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Abstract: Background: Rotator cuff tears are a common and debilitating condition requiring surgical
intervention. Arthroscopic rotator cuff repair is essential for restoring shoulder function and alleviat-
ing pain. Tear classification by size and tendon retraction, along with the grade for fatty infiltration,
influence postoperative outcomes, with large tears and higher fatty infiltration grades linked to higher
retear rates. Managing complex tears is challenging, with failure rates ranging from 20 to 94%. Patch
augmentation has emerged as a promising strategy, using biological or synthetic materials to reinforce
tendon repairs, enhancing structural integrity and reducing retear risk. Methods: A review of the
recent literature from January 2018 to March 2024 was conducted using PubMed/MEDLINE, Embase,
and Web of Science. Keywords included “rotator cuff tear”, “rotator cuff augmentation”, “rotator
cuff patch”, “tendon augmentation”, “massive rotator cuff tear”, “patch augmentation”, and “grafts”.
Relevant articles were selected based on their abstracts for a comprehensive review. Results: Initial
methods used autograft tissues, but advances in biomaterials have led to standardized, biocompatible
synthetic patches. Studies show reduced retear rates with patch augmentation, ranging from 17 to
45%. Conclusions: Patch augmentation reduces the retear rates and improves tendon repair, but
complications like immune responses and infections persist. Cost-effectiveness analyses indicate that
while initial costs are higher, long-term savings from reduced rehabilitation, revision surgeries, and
increased productivity can make patch augmentation economically beneficial.

Keywords: shoulder; rotator cuff repair; rotator cuff patch; review of literature

1. Introduction
1.1. Rotator Cuff Tears

Rotator cuff tears represent a common and debilitating musculoskeletal condition
characterized by the disruption of the tendons surrounding the shoulder joint and are
strongly variable in size. Arthroscopic rotator cuff repair is a key surgical treatment option
for rotator cuff tears, allowing patients to have improved shoulder function and reduced
pain with minimally invasive techniques [1].

Rotator cuff tears can be classified according to the tear size into small (<1 cm), medium
(1–3 cm), large (3–5 cm), and massive (>5 cm) tears, according to DeOrio and Cofield [2].

Retraction of the tendon can be classified according to Patte. Together with the tendon
repair quality, retraction type Patte 3 is associated with a higher chance of postoperative
retear [3]. One other important aspect of assessing the success of rotator cuff surgery is the
classification of Goutallier. This classification system, developed in the 1980s, categorizes
the severity of fatty infiltration within the rotator cuff muscles in 5 grades, from normal to
grade 4, meaning more fat than muscle. A grade 3 or 4 is associated with increased failure
of repair with rates of 76% and 100%, respectively [4]. In traumatic supraspinatus tendon
tears, there is a strong positive correlation between the time of injury, fatty infiltration and
the level of retraction, as described by Ilyas et al. [5]
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The management of these complex tears, compromised tissue quality, and challenges
associated with tendon healing present an ongoing challenge with failure of structural
healing rates for large to massive tears of 20–94% [3,6–8].

In recent years, the concept of patch augmentation has emerged as a promising
adjunctive strategy to address these challenges and optimize outcomes in arthroscopic
rotator cuff surgery [9,10]. It involves the application of biological or synthetic materials
to reinforce the native tendon repair, augment tissue regeneration, and enhance biome-
chanical strength. By hoping to provide structural support and promote healing at the
repair site, patch augmentation holds the potential to improve the integrity and durabil-
ity of rotator cuff repairs, thereby reducing the risk of retears and enhancing functional
recovery [11].

In cases of irreparable posterosuperior massive rotator cuff tears, a patch-based ap-
proach known as superior capsule reconstruction is also employed. This technique involves
securing a patch between the upper glenoid rim and the greater tuberosity. Its goal is to
mitigate humeral head subluxation, thus restoring joint stability, but this technique is out
of the scope of this review [12].

The earliest reports of applications of patch augmentation of the rotator cuff date back
to the late 1980s, with increased interest from the early 2000s onwards. Multiple techniques,
open or arthroscopic, and different kinds of patches have arisen since [13,14].

Advancements in biomaterials science and tissue engineering soon led to the develop-
ment of synthetic patches specifically designed for the purpose of rotator cuff augmentation.
These patches should offer advantages such as standardized dimensions, biocompatibil-
ity, and the absence of donor site morbidity, thus revolutionizing the field of rotator cuff
surgery. Retear rates with patch augmentations are reduced and are currently described
from 17–45% [15–17].

1.2. Augmentation vs. Interposition

Patch augmentation and interposition are two surgical techniques used in the man-
agement of rotator cuff tears, each with its own distinct approach and purpose. Patch
augmentation involves using a graft or a patch to reinforce and augment the repair of a torn
rotator cuff tendon. The patch is typically fixed on top of the repaired tendon with sutures
or anchors to provide additional strength and support to the healing tissue. The primary
goal of patch augmentation is to enhance the structural integrity of the repair and improve
the chances of successful healing, particularly in cases of large tears. Patch augmentation is
indicated in patients displaying additional risk factors that could potentially lead to failure
after a non-augmented rotator cuff repair, including advanced age, considerable retraction,
muscular atrophy and fatty infiltration, and reduced bone mineral density. Symptomatic
primary or revision rotator cuffs can tear, especially after a persistent shoulder pain situa-
tion and functional deficits after conservative treatment. Common patch materials include
synthetic grafts, allografts, or xenografts [18].

Unlike patch augmentation, where the patch is placed on top of the tendon, interposi-
tion involves inserting the graft or spacer into the space between the tendon and the bone.
The primary purpose of interposition is to provide a barrier, reducing friction and pressure
on the healing tissue. Interposition can be particularly beneficial in cases where there is
significant tendon retraction or when the torn tendon cannot be directly repaired to the
bone, so as large tears or irreparable cuff tears. Common interposition materials include
autografts, allografts, or synthetic spacers [18].

2. Materials and Methods

Relevant articles focusing on rotator cuff augmentation were extracted by all the
authors by using a thorough database (PubMed/MEDLINE, Embase and Web of Science)
using the PRISMA guidelines for identifying and evaluating relevant studies (Figure 1).
The search conducted from March to June 2024 employed a combination of the following
keywords: “rotator cuff tear” and/ or “rotator cuff augmentation” and/ or “rotator cuff
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patch” and/ or “tendon augmentation” and/ or “irreparable rotator cuff tear” and/ or
“patch augmentation” and/ or “grafts” and hereby focusing on articles of the last 5 years
(January 2018–March 2024). A total of 3842 articles were retrieved. Two independent
researchers, G.D. and M.R., assessed the eligibility of each article by thoroughly reviewing
their abstracts (see Table 1). If there was any disagreement, the third researcher, C.R., was
brought in to achieve consensus. Before abstract screening, articles were removed due to
duplicates or not relevant to rotator cuff repair. In total, 875 abstracts were screened, and
817 articles were excluded due to missing information about rotator cuff augmentation,
single surgeon technique propositions or techniques other than patch augmentation. In
total, 58 articles were assessed for eligibility. Hereby, another 21 were excluded due
to insufficient data or too small sample size. In total, 39 are included, from which a
comprehensive review is provided.
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Table 1. Summary of inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Randomized controlled trials (RCTs), cohort
studies, case-control studies, case series, and
systematic reviews/meta-analyses

Animal studies, in vitro studies

Patients diagnosed with rotator cuff tears who
underwent surgical repair

Studies missing information about rotator cuff
augmentation or techniques other than patch
augmentation

Studies that assess outcomes such as graft
incorporation, mechanical integrity,
postoperative pain, range of motion, muscle
strength, and retear rates

Studies that do not report on clinical or
mechanical outcomes relevant to graft
performance

Studies examining graft-related complications
like infections, tissue rejection, and adverse
events

Studies involving patients with comorbidities
that significantly affect rotator cuff healing

3. Results
3.1. Different Graft Types
3.1.1. Xenografts

Xenografts from animal tissue are widely explored and used in treating skin loss
as substitutes and are mostly of porcine or bovine origin. Initially, for rotator cuff treat-
ment, the studies were with dermal grafts [19,20] and showed fast incorporation and
conversion, but rejections were reported [21]. This is mainly due to residual foreign
DNA or galactose-alfa-1,3-galactose, more specifically in porcine-derived products. How-
ever, there was a wide variability between different scaffolds in containing original DNA
remnants as some contained. These studies suggest only a limited mechanical role in
augmentation [22–24]. In 2017, a level IV case study was published by Neumann et al.,
in which they evaluated clinical and morphological outcomes of a porcine dermal matrix
xenograft Conexa (Tornier, Edina, MN, USA) used for interposition in arthroscopic rotator
cuff repair in 61 patients. At an average follow-up duration of 50.3 months, the findings un-
veiled significant improvements in pain relief, range of motion, and muscle strength among
the patients. Moreover, postoperative ultrasound assessments indicated a remarkable 91.8%
preservation of repair integrity at the final follow-up. Furthermore, no infections, signs
of inflammatory response, tissue rejection, or significant adverse events were observed
among any participants in this study [25]. Flury et al. examined porcine xenografts in cuff
repair, finding that after 24 months, recurrent SSP tendon defects occurred in four control
group patients (n = 20) and nine patch group patients (n = 20). However, the difference was
not statistically significant. Most defects (85%) were medial cuff failures, predominantly
in the patch group. Pain decreased similarly in both groups post-surgery. No significant
group differences are observed in other outcomes, and recurrent defects did not notably
affect function. Local complications, including recurrent defects, were comparable between
groups. The study also noted significant tissue inflammation in 12 of 20 patients after
porcine xenograft use [15].

3.1.2. Allograft and Autograft

Human allograft patches originate from dermal tissue or fascia lata. Compared to
xenografts, human skin has higher loads-to-failure compared with porcine and bovine skin
and this is to small intestine mucosa (see Figure 2) [16]. The grafts do differ in failure modes
in which each graft had a specific tendency of failure. Although all scaffolds failed through
suture pullout, there were three clear patterns. First of all, a pullout through the isthmus is
described in which the sutures pull through the stitch interval. Secondly, there can be a side
pullout, where they pull out of both sides of the graft, and thirdly, when the sutures are
pulled directly through the graft, it is described as an end pullout. Barber et al. described
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only one graft breakage [26]. Despite the fact that in vitro studies are promising, in vivo
performance can still be poor. Pullout strength of the implants is important to guarantee
immediate mechanical benefit. Decellularized human skin, while displaying comparable
mechanical failure load and strength to cellularized skin, showcases a significantly higher
stiffness in its matrix [24]. This distinguishes it from natural tendons, which have a stiffness
of approximately three orders of magnitude greater. Consequently, the limited mechanical
role of decellularized skin in tendon augmentation suggests a similarity to xenografts [27].
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Kim et al. highlighted the use of the ADM patch (Bellacell; HansBiomed, Seoul,
Republic of Korea) as augmentation in incomplete rotator cuff repair using a “hybrid
technique”, where the anterior border of the greater tubercle of the humerus remains
exposed due to bad tissue quality. By utilizing patch augmentation to cover the incomplete
repair and increasing the thickness of the repaired tendon, the incidence of retear was lower
compared with the group undergoing rotator cuff repair alone, considering the procedure’s
increased complexity and time requirements [10]. Subsequent a prospective randomized
multicenter study also showed a significantly higher retear rate in the control group (n = 22)
other than the patients treated with dermal allograft augmentation (n = 20) after rotator
cuff repair measured with magnetic resonance imaging at a mean follow-up of 2 years,
with no graft-related adverse events [28].

Mori et al. demonstrated in a case series involving 45 patients with massive postero-
superior rotator cuff tears and varying degrees of fatty degeneration in the infraspinatus
and supraspinatus muscles that the arthroscopic patch interposition procedure using a
fascia lata autograft significantly improved ASES and Constant scores at the final follow-up.
However, patients with preoperative high-grade fatty degeneration of the infraspinatus and
supraspinatus did not achieve favorable results compared with other treatment options [29].

A readily available autograft is the long head of the biceps tendon (LHBT). If no
previous biceps surgery has been performed, the proximal part can be used as a graft. This
comes without the increased initial cost compared with the commercially available grafts
and without any donor site morbidity. Ideally, the non-tendinopathic (most distal) part is
used, and the rounded tendon is cut in length to the appropriate size and then flattened
out into a rectangular structure by a press (see Figures 3 and 4). The final graft size is to
be expected at +/−25 mm × 15 mm [30] (see Figure 5). If performing a suprapectoral
biceps tenodesis, the harvested portion length might be too little, although Hohmann
proposed to mesh it like a split thickness autograft. This can enlarge the graft and make
it more porous [31]. Colbath et al. showed that this graft is biologically active, meaning
that tenocytes in this graft produce adequate signals to differentiate adipose-derived
mesenchymal stem cells into immature tenocytes [32].
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Very few comparative studies between the LHBT graft and commercially available
grafts exist. In a retrospective study of Sung with 32 patients with irreparable cuff tears, a
graft was used for bridging. A total of 24 patients received the LHBT graft, whilst 8 received
an allogenic dermal allograft. Healing failures at 1 year postoperatively were 54.2% and
75% in the LHBT group and the allograft group, respectively, but not significantly different
(p = 0.4) [33]. Park et al. retrospectively reviewed 77 patients with incomplete repair of large
or massive rotator cuff tears where 30 of them received a LHBT augmentation. They found
no significant difference in retear rates or clinical outcomes [34]. As a bridging structure for
irreparable cuffs, this does not seem to work. As an augmentation, theoretical evidence can
support this graft, although comparisons with commercially available augmentations are
rare to none.
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3.1.3. Synthetic Polymers

Innovative manufacturing methods have facilitated the replication of desired tissue
characteristics by crafting complex nano-scaffolds and biologically enhanced grafts. Differ-
ent materials (such as polypropylene, carbon, PTFE, and silicon) and polymers (such as
nylon) have been used [11,35,36]. However, studies showed various results with synthetic
grafts. In 2018, a retrospective study was published that evaluated the long-term clinical
outcomes of a synthetic polyester graft Dacron (DuPont, Wilmington, DE, USA) used for
interposition with screw fixation in arthroscopic rotator cuff repair. The study found that
the clinical and radiological outcomes at almost 20-year follow-ups were poor, indicating
that such grafts were unable to prevent further cuff tear arthropathy or maintain cuff
integrity in the long term. Additionally, the mean Constant-Murley (CM) score after at least
17 years was 46, doubting the long-term effectiveness of synthetic interposition grafts [37].

A newer prospective cohort study conducted by Smolen et al. in 2019 demonstrated
favorable clinical outcomes after rotator cuff reconstructions augmented with a synthetic
polyester patch (Pitch-Patch, Xiros Inc., Mansfield, MA, USA), revealing a substantial
improvement in Constant-Murley scores and subjective shoulder value at follow-up. All
50 participants underwent arthroscopic rotator cuff reconstruction, with pre- and post-
operative assessments of tendon integrity using magnetic resonance imaging (MRI) and
computed tomography (CT), supplemented by ultrasound examination. Furthermore,
a retear rate of 14% was reported in a mean follow-up of 8 months. The study groups
highlighted a significant correlation between retear rates and preoperative retraction grade 3
to Patte [38]. However, there was no correlation observed with fatty infiltration.

Mechanical properties: When it comes to suture pull-through, synthetic patches like
SportMesh (Biomet, Warsaw, IN, USA) exhibit significantly higher stiffness and stability
compared with allografts, autografts, and xenografts (approximately 500 J/cm3 vs. 150 J/cm3).
On the other hand, synthetic mesh demonstrates a significantly lower tensile (Young’s)
modulus (approximately 14 MPa at 2–5% strain) compared with xenografts as ZCR (Zimmer,
Warsaw, IN, USA) (approximately 68 MPa at 29–37% strain) and allografts as Graft Jacket
(Wright Medical, Memphis, TN, USA) (approximately 48 MPa at 27–36% strain). The
extracellular matrices derived from small intestine submucosa (ZCR) had higher moduli
than the dermis-derived extracellular matrices (Graft Jacket). However, at strains of 2%
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relevant to physiological conditions, SportMesh and Graft Jacket exhibited significantly
higher moduli compared with ZCR (7 MPa vs. 13 MPa and 19 MPa) [36].

3.1.4. The Future of Patch Augmentation

An important downside of patch implantation and its rotator cuff augmentation is
the fixation of the patch itself to the repaired tendon. Currently, patches are fixed with
6–10 fixation points using either special devices adapted from meniscal repair systems or
bypassing sutures through the tendon and graft, respectively. An advancement is currently
being developed; as can be seen in Figures 6 and 7, as a main function, a needle is passed
through a synthetic patch and consecutively through the tendon like a sewing machine. In
this way, the patch is indented into the tendon with hundreds of fixation points into the
tendon, significantly increasing the force-to-failure at the patch–tendon interface (154 N
versus 221 N) [39]. In an ovine model, functional tissue ingrowth without excessive tissue
reaction was shown. These results are very encouraging. However, it remains to support
these findings in human studies.
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Figure 7. The FiberLocker Instrument, a surgical micro-stitching device, is meticulously designed for
precisely securing the FiberLocker Implant within soft tissue. Courtesy of ZuriMED Technologies AG
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3.1.5. Nylon Patches

Currently, there is a lack of literature regarding the use of “nylon” patches, specifically
Polyamide 6.6, in medical applications. Despite the widespread use of nylon in various
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industries, including textiles and engineering, its application in medical patches appears to
be underexplored.

3.1.6. Bioresorbable Scaffolds

Thon et al. conducted a recent study in twenty-three patients with large or massive full-
thickness tears with a bio-inductive collagen patch applied on the bursal side during rotator
cuff combined with a complete rotator cuff repair, noting its safety and demonstrating
implant-induced tissue formation observed on MRI and ultrasound scans after 2 years with
an imaging confirmed tendon healing rate of 96% but a 9% clinical failure [17].

Burkhard et al. also examined a bioabsorbable poly-4-hydroxybutyrate patch (Biofiber;
Wright Medical, Memphis, TN, USA), finding that almost all repairs (14 out of 16) from
October 2014 to January 2019 remained intact during the 1-year follow-up period after
large posterosuperior rotator cuff tears (supraspinatus and/or infraspinatus), as evidenced
by preoperative and postoperative MRI scans [40].

As shown in the prospective case study conducted by Chen et al. in 2021, involving
18 patients treated with either mini-open or arthroscopic surgical RC repair with the bio-
active collagen scaffold (BCS), patients reported encouraging improvements in functional
outcomes (ASES, OSS, and Constant-Murley scores), as well as quality of life assessments
(AQoLs) and a reduction in VAS pain scores. MRI assessment at 12 months revealed
complete healing in 64.8% of patients (11/17), three partial-thickness retears (17.6%), and
three full-thickness retears (17.6%) [41].

In a subsequent randomized controlled study by Cai et al., 54 patients underwent rota-
tor cuff repair with the suture-bridge technique and augmentation with 3D type I collagen
patches (Zhejiang Xingyue Biotechnology, Hangzhou, China) to promote tendon-to-bone
integration, whereas the control group was treated with the suture-bridge technique alone.
Besides achieving significantly better clinical results measured with the Constant score, the
results showed a retear rate of 13.7% in the study group compared with 34% in the control
group, significantly reducing the retear rate. Tendon–bone integration was confirmed
by biopsy specimens taken from the tendon–bone interface at 24 months postoperatively.
Additionally, no adverse events were observed [42]. An important consideration in in-
terpreting the findings of these studies is the limitations associated with small patient
sample sizes.

3.2. PASTA Lesions

Indications and repair techniques for partial articular supraspinatus tendon avulsion
(PASTA) have not yet reached a full consensus. The most widely used is the Ellman classifi-
cation, with grade 1 as <33% of the tendon affected, grade 2 as 33–50% affected, and grade
3 as >50% affected [43]. A tear with >50% of the tendon thickness involved and resistant to
conservative therapy can be eligible for repair, whilst tendons < 50% are nowadays mostly
debrided. However, there is literature on suture repair for grade 2 lesions [44]. Different
techniques exist for suturing, mostly a variation of a transtendinous suture or takedown
and repair, all of them with advantages and complications [45,46]. One complication of
these suture techniques is postoperative stiffness, as this is the most common complica-
tion after rotator cuff repair [47]. An alternative treatment proposed by Bushnell et al.
is to augment the SSP with a patch by which the tension on the tendon is reduced, and
the lesion can heal whilst incorporating the augmentation. In a prospective multicenter
registry study of 272 patients with a mean age of 52.1 years, the tear size was assessed
pre-operatively vs. post-operatively. Of the 272 tears, 49 were grade 1, 101 were grade 2,
and 122 were grade 3 tears. A total of 241 patients were treated with isolated patch
augmentation, whilst 31 had a takedown and repair + augmentation. Scores as ASES,
SANE, WORC, VR-12 MCS, and PCS were measured for clinical relevance. Concomitant
procedures included acromioplasty (94.9%), AC joint resection (46.3%), biceps tenodesis
(41.9%), tenotomy (8.5%), labral repair (5.5%), capsular release (13.6%), and debridement
not specified (59.9%). Patients with tears grade 2 or 3 with isolated augmentation had better
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scores at 2 and 6 weeks than those with takedown, repair, and augmentation. At 3 months,
only the SANE and VR12 PCS differed, favoring the augmentation group, as at 1 year,
no differences were found. A total of 11 revisions occurred, mostly for shoulder stiffness
(five patients), but significant bursitis (three patients) of a dislodged graft (one patient) was
reported [48]. The high number of concomitant interventions can influence the outcomes.
Because there was no control group with repair alone, it is hard to draw conclusions from
this technique, although we can confirm that it can be a possible valuable technique for
treating these lesions. The data are still limited, and no RCT or meta-analysis exists on this
topic, so a sensible amount of precaution is still required by using patch augmentations for
this indication.

3.3. Biological Enhancement of Rotator Cuff Repairs
3.3.1. Mesenchymal Stem Cells (MSCs)

Various methods were researched to improve the healing of tendons. MSCs are known
to enhance tendon healing by speeding up matrix synthesis and adjusting the immune
response [49]. Research has demonstrated that incorporating MSCs into surgical procedures
can lower the rate of retears. In an article from Jiang et al., 3D-printed multilayer scaffolds
with human adipose-derived MSCs (hADMSCs) embedded in a collagen-fibrin hydrogel
showed promising results regarding mechanical as well as bioactivity [50].

3.3.2. Platelet-Rich Plasma (PRP)

PRP contains various growth factors such as PDGF, TGF-B, FGF, IGF-1, IGF-2, IL-8,
etc. Different forms are described, varying in the number of leukocytes and platelets, as
well as the fibrin network [51]. Research indicates that platelet-rich therapies can positively
influence tendon repair. Nonetheless, clinical evidence is mixed regarding whether this
leads to enhanced tendon healing and better functional outcomes. A meta-analysis study
conducted by Murley et al. proved that administering PRP during surgery significantly
improved healing rates for small to medium and medium to large full-thickness tears [52].

3.3.3. Vitamin D

Recent interest has focused on identifying factors that determine the success of rotator
cuff repairs, with vitamin D levels emerging as a significant factor due to their link to bone
and muscle proliferation and healing. Mechanisms by which vitamin D, particularly its
activated form 1,25-dihydroxy-vitamin D, also known as calcitriol, influences osteoblast
proliferation, bone mineral density, and skeletal muscle strength, all crucial for tendon-to-
bone healing is discussed by Dougherty et al. [53] Despite limited studies, the promising
role of vitamin D in tendon health suggests it could be beneficial in patch augmentation for
rotator cuff injuries.

3.4. Complications

By implanting grafts, complications of this act arise. An increased immunological
response, seen as graft rejection, was described by Adams et al. [19], but in recent studies,
this complication does not arise anymore. Biological scaffolds such as Graft Jacket (Wright
Medical Technology) patches are marketed as an acellular material, but researchers have
detected DNA remnants on some of the commercially available grafts, possibly provoking
inflammation reactions in rare cases. It is possible that due to processing methods remaining
cell products are altered and no longer stimulate adverse events in host tissue or that the
threshold values necessary for immunological reactions are not reached on this day [22].

Implanting foreign material comes with an increased risk of deep infection. Albers
et al. described, in their study of 44 patients with a mean follow-up of 4.3 years with an
open repair and augmented with a tissue-enhanced autologous rotator cuff repair [TEAR]
patch, a deep infection rate of 7%, which is substantially higher than the reported infection
rates of rotator cuff repair at 0.03–3.4%. In this same study, a failure of the patch was
described in 11% of cases [54]. No other studies mention these complications. The graft
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integrity and incorporation were strongly correlated with the acromiohumeral distance;
however, no correlation could be found with ROMs, PROMs, or patient satisfaction [55].

Non-degradable materials pose potential long-term risks due to foreign body reactions,
which can hinder the final incorporation of tendons. This stands in contrast to degradable
materials, for which no study has demonstrated any negative impact on tendon healing
from remnants of degradation products [56,57].

Postoperative stiffness following partial tear repair is a widely recognized issue.
Yeazell et al. conducted a study revealing significantly elevated stiffness rates within
the bovine collagen patch group (Regeneten; Smith & Nephew, Memphis, TN, USA), with
8 out of 32 patients affected, compared with only 1 out of 32 in the control group. Addi-
tionally, 18% of patients in the patch group required reoperation to manage postoperative
stiffness [58].

3.5. Cost Effectiveness

The economic burden of failed rotator cuff surgery is estimated at USD 200 million/year
in the United States. The increase in cost of the implant and longer surgical times needs
to be compared to the long-term benefits in principally reducing cost for rehabilitation,
cuff revision, or arthroplasty surgery but also, and more difficult to estimate, the gain in
productivity, i.e., return to work although this is a very difficult calculation which is also
country dependent. Recent studies show a logical perioperative increase in costs by the use
of implants, which, in most countries, is paid by government instances or medical insurance
companies [59,60]. The estimated incremental cost-effectiveness ratio (ICER) (i.e., the
additional cost to achieve one additional healed tendon for cuff augmentation vs. traditional
repair for cuff augmentation) in the current literature is estimated at USD 3,061 and EUR
17,857 as calculated by McIntyre et al. in a US model and Rognoni et al. in an Italian model,
respectively [61,62]. In the postoperative period, however, results show a decrease in costs
for cuff augment surgery, which benefits society, mostly by reducing retear rates and thus
revision cuff or arthroplasty surgery but also, for example, reducing work. The advantage
increases as the tear enlarges or as the tissue quality reduces. Rognoni et al. suggest that the
final social benefit is around EUR 5000 per healed tear [61]. Caution is required in analyzing
these data as augmentations would reduce tear rates by 17.80%. Every company-specific
product should be investigated independently; medical insurance or reimbursements are
country-specific, and there is no consensus yet about the data on rotator cuff repair, let
alone the data on augmentation.

4. Conclusions

The large heterogenicity in etiology, processing, mechanical aspects, and the potential
to induce a biological stimulus of the rotator cuff augmentation products make it a difficult
task to compare these entities and caution is required when analyzing data and drawing
conclusions. It can be stated that for reinforcing a fully sutured large to massive rotator
cuff, there can be an added value of reducing retear rates and increasing the thickness of
the tendon, but when utilizing it as an interposition graft in partial repairs, the results are
promising but still show high failure rates. The patch augmentation shows even promising
results in treating PASTA lesions by only augmenting them. The additional complications,
in general, seem to be limited, making it a safe procedure. Cost-effectiveness analyses
indicate that while initial costs are higher, long-term savings from reduced rehabilitation,
revision surgeries, and increased productivity can make patch augmentation economically
beneficial. Large randomized control trials are still required in this field with special
attention to tear size, repair pattern, and, last but not least, the patch specifics [63].
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