The Role of Vitamin D Metabolism Genes and Their Genomic Background in Shaping Cyclosporine A Dosage Parameters after Kidney Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Characteristics of the Study Group
2.2. Isolation of Samples
2.3. Statistical Analysis
3. Results
Polymorphism | Rank 1 |
---|---|
rs231775 CTLA4 | 100 |
rs602662 FUT2 | 94 |
rs2282679 GC | 90 |
rs1800896 IL10 | 89 |
rs1800795 IL6 | 88 |
rs8175347 UGT1A1*28 | 86 |
rs4654748 NBPF3 | 83 |
rs2032582 MDR | 80 |
rs1045642 MDR | 79 |
rs2069762 IL2 | 76 |
rs10741657 CYP2R1 | 72 |
rs1800468 TGFB | 63 |
rs1800629 TNF-alfa | 53 |
rs12272004 | 53 |
rs33972313 SLC23A1 | 41 |
rs2740574 CYP3A4 | 22 |
- Leaf ID 6: rs2282679 CA, IL 10-1082A>G RS1800896 GA or GG, MDR2677G>T RS2032582 GT
- Leaf ID 5: rs2282679 CA, IL10-1082A>G RS1800896 AA
- Leaf ID 10: rs2282679 CC or AA, rs602662 FUT2 GG or AG, IL10-1082A>G RS1800896 AA
- Leaf ID 9: rs2282679 CC or CA, rs602662 FUT2 AA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filipov, J.J.; Zlatkov, B.K.; Dimitrov, E.P.; Svinarov, D. Relationship between Vitamin D Status and Immunosuppressive Therapy in Kidney Transplant Recipients. Biotechnol. Biotechnol. Equip. 2015, 29, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Eyal, O.; Aharon, M.; Safadi, R.; Elhalel, M.D. Serum vitamin D levels in kidney transplant recipients: The importance of an immunosuppression regimen and sun exposure. Isr. Med. Assoc. J. 2013, 15, 628–633. [Google Scholar] [PubMed]
- Sadlier, D.M.; Magee, C.C. Prevalence of 25(OH) Vitamin D (Calcidiol) Deficiency at Time of Renal Transplantation: A Prospective Study. Clin. Transplant. 2007, 21, 683–688. [Google Scholar] [CrossRef]
- Querings, K.; Girndt, M.; Geisel, J.; Georg, T.; Tilgen, W.; Reichrath, J. 25-Hydroxyvitamin D Deficiency in Renal Transplant Recipients. J. Clin. Endocrinol. Metab. 2006, 91, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Fang, Z.; Sun, F.; Chang, J.; Teng, J.; Lin, S.; Liu, X. Effect of Vitamin D and Tacrolimus Combination Therapy on IgA Nephropathy. Med. Sci. Monit. 2017, 23, 3170–3177. [Google Scholar] [CrossRef]
- Navas-Nazario, A.; Li, F.Y.; Shabanova, V.; Weiss, P.; Cole, D.E.C.; Carpenter, T.O.; Bazzy-Asaad, A. Effect of Vitamin D–Binding Protein Genotype on the Development of Asthma in Children. Ann. Allergy Asthma Immunol. 2014, 112, 519–524. [Google Scholar] [CrossRef]
- Freitas, A.T.; Calhau, C.; Antunes, G.; Araújo, B.; Bandeira, M.; Barreira, S.; Bazenga, F.; Braz, S.; Caldeira, D.; Santos, S.C.R.; et al. Vitamin D-Related Polymorphisms and Vitamin D Levels as Risk Biomarkers of COVID-19 Disease Severity. Sci. Rep. 2021, 11, 20837. [Google Scholar] [CrossRef]
- Flamann, C.; Peter, K.; Kreutz, M.; Bruns, H. Regulation of the Immune Balance During Allogeneic Hematopoietic Stem Cell Transplantation by Vitamin D. Front. Immunol. 2019, 10, 2586. [Google Scholar] [CrossRef]
- Fabri, M.; Stenger, S.; Shin, D.-M.; Yuk, J.-M.; Liu, P.T.; Realegeno, S.; Lee, H.-M.; Krutzik, S.R.; Schenk, M.; Sieling, P.A.; et al. Vitamin D Is Required for IFN-Gamma-Mediated Antimicrobial Activity of Human Macrophages. Sci. Transl. Med. 2011, 3, 104ra102. [Google Scholar] [CrossRef]
- Wang, T.-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. J. Immunol. 2004, 173, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Gombart, A.F.; Borregaard, N.; Koeffler, H.P. Human Cathelicidin Antimicrobial Peptide (CAMP) Gene Is a Direct Target of the Vitamin D Receptor and Is Strongly up-Regulated in Myeloid Cells by 1,25-Dihydroxyvitamin D3. FASEB J. 2005, 19, 1067–1077. [Google Scholar] [CrossRef]
- Martineau, A.R.; Wilkinson, K.A.; Newton, S.M.; Floto, R.A.; Norman, A.W.; Skolimowska, K.; Davidson, R.N.; Sørensen, O.E.; Kampmann, B.; Griffiths, C.J.; et al. IFN-Gamma- and TNF-Independent Vitamin D-Inducible Human Suppression of Mycobacteria: The Role of Cathelicidin LL-37. J. Immunol. 2007, 178, 7190–7198. [Google Scholar] [CrossRef] [PubMed]
- Hesketh, C.C.; Knoll, G.A.; Molnar, A.O.; Tsampalieros, A.; Zimmerman, D.L. Vitamin D and Kidney Transplant Outcomes: A Protocol for a Systematic Review and Meta-Analysis. Syst. Rev. 2014, 3, 64. [Google Scholar] [CrossRef]
- Zeng, S.; Yang, Y.; Li, S.; Hocher, C.F.; Chu, C.; Wang, Z.; Zheng, Z.; Krämer, B.K.; Hocher, B. 25(OH)D-but not 1,25(OH)2D-Is an independent risk factor predicting graft loss in stable kidney transplant recipients. Front. Med. 2023, 10, 1141646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thorsen, I.S.; Bleskestad, I.H.; Åsberg, A.; Hartmann, A.; Skadberg, Ø.; Brede, C.; Ueland, T.; Pasch, A.; Reisaeter, A.V.; Gøransson, L.G. Vitamin D as a risk factor for patient survival after kidney transplantation: A prospective observational cohort study. Clin. Transplant. 2019, 33, e13517. [Google Scholar] [CrossRef] [PubMed]
- Thacher, T.D.; Fischer, P.R.; Singh, R.J.; Roizen, J.; Levine, M.A. CYP2R1 Mutations Impair Generation of 25-Hydroxyvitamin D and Cause an Atypical Form of Vitamin D Deficiency. J. Clin. Endocrinol. Metab. 2015, 100, E1005–E1013. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.B.; Arnold, L.A. Calcitroic Acid-A Review. ACS Chem. Biol. 2016, 11, 2665–2672. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.; Aquilante, C.; Deininger, K.; Lindenfeld, J.; Schlendorf, K.; Van Driest, S.; Liu, M. Composite CYP3A (CYP3A4 and CYP3A5) phenotypes and influences on tacrolimus dose adjusted concentration in adult heart transplant recipients. Res. Sq. 2023; preprint. https://doi.org/10.21203/rs.3.rs-2921796/v1; Update in: Pharmacogenomics J. 2024, 24, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, C.E.; Lu, K.P.; Chang, Z.; Guo, M.L.; Qiao, H.L. Association of CYP3A4*1B genotype with Cyclosporin A pharmacokinetics in renal transplant recipients: A meta-analysis. Gene 2018, 664, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Żochowska, D.; Wyzgał, J.; Pączek, L. Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients. Ann. Transplant. 2012, 17, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Casella, A.; Long, C.; Zhou, J.; Lai, M.; O’Lear, L.; Caplan, I.; Levine, M.A.; Roizen, J.D. Differential Frequency of CYP2R1 Variants Across Populations Reveals Pathway Selection for Vitamin D Homeostasis. J. Clin. Endocrinol. Metab. 2020, 105, 1302–1315. [Google Scholar] [CrossRef]
- Greco, R.; Papalia, T.; Lofaro, D.; Maestripieri, S.; Mancuso, D.; Bonofiglio, R. Decisional Trees in Renal Transplant Follow-Up. Transplant. Proc. 2010, 42, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Briffa, N.K.; Keogh, A.M.; Sambrook, P.N.; Eisman, J.A. Reduction of Immunosuppressant Therapy Requirement in Heart Transplantation by Calcitriol. Transplantation 2003, 75, 2133–2134. [Google Scholar] [CrossRef] [PubMed]
- Burlacu, A.; Iftene, A.; Jugrin, D.; Popa, I.V.; Lupu, P.M.; Vlad, C.; Covic, A. Using Artificial Intelligence Resources in Dialysis and Kidney Transplant Patients: A Literature Review. BioMed Res. Int. 2020, 2020, 9867872. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.D.; Noh, J.; Lee, H.; Kim, D.K.; Lim, C.S.; Kim, Y.H.; Lee, J.P.; Kim, G.; Kim, Y.S. A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study. Sci. Rep. 2017, 7, 8904. [Google Scholar] [CrossRef]
- Tang, J.; Liu, R.; Zhang, Y.-L.; Liu, M.-Z.; Hu, Y.-F.; Shao, M.-J.; Zhu, L.-J.; Xin, H.-W.; Feng, G.-W.; Shang, W.-J.; et al. Corrigendum: Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients. Sci. Rep. 2018, 8, 46936. [Google Scholar] [CrossRef]
- Chandak, P.; Tatonetti, N.P. Using Machine Learning to Identify Adverse Drug Effects Posing Increased Risk to Women. Patterns 2020, 1, 100108. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, P.; Gao, Z.; Wang, R.; Khalighi, K. Ensemble of Machine Learning Algorithms Using the Stacked Generalization Approach to Estimate the Warfarin Dose. PLoS ONE 2018, 13, e0205872. [Google Scholar] [CrossRef]
- Li, X.; Liu, R.; Luo, Z.-Y.; Yan, H.; Huang, W.-H.; Yin, J.-Y.; Mao, X.-Y.; Chen, X.-P.; Liu, Z.-Q.; Zhou, H.-H.; et al. Comparison of the Predictive Abilities of Pharmacogenetics-Based Warfarin Dosing Algorithms Using Seven Mathematical Models in Chinese Patients. Pharmacogenomics 2015, 16, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Cilluffo, G.; Fasola, S.; Ferrante, G.; Malizia, V.; Montalbano, L.; La Grutta, S. Machine Learning: An Overview and Applications in Pharmacogenetics. Genes 2021, 12, 1511. [Google Scholar] [CrossRef]
- Cai, N.; Zhang, X.; Zheng, C.; Zhu, L.; Zhu, M.; Cheng, Z.; Luo, X. A Novel Random Forest Integrative Approach Based on Endogenous CYP3A4 Phenotype for Predicting Tacrolimus Concentrations and Dosages in Chinese Renal Transplant Patients. J. Clin. Pharm. Ther. 2020, 45, 318–323. [Google Scholar] [CrossRef]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common Genetic Determinants of Vitamin D Insufficiency: A Genome-Wide Association Study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-Wide Association Study of Circulating Vitamin D Levels. Hum. Mol. Genet. 2010, 19, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Revez, J.A.; Lin, T.; Qiao, Z.; Xue, A.; Holtz, Y.; Zhu, Z.; Zeng, J.; Wang, H.; Sidorenko, J.; Kemper, K.E.; et al. Genome-Wide Association Study Identifies 143 Loci Associated with 25 Hydroxyvitamin D Concentration. Nat. Commun. 2020, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.-L.; Lau, K.-S.; Sham, P.-C.; Tan, K.C.B.; Kung, A.W.C. Genetic Variant in Vitamin D Binding Protein Is Associated with Serum 25-Hydroxyvitamin D and Vitamin D Insufficiency in Southern Chinese. J. Hum. Genet. 2013, 58, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Muindi, J.R.; Adjei, A.A.; Wu, Z.R.; Olson, I.; Huang, H.; Groman, A.; Tian, L.; Singh, P.K.; Sucheston, L.E.; Johnson, C.S.; et al. Serum Vitamin D Metabolites in Colorectal Cancer Patients Receiving Cholecalciferol Supplementation: Correlation with Polymorphisms in the Vitamin D Genes. Horm. Cancer 2013, 4, 242–250. [Google Scholar] [CrossRef]
- Suaini, N.H.A.; Koplin, J.J.; Ellis, J.A.; Peters, R.L.; Ponsonby, A.-L.; Dharmage, S.C.; Matheson, M.C.; Wake, M.; Panjari, M.; Tan, H.-T.T.; et al. Environmental and Genetic Determinants of Vitamin D Insufficiency in 12-Month-Old Infants. J. Steroid Biochem. Mol. Biol. 2014, 144 Pt B, 445–454. [Google Scholar] [CrossRef]
- Perna, L.; Felix, J.F.; Breitling, L.P.; Haug, U.; Raum, E.; Burwinkel, B.; Schöttker, B.; Brenner, H. Genetic Variations in the Vitamin D Binding Protein and Season-Specific Levels of Vitamin D among Older Adults. Epidemiology 2013, 24, 104–109. [Google Scholar] [CrossRef]
- Dong, J.; Zhou, Q.; Wang, J.; Lu, Y.; Li, J.; Wang, L.; Wang, L.; Meng, P.; Li, F.; Zhou, H.; et al. Association between Variants in Vitamin D-Binding Protein Gene and Vitamin D Deficiency among Pregnant Women in China. J. Clin. Lab. Anal. 2020, 34, e23376. [Google Scholar] [CrossRef]
- Ahn, J.; Albanes, D.; Berndt, S.I.; Peters, U.; Chatterjee, N.; Freedman, N.D.; Abnet, C.C.; Huang, W.-Y.; Kibel, A.S.; Crawford, E.D.; et al. Vitamin D-Related Genes, Serum Vitamin D Concentrations and Prostate Cancer Risk. Carcinogenesis 2009, 30, 769–776. [Google Scholar] [CrossRef]
- Anderson, D.; Holt, B.J.; Pennell, C.E.; Holt, P.G.; Hart, P.H.; Blackwell, J.M. Genome-Wide Association Study of Vitamin D Levels in Children: Replication in the Western Australian Pregnancy Cohort (Raine) Study. Genes. Immun. 2014, 15, 578–583. [Google Scholar] [CrossRef]
- O’Brien, K.M.; Sandler, D.P.; Shi, M.; Harmon, Q.E.; Taylor, J.A.; Weinberg, C.R. Genome-Wide Association Study of Serum 25-Hydroxyvitamin D in US Women. Front. Genet. 2018, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; O’Reilly, P.F.; Aschard, H.; Hsu, Y.-H.; Richards, J.B.; Dupuis, J.; Ingelsson, E.; Karasik, D.; Pilz, S.; Berry, D.; et al. Genome-Wide Association Study in 79,366 European-Ancestry Individuals Informs the Genetic Architecture of 25-Hydroxyvitamin D Levels. Nat. Commun. 2018, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Xue, Z.; Ji, H.; Zhang, D.; Wang, Y. Effects of CYP2R1 Gene Variants on Vitamin D Levels and Status: A Systematic Review and Meta-Analysis. Gene 2018, 678, 361–369. [Google Scholar] [CrossRef]
- Nissen, J.; Vogel, U.; Ravn-Haren, G.; Andersen, E.W.; Madsen, K.H.; Nexø, B.A.; Andersen, R.; Mejborn, H.; Bjerrum, P.J.; Rasmussen, L.B.; et al. Common Variants in CYP2R1 and GC Genes Are Both Determinants of Serum 25-Hydroxyvitamin D Concentrations after UVB Irradiation and after Consumption of Vitamin D₃-Fortified Bread and Milk during Winter in Denmark. Am. J. Clin. Nutr. 2015, 101, 218–227. [Google Scholar] [CrossRef]
- Lafi, Z.M.; Irshaid, Y.M.; El-Khateeb, M.; Ajlouni, K.M.; Hyassat, D. Association of Rs7041 and Rs4588 Polymorphisms of the Vitamin D Binding Protein and the Rs10741657 Polymorphism of CYP2R1 with Vitamin D Status Among Jordanian Patients. Genet. Test. Mol. Biomarkers 2015, 19, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, P.P.; Zhai, G.; Bapat, B.; Savas, S.; Woodrow, J.R.; Campbell, P.T.; Li, Y.; Yang, N.; Zhou, X.; et al. Association of Rs2282679 A>C Polymorphism in Vitamin D Binding Protein Gene with Colorectal Cancer Risk and Survival: Effect Modification by Dietary Vitamin D Intake. BMC Cancer 2018, 18, 155. [Google Scholar] [CrossRef]
- Mondul, A.M.; Weinstein, S.J.; Moy, K.A.; Männistö, S.; Albanes, D. Vitamin D-binding Protein, Circulating Vitamin D and Risk of Renal Cell Carcinoma. Int. J. Cancer 2014, 134, 2699–2706. [Google Scholar] [CrossRef]
- Weinstein, S.J.; Mondul, A.M.; Kopp, W.; Rager, H.; Virtamo, J.; Albanes, D. Circulating 25-hydroxyvitamin D, Vitamin D-binding Protein and Risk of Prostate Cancer. Int. J. Cancer 2013, 132, 2940–2947. [Google Scholar] [CrossRef]
- Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone Disease after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2016, 11, 1282–1296. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Paredez, B.; Hidalgo-Bravo, A.; León-Reyes, G.; Antuna-Puente, B.; Flores, Y.N.; Salmerón, J.; Velázquez-Cruz, R. Association of GC Variants with Bone Mineral Density and Serum VDBP Concentrations in Mexican Population. Genes 2021, 12, 1176. [Google Scholar] [CrossRef] [PubMed]
- Goltzman, D. Functions of Vitamin D in Bone. Histochem. Cell Biol. 2018, 149, 305–312. [Google Scholar] [CrossRef]
- Ngai, M.; Lin, V.; Wong, H.C.; Vathsala, A.; How, P. Vitamin D Status and Its Association with Mineral and Bone Disorder in a Multi-Ethnic Chronic Kidney Disease Population. Clin. Nephrol. 2014, 82, 231–239. [Google Scholar] [CrossRef]
- Ezura, Y.; Nakajima, T.; Kajita, M.; Ishida, R.; Inoue, S.; Yoshida, H.; Suzuki, T.; Shiraki, M.; Hosoi, T.; Orimo, H.; et al. Association of Molecular Variants, Haplotypes, and Linkage Disequilibrium within the Human Vitamin D-Binding Protein (DBP) Gene with Postmenopausal Bone Mineral Density. J. Bone Miner. Res. 2003, 18, 1642–1649. [Google Scholar] [CrossRef]
- Ponticelli, C.; Passerini, P. Gastrointestinal Complications in Renal Transplant Recipients. Transpl. Int. 2005, 18, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Zhang, Z.; Musch, M.W.; Ning, G.; Sun, J.; Hart, J.; Bissonnette, M.; Li, Y.C. Novel Role of the Vitamin D Receptor in Maintaining the Integrity of the Intestinal Mucosal Barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G208–G216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, S.; Lu, R.; Zhou, D.; Zhou, J.; Carmeliet, G.; Petrof, E.; Claud, E.C.; Sun, J. Tight Junction CLDN2 Gene Is a Direct Target of the Vitamin D Receptor. Sci. Rep. 2015, 5, 10642. [Google Scholar] [CrossRef]
- Nalle, S.C.; Turner, J.R. Intestinal Barrier Loss as a Critical Pathogenic Link between Inflammatory Bowel Disease and Graft-versus-Host Disease. Mucosal Immunol. 2015, 8, 720–730. [Google Scholar] [CrossRef]
- Legarth, C.; Grimm, D.; Wehland, M.; Bauer, J.; Krüger, M. The Impact of Vitamin D in the Treatment of Essential Hypertension. Int. J. Mol. Sci. 2018, 19, 455. [Google Scholar] [CrossRef]
- Victor, V.M.; Rocha, M.; Solá, E.; Bañuls, C.; Garcia-Malpartida, K.; Hernández-Mijares, A. Oxidative Stress, Endothelial Dysfunction and Atherosclerosis. Curr. Pharm. Des. 2009, 15, 2988–3002. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Meza, C.A.; Clarke, H.; Kim, J.-S.; Hickner, R.C. Vitamin D and Endothelial Function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Jiang, C.-M.; Sun, C.; Tang, T.-F.; Jin, B.; Cao, D.-W.; He, J.-S.; Zhang, M. Hypovitaminosis D Is Associated with Endothelial Dysfunction in Patients with Non-Dialysis Chronic Kidney Disease. J. Nephrol. 2015, 28, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; de Nigris, F.; Williams-Ignarro, S.; Pignalosa, O.; Sica, V.; Ignarro, L.J. Nitric Oxide and Atherosclerosis: An Update. Nitric Oxide 2006, 15, 265–279. [Google Scholar] [CrossRef]
- Siasos, G.; Tousoulis, D.; Oikonomou, E.; Maniatis, K.; Kioufis, S.; Kokkou, E.; Vavuranakis, M.; Zaromitidou, M.; Kassi, E.; Miliou, A.; et al. Vitamin D3, D2 and Arterial Wall Properties in Coronary Artery Disease. Curr. Pharm. Des. 2014, 20, 5914–5918. [Google Scholar] [CrossRef]
- Campise, M.; Bamonti, F.; Novembrino, C.; Ippolito, S.; Tarantino, A.; Cornelli, U.; Lonati, S.; Cesana, B.M.; Ponticelli, C. Oxidative Stress in Kidney Transplant Patients. Transplantation 2003, 76, 1474–1478. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Lahti, A.; Moilanen, E. Calcineurin Inhibitors, Cyclosporin A and Tacrolimus Inhibit Expression of Inducible Nitric Oxide Synthase in Colon Epithelial and Macrophage Cell Lines. Eur. J. Pharmacol. 2002, 448, 239–244. [Google Scholar] [CrossRef]
- Mangray, M.; Vella, J.P. Hypertension After Kidney Transplant. Am. J. Kidney Dis. 2011, 57, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Quach, K.; Abdelmasih, M.; Chen, P.X.; Li, Y.; Famure, O.; Nash, M.; Prasad, R.; Perkins, B.A.; Yip, P.M.; Kim, S.J. Vitamin D Levels and the Risk of Posttransplant Diabetes Mellitus After Kidney Transplantation. Prog. Transplant. 2021, 31, 133–141. [Google Scholar] [CrossRef]
- Bland, R.; Markovic, D.; Hills, C.E.; Hughes, S.V.; Chan, S.L.F.; Squires, P.E.; Hewison, M. Expression of 25-Hydroxyvitamin D3-1alpha-Hydroxylase in Pancreatic Islets. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 121–125. [Google Scholar] [CrossRef]
- Lindh, J.D.; Andersson, M.L.; Eliasson, E.; Björkhem-Bergman, L. Seasonal Variation in Blood Drug Concentrations and a Potential Relationship to Vitamin D. Drug Metab. Dispos. 2011, 39, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Haussler, M.R.; Whitfield, G.K.; Haussler, C.A.; Hsieh, J.C.; Thompson, P.D.; Selznick, S.H.; Dominguez, C.E.; Jurutka, P.W. The Nuclear Vitamin D Receptor: Biological and Molecular Regulatory Properties Revealed. J. Bone Miner. Res. 1998, 13, 325–349. [Google Scholar] [CrossRef]
- Drocourt, L.; Ourlin, J.-C.; Pascussi, J.-M.; Maurel, P.; Vilarem, M.-J. Expression of CYP3A4, CYP2B6, and CYP2C9 Is Regulated by the Vitamin D Receptor Pathway in Primary Human Hepatocytes. J. Biol. Chem. 2002, 277, 25125–25132. [Google Scholar] [CrossRef]
- Prytuła, A.; Cransberg, K.; Raes, A. CYP3A4 Is a Crosslink between Vitamin D and Calcineurin Inhibitors in Solid Organ Transplant Recipients: Implications for Bone Health. Pharmacogenomics J. 2017, 17, 481–487. [Google Scholar] [CrossRef]
- Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between Vitamin D and the Drug Metabolizing Enzyme CYP3A4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–58. [Google Scholar] [CrossRef]
- Thummel, K.E.; Brimer, C.; Yasuda, K.; Thottassery, J.; Senn, T.; Lin, Y.; Ishizuka, H.; Kharasch, E.; Schuetz, J.; Schuetz, E. Transcriptional Control of Intestinal Cytochrome P-4503A by 1alpha,25-Dihydroxy Vitamin D3. Mol. Pharmacol. 2001, 60, 1399–1406. [Google Scholar] [CrossRef]
- Qin, X.; Wang, X. Role of Vitamin D Receptor in the Regulation of CYP3A Gene Expression. Acta Pharm. Sin. B 2019, 9, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Van Etten, E.; Branisteanu, D.D.; Verstuyf, A.; Waer, M.; Bouillon, R.; Mathieu, C. Analogs of 1,25-Dihydroxyvitamin D3 as Dose-Reducing Agents for Classical Immunosuppressants. Transplantation 2000, 69, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Rigby, W.F.; Denome, S.; Fanger, M.W. Regulation of Lymphokine Production and Human T Lymphocyte Activation by 1,25-Dihydroxyvitamin D3. Specific Inhibition at the Level of Messenger RNA. J. Clin. Investig. 1987, 79, 1659–1664. [Google Scholar] [CrossRef]
- Tokuda, N.; Mizuki, N.; Kasahara, M.; Levy, R.B. 1,25-Dihydroxyvitamin D3 down-Regulation of HLA-DR on Human Peripheral Blood Monocytes. Immunology 1992, 75, 349–354. [Google Scholar]
- Branisteanu, D.D.; Mathieu, C.; Bouillon, R. Synergism between Sirolimus and 1,25-Dihydroxyvitamin D3 in Vitro and in Vivo. J. Neuroimmunol. 1997, 79, 138–147. [Google Scholar] [CrossRef]
- Mathieu, C.; Waer, M.; Laureys, J.; Rutgeerts, O.; Bouillon, R. Activated Form of Vitamin D [1,25(OH)2D3] and Its Analogs Are Dose-Reducing Agents for Cyclosporine in Vitro and in Vivo. Transplant. Proc. 1994, 26, 3048–3049. [Google Scholar]
- Mathieu, C.; Bouillon, R.; Rutgeerts, O.; Vandeputte, M.; Waer, M. Potential Role of 1,25(OH)2 Vitamin D3 as a Dose-Reducing Agent for Cyclosporine and FK 506. Transplant. Proc. 1994, 26, 3130. [Google Scholar]
- Gim, J.-A.; Kwon, Y.; Lee, H.A.; Lee, K.-R.; Kim, S.; Choi, Y.; Kim, Y.K.; Lee, H. A Machine Learning-Based Identification of Genes Affecting the Pharmacokinetics of Tacrolimus Using the DMETTM Plus Platform. Int. J. Mol. Sci. 2020, 21, 2517. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.; Ho, J.; Gibson, I.W.; Rush, D.N.; Nickerson, P.W. Carpe Diem-Time to Transition from Empiric to Precision Medicine in Kidney Transplantation. Am. J. Transplant. 2018, 18, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Kelava, T.; Turcic, P.; Markotic, A.; Ostojic, A.; Sisl, D.; Mrzljak, A. Importance of Genetic Polymorphisms in Liver Transplantation Outcomes. World J. Gastroenterol. 2020, 26, 1273–1285. [Google Scholar] [CrossRef]
- Battaglia, Y.; Cojocaru, E.; Fiorini, F.; Granata, A.; Esposito, P.; Russo, L.; Bortoluzzi, A.; Storari, A.; Russo, D. Vitamin D in kidney transplant recipients. Clin. Nephrol. 2020, 93, 57–64. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean | Median | Minimum | Maximum | Std. Dev. | Conf. SD −95% | Conf. SD +95% | Standard Error |
---|---|---|---|---|---|---|---|---|
WBC | 7.67 | 7.32 | 1.85 | 17.31 | 2.43 | 2.20 | 2.71 | 0.18 |
RBC | 4.23 | 4.21 | 2.86 | 5.53 | 0.59 | 0.53 | 0.65 | 0.04 |
HGB | 12.83 | 12.80 | 8.80 | 17.10 | 1.70 | 1.54 | 1.90 | 0.13 |
HCT | 37.89 | 37.80 | 27.00 | 51.40 | 4.81 | 4.35 | 5.37 | 0.36 |
PLT | 222.11 | 213.00 | 45.00 | 467.00 | 71.46 | 64.69 | 79.82 | 5.39 |
Na | 141.16 | 141.00 | 120.00 | 149.00 | 3.57 | 3.23 | 3.99 | 0.27 |
K | 4.17 | 4.17 | 3.14 | 5.42 | 0.44 | 0.40 | 0.49 | 0.03 |
bilirubin | 0.61 | 0.54 | 0.16 | 1.69 | 0.29 | 0.26 | 0.32 | 0.02 |
BUN | 29.98 | 26.45 | 8.30 | 71.10 | 13.03 | 11.80 | 14.56 | 0.98 |
creatinine | 1.61 | 1.44 | 0.67 | 4.31 | 0.64 | 0.58 | 0.71 | 0.05 |
uric acid | 6.98 | 7.00 | 3.70 | 10.90 | 1.48 | 1.34 | 1.66 | 0.11 |
AlAT | 19.33 | 16.00 | 3.00 | 73.00 | 11.15 | 10.09 | 12.45 | 0.84 |
AspAT | 20.66 | 18.00 | 10.00 | 70.00 | 8.91 | 8.07 | 9.95 | 0.67 |
total CH | 187.81 | 185.00 | 80.00 | 344.00 | 39.06 | 35.32 | 43.71 | 2.99 |
HDL | 62.99 | 60.60 | 27.60 | 118.20 | 20.12 | 17.83 | 23.09 | 1.86 |
LDL | 95.69 | 91.00 | 36.00 | 239.00 | 36.48 | 32.32 | 41.90 | 3.39 |
TG | 142.87 | 127.00 | 48.00 | 404.00 | 66.46 | 58.90 | 76.26 | 6.14 |
lipids total | 639.37 | 622.00 | 430.00 | 1183.00 | 133.75 | 118.53 | 153.49 | 12.37 |
Variable | Mean | Median | Minimum | Maximum | Std. Dev. | Conf. SD −95% | Conf. SD +95% | Standard Error |
---|---|---|---|---|---|---|---|---|
Age [y] | 54.27 | 55.00 | 22.00 | 82.00 | 12.41 | 11.23 | 13.85 | 0.93 |
Weight [kg] | 78.89 | 78.00 | 40.00 | 139.00 | 17.25 | 15.62 | 19.27 | 1.30 |
Heihght [cm] | 169.59 | 169.00 | 150.00 | 193.00 | 9.43 | 8.54 | 10.54 | 0.71 |
BMI [kg/m2] | 27.34 | 26.37 | 17.31 | 42.90 | 5.12 | 4.63 | 5.71 | 0.38 |
Time from KTx [m] | 10.38 | 10.00 | 1.00 | 27.00 | 6.24 | 5.65 | 6.97 | 0.47 |
Dose [mg] | 171.30 | 150.00 | 50.00 | 500.00 | 61.27 | 55.48 | 68.41 | 4.60 |
Concentration [ng/mL] | 116.37 | 113.00 | 2.00 | 315.90 | 48.03 | 43.49 | 53.63 | 3.61 |
Concentration/dose | 0.72 | 0.67 | 0.01 | 1.75 | 0.28 | 0.25 | 0.31 | 0.02 |
Genotype | rs2282679GC CA rs1800896 IL10 AA (Leaf ID 5) | rs1800896 IL10 GG GA rs2032582 MDR2677bGT rs2282679 GC CC CA (Leaf ID 6) | rs602662 FUT2 AA rs2282679 GC (Leaf ID 9) |
---|---|---|---|
rs2282679 GC CA rs1800896 IL10 AA | p = 0.08 | p = 0.54 | |
(Leaf ID 5) rs1800896 IL10 GGGA rs2032582 MDR2677bGT | p = 0.08 | p = 0.006 | |
rs2282679 GC CC or CA (Leaf ID 6) rs602662 FUT2 AA | p = 0.57 | p = 0.006 | |
rs2282679 GC (Leaf ID 9) rs602662 FUT2 GG AG rs1800896 IL10 AA (Leaf ID 10) | p = 0.62 | p = 0.73 | p = 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotowska, K.; Wojciuk, B.; Sieńko, J.; Bogacz, A.; Stukan, I.; Drożdżal, S.; Czerny, B.; Tejchman, K.; Trybek, G.; Machaliński, B.; et al. The Role of Vitamin D Metabolism Genes and Their Genomic Background in Shaping Cyclosporine A Dosage Parameters after Kidney Transplantation. J. Clin. Med. 2024, 13, 4966. https://doi.org/10.3390/jcm13164966
Kotowska K, Wojciuk B, Sieńko J, Bogacz A, Stukan I, Drożdżal S, Czerny B, Tejchman K, Trybek G, Machaliński B, et al. The Role of Vitamin D Metabolism Genes and Their Genomic Background in Shaping Cyclosporine A Dosage Parameters after Kidney Transplantation. Journal of Clinical Medicine. 2024; 13(16):4966. https://doi.org/10.3390/jcm13164966
Chicago/Turabian StyleKotowska, Katarzyna, Bartosz Wojciuk, Jerzy Sieńko, Anna Bogacz, Iga Stukan, Sylwester Drożdżal, Bogusław Czerny, Karol Tejchman, Grzegorz Trybek, Bogusław Machaliński, and et al. 2024. "The Role of Vitamin D Metabolism Genes and Their Genomic Background in Shaping Cyclosporine A Dosage Parameters after Kidney Transplantation" Journal of Clinical Medicine 13, no. 16: 4966. https://doi.org/10.3390/jcm13164966
APA StyleKotowska, K., Wojciuk, B., Sieńko, J., Bogacz, A., Stukan, I., Drożdżal, S., Czerny, B., Tejchman, K., Trybek, G., Machaliński, B., & Kotowski, M. (2024). The Role of Vitamin D Metabolism Genes and Their Genomic Background in Shaping Cyclosporine A Dosage Parameters after Kidney Transplantation. Journal of Clinical Medicine, 13(16), 4966. https://doi.org/10.3390/jcm13164966