 2021, 17, 19–24. [Google Scholar]
- İlbak, İ.; Gönültaş, B.; Stojanovic, S.; Jorgic, B. Investigation of Chronotypes of Individuals Engaging in Exercise in Terms of Certain Variables. J. Sports Res. Innov. 2024, 1, 1. [Google Scholar]
Inclusion Criteria | Exclusion Criteria |
---|---|
Age 18–35 | Vitamin D supplementation |
Minimum of 3 years of competition experience | Chronic metabolic diseases (Diabetes, gout, or thyroid diseases) |
Health of the musculoskeletal system | Active and chronic infections |
Consent to participate in the study | Injuries and surgeries in the lower limbs |
The use of drugs that affect bone density or calcium and vitamin D metabolism (e.g., steroids or antiepileptic drugs). |
Somatic Variables | SD | Min | Max | |
---|---|---|---|---|
Body height [mm] | 1773.5 | 68.47 | 1642 | 1914 |
Elbow width [mm] | 71.10 | 4.37 | 60 | 83 |
Knee width [mm] | 100.40 | 6.18 | 88 | 115 |
Flexed arm circumference [cm] | 35.20 | 3.19 | 29 | 41 |
Maximum calf circumference [cm] | 37.80 | 2.67 | 33 | 45.50 |
Skinfold thickness on biceps [mm] | 4.28 | 1.88 | 2.40 | 11 |
Skinfold thickness on triceps [mm] | 7.95 | 2.97 | 4.20 | 17,40 |
Skinfold thickness under scapula [mm] | 10.06 | 3.59 | 5 | 17 |
Skinfold thickness above iliac crest [mm] | 10.29 | 5.99 | 4 | 29.60 |
Skinfold thickness on calf [mm] | 5.66 | 2.88 | 2.20 | 17.20 |
Body mass [kg] | 80.53 | 11.81 | 55 | 109 |
Somatic Variable | z | p | |||
---|---|---|---|---|---|
Boxing (n = 10) | Ju-jitsu (n = 10) | Karate (n = 10) | Wrestling (n = 10) | ||
Body height [mm] | 0.69 | 0.13 | −0.20 | −0.09 | 1-2,3,4 * |
Elbow width [mm] | 0.98 | 0.10 | −0.32 | 0.17 | 1-2,3,4 * |
Knee width [mm] | 1.88 | −0.03 | −0.25 | −0.32 | 1-2,3,4 * |
Flexed arm circumference [cm] | 0.21 | 0.09 | −0.49 | 1.17 | 1-3,4 *; 3-4 * |
Maximum calf circumference [cm] | 0.57 | −0.23 | 0.05 | −0.04 | 1-2,3,4 * |
Skinfold thickness on biceps [mm] | −0.68 | −0.21 | 0.28 | −0.02 | 1-3,4 * |
Skinfold thickness on triceps [mm] | −0.86 | −0.10 | 0.32 | −0.25 | 1-2,3,4 * |
Skinfold thickness under scapula [mm] | −0.70 | 0.17 | −0.20 | 0.66 | 1-2,3,4 *; 3-4 * |
Skinfold thickness above iliac crest [mm] | −0.64 | −0.04 | 0.01 | 0.43 | 1-2,3 * |
Skinfold thickness on calf [mm] | −0.79 | −0.31 | 0.00 | 1.11 | 1-3,4 *; 2-4 * |
Body mass [kg] | 0.41 | 0.03 | −0.29 | 0.58 | 4-2,3 * |
Variables | SD | CV | Min | Max | ||
---|---|---|---|---|---|---|
Ultrasound of the calcaneus | ||||||
SI | 115.8 | 16.71 | 14.43 | 88 | 165 | |
BUA [dB/MHz] | 126.0 | 16.59 | 13.17 | 94 | 190 | |
SOS [m/s] | 1615.3 | 34.81 | 2.16 | 1549 | 1692 | |
Somatotype components | ||||||
Endomorphy | 2.38 | 1.15 | - | 1 | 5.5 | |
Mesomorphy | 5.88 | 1.11 | - | 3.25 | 9.13 | |
Ectomorphy | 1.79 | 0.89 | - | 0.5 | 4 | |
Vitamin D3 | ||||||
D3 [ng/mL] | 36.33 | 10.08 | - | 13 | 50 |
Variables | Boxing (n = 10) | Ju-jitsu (n = 10) | Karate (n = 10) | Wrestling (n = 10) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SD | CV | SD | CV | SD | CV | SD | CV | |||||
Ultrasound of the calcaneus | ||||||||||||
SI | 126.67 | 5.03 | 3.97 | 114.00 | 15.27 | 13.39 | 115.53 | 12.23 | 10.59 | 114.00 | 22.00 | 19.30 |
BUA [dB/MHz] | 137.67 | 2.89 | 2.10 | 126.70 | 11.15 | 8.80 | 125.33 | 13.49 | 10.76 | 119.80 | 12.15 | 10.14 |
SOS [m/s] | 1625.00 | 19.92 | 1.23 | 1609.00 | 29.19 | 1.81 | 1615.00 | 31.76 | 1.97 | 1623.20 | 64.75 | 3.99 |
Somatotype components | ||||||||||||
Endomorphy | 1.50 | 0.87 | - | 2.40 | 0.94 | - | 2.33 | 1.42 | - | 3.00 | 0.71 | - |
Mesomorphy | 6.67 | 1.15 | - | 5.80 | 1.25 | - | 5.62 | 1.07 | - | 6.35 | 0.78 | - |
Ectomorphy | 2.17 | 1.04 | 1.85 | 0.88 | 1.93 | 0.91 | 1.00 | 0.35 |
Variables | z | p | |||
---|---|---|---|---|---|
Boxing (n = 10) | Ju-jitsu (n = 10) | Karate (n = 10) | Wrestling (n = 10) | ||
Ultrasound of the calcaneus | |||||
SI | 0.65 | −0.11 | −0.02 | −0.11 | 1-2,3,4 * |
BUA [dB/MHz] | 0.70 | 0.04 | −0.04 | −0.38 | 1-2,3,4 * |
SOS [m/s] | 0.28 | −0.18 | −0.01 | 0.23 | |
Somatotype components | |||||
Endomorphy | −0.77 | 0.02 | −0.04 | 0.54 | 1-2,3,4 *; 4-2,3 * |
Mesomorphy | 0.71 | −0.07 | −0.24 | 0.43 | 1-2,3 *; 4-2,3 * |
Ectomorphy | 0.42 | 0.07 | 0.16 | −0.88 | 4-1,2,3 * |
Vitamin D3 | |||||
D3 [ng/mL] | 0.89 | −0.16 | −0.02 | −0.15 | 1-2,3,4 * |
Variables | —(Level D3 in Accordance with the Standard) | —(D3 Level below Normal) | F | p |
---|---|---|---|---|
Number of respondents | ||||
n | 34 | 6 | ||
Ultrasound of the calcaneus | ||||
SI | 119.96 | 97.33 | 12.14 | 0.0015 * |
BUA [dB/MHz] | 128.04 | 117.00 | 2.26 | 0.14 |
SOS [m/s] | 1625.56 | 1569.33 | 20.67 | 0.001 * |
Somatotype components | ||||
Endomorphy | 2.13 | 3.50 | 8.71 | 0.006 * |
Mesomorphy | 5.84 | 6.06 | 0.2 | 0.66 |
Ectomorphy | 1.89 | 1.33 | 1.96 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brudecki, J.; Rydzik, Ł.; Wąsacz, W.; Ruzbarsky, P.; Czarny, W.; Warowna, M.; Ambroży, T. Somatic Structure and Ultrasound Parameters of the Calcaneus Bone in Combat Sports Athletes in Relation to Vitamin D3 Levels. J. Clin. Med. 2024, 13, 4960. https://doi.org/10.3390/jcm13164960
Brudecki J, Rydzik Ł, Wąsacz W, Ruzbarsky P, Czarny W, Warowna M, Ambroży T. Somatic Structure and Ultrasound Parameters of the Calcaneus Bone in Combat Sports Athletes in Relation to Vitamin D3 Levels. Journal of Clinical Medicine. 2024; 13(16):4960. https://doi.org/10.3390/jcm13164960
Chicago/Turabian StyleBrudecki, Janusz, Łukasz Rydzik, Wojciech Wąsacz, Pavel Ruzbarsky, Wojciech Czarny, Marlena Warowna, and Tadeusz Ambroży. 2024. "Somatic Structure and Ultrasound Parameters of the Calcaneus Bone in Combat Sports Athletes in Relation to Vitamin D3 Levels" Journal of Clinical Medicine 13, no. 16: 4960. https://doi.org/10.3390/jcm13164960
APA StyleBrudecki, J., Rydzik, Ł., Wąsacz, W., Ruzbarsky, P., Czarny, W., Warowna, M., & Ambroży, T. (2024). Somatic Structure and Ultrasound Parameters of the Calcaneus Bone in Combat Sports Athletes in Relation to Vitamin D3 Levels. Journal of Clinical Medicine, 13(16), 4960. https://doi.org/10.3390/jcm13164960