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Abstract: Large Language Models (LLMs have the potential to revolutionize clinical medicine by
enhancing healthcare access, diagnosis, surgical planning, and education. However, their utilization
requires careful, prompt engineering to mitigate challenges like hallucinations and biases. Proper
utilization of LLMs involves understanding foundational concepts such as tokenization, embeddings,
and attention mechanisms, alongside strategic prompting techniques to ensure accurate outputs.
For innovative healthcare solutions, it is essential to maintain ongoing collaboration between AI
technology and medical professionals. Ethical considerations, including data security and bias
mitigation, are critical to their application. By leveraging LLMs as supplementary resources in
research and education, we can enhance learning and support knowledge-based inquiries, ultimately
advancing the quality and accessibility of medical care. Continued research and development are
necessary to fully realize the potential of LLMs in transforming healthcare.

Keywords: large language models (LLM); artificial intelligence (AI); prompt engineering; clinical
decision support; medical innovation; healthcare technology

1. Introduction

Large language models (LLMs) are advanced natural language processing (NLP)
models that analyze textual inputs to generate contextually relevant outputs. LLMs are
trained on massive amounts of data from the internet using deep learning methods and
can respond conversationally to an input from the user. Under the larger umbrella term
of artificial intelligence (AI), LLMs are considered Generative AI, which is a category
that describes data-generating AI, such as those which generate text, video, or audio [1].
Common examples of popular language models include GPT-3.5 and GPT-4, Jurassic,
Dall-E, BERT, LLaMa, Gemini, and LaMDA [2].

LLMs are an enticing tool in the field of medicine due to the capability they possess to
facilitate access to healthcare, diagnosis, and potential treatment options. Other applica-
tions include enhanced surgical planning, medical imaging accuracy, and physician–patient
communication [3]. LLMs also provide researchers the ability to summarize and analyze
vast amounts of articles in an expedited manner and filter large amounts of data [4]. How-
ever, if not provided an input that has a narrow range of response, LLMs can hallucinate,
producing an output that is entirely fabricated and not grounded in existing knowledge [5].
Hallucinations are one of the many challenges that are encountered when utilizing LLMs
in the healthcare field. Other challenges include LLMs having a perception and unfair
bias towards certain populations, or misapplying valid knowledge to clinical situations [6].
Proper prompting techniques can mitigate these challenges by guiding LLMs to gener-
ate outputs closely aligned with relevant data and established knowledge, reducing the
likelihood of hallucinations. By crafting prompts that explicitly account for diversity and
specificity, biases can be minimized, and the risk of misapplying knowledge in clinical
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contexts can be significantly lowered [5]. Thus, strategic prompt engineering emerges as a
crucial factor in enhancing the accuracy and fairness of LLM applications in healthcare.

A comprehensive overview will be provided regarding the correct utilization of LLMs
with relevant examples through the detailing of proper prompting techniques. By doing so,
we hope to educate clinicians about the proper use of this technology.

2. Background

Certain foundational technical concepts form the bedrock upon which LLMs’ remark-
able linguistic and cognitive abilities are built. Knowledge of these concepts is required
to better navigate the capabilities and limitations of the models [7]. This understanding
is essential for harnessing the power of LLMs to support and advance research, clinical
practice, patient education and beyond.

2.1. Tokenization

At the core of LLMs lies the process of tokenization, a mechanism that translates
complex human language into a format that machines can understand and process. This
procedure involves breaking down input text into smaller units, also called tokens, which
represent the atomic elements of language understood by LLMs. For instance, a compound
term like “notebook” might be segmented into “note” and “book,” demonstrating how
the model parses compound words into constituent tokens. Each sentence, therefore, is
understood by the model as a sequence of such tokens, ranging from individual words
to punctuation marks. This granular breakdown into tokens allows LLMs to analyze
and interpret the semantic nuances present within a text, facilitating a comprehensive
understanding of the sentence as a whole [8].

In the operation of LLMs, a critical operational parameter is the token limit, which
refers to the maximum number of tokens the model can process in a single input, or
in simpler terms, the maximum text length for processing. This limit is inherent to the
architecture and design of the model, influencing both its computational efficiency and
its ability to understand and generate text. When a prompt exceeds this limit, it must be
truncated or summarized before being fed into the model [9]. This constraint necessitates
strategic consideration in the formulation of inputs, particularly in domains requiring the
analysis of lengthy documents or comprehensive data, such as medical literature. The
token limit impacts the model’s utility by requiring users to distill complex information
into concise inputs, potentially affecting the depth of context or nuance the model can
consider [10]. In practical applications, this means that while LLMs excel at processing and
generating text within their token constraints, users must often employ summarization
or selective focusing techniques to align with these limitations, ensuring that critical
information is prioritized for analysis or task generation. Current token limits include 4096
tokens for GPT-3.5, while the paid version, GPT-4, has a token limit of 128,000 tokens [11].
As this technology advances, there will likely be increases in token limits and fewer
constraints in text length for processing.

2.2. Semantic Understanding through Embeddings

LLMs transform tokens into high dimensional vectors through a process known as
embedding. These vectors, or embeddings, encapsulate the semantic meanings of words as
well as their positional information within sentences. A significant aspect of this embedding
process is that vectors representing tokens with similar semantic information are positioned
closely in the vector space, reflecting their conceptual similarity. This spatial arrangement
facilitates the model’s ability to recognize and apply the nuanced relationships between
words, enhancing its understanding of language patterns and context [12].

For example, within the domain of orthopedics, the terms “osteoporosis” and “osteope-
nia” refer to conditions characterized by bone density loss, albeit to different extents [13]. In
the vector space, their embeddings would be positioned closely, reflecting their relatedness
in the context of bone health disorders. This proximity enables the LLM to understand



J. Clin. Med. 2024, 13, 5101 3 of 12

their semantic similarity and apply this knowledge in generating contextually relevant
responses. Conversely, the term “osteoporosis” and a conceptually different term such as
“myocardial infarction”, would have embeddings positioned further apart in the vector
space [14]. Despite both being medical conditions, their embeddings reflect the significant
difference in their semantic fields—bone health versus cardiac health. This distinction
in the vector space allows the LLM to discern and process the vastly different contexts
in which these terms are used, guiding the generation of accurate and context-specific
outputs. This embedding mechanism underscores the LLM’s capacity to grasp and apply
complex semantic relationships within specific domains such as medicine, enabling it to
contribute effectively to tasks that require a deep understanding of specialized terminology
and concepts [12].

2.3. Contextual Understanding through Attention

At the heart of modern LLMs, including the Generative Pre-trained Transformer (GPT)
series, lies the transformer architecture. Transformers are a type of neural network that
possess natural language processing, computer vision, and multi-model processing. These
models are now the standard framework for constructing learning systems independent
from recurrent neural networks and rigid architectures in language processing. This model
architecture marks a departure from previous models that processed text sequentially.
Instead, it analyzes sequences of tokens in parallel, significantly enhancing the model’s
efficiency and its ability to grasp the nuances of context. The parallel processing capability
allows for a more nuanced understanding of language, facilitating complex comprehension
and generation tasks with unprecedented speed and accuracy [15].

A key facet of the transformer model is the encoder–decoder architecture, which
consists of the encoder and decoder. The encoder is responsible for analyzing the input
data, while the decoder delivers the output to the user, utilizing feedforward neural
networks [15]. An important aspect of this relationship between input and output is the
ability of the LLM to generate an output that is aligned with human expectations [16]. This
is achieved by tuning. Tuning is the process by which a pre-trained LLM is adapted to
consistently succeed on a specific task by training the model on a more concise labeled
dataset specific to the target objective [17].

A cornerstone of the transformer architecture is its reliance on attention mechanisms,
particularly self-attention. These mechanisms empower LLMs to evaluate the importance of
different words within a sentence or across a document. By prioritizing certain tokens over
others based on the prompt context, LLMs can generate responses that are both relevant
and coherently aligned with the intended meaning. This ability to dynamically adjust
focus within the text is what enables LLMs to produce highly accurate and contextually
appropriate outputs, a feature of paramount importance in the precise and consequence-
laden field of medicine [15].

A key model based on the transformer architecture is BERT (Bidirectional Encoder
Representations from Transformers). BERT relies solely on the encoder portion of the
transformer, meaning that it is designed to bidirectionally comprehend the words that
come before and after a certain phrase. This ability is known as bidirectional contex-
tual understanding and can be utilized to classify large-scale unlabeled text and answer
questions [18].

2.4. Hallucinations

A “hallucination” is when faulty output is produced by the LLM that may seem
evidence-based, but upon closer examination, it is often riddled with error-ridden informa-
tion [19]. The main shortcoming to the application and utilization of LLMs in the greater
healthcare field are “hallucinations” due to the adverse effects they can have such as misdi-
agnosis and incorrect information presented as facts [20]. Many studies suggest that LLMs
frequently produce hallucinations, including factually incorrect references, which could
significantly impact a researcher’s work if not properly acknowledged [21]. Thus, for LLMs
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to be utilized efficiently, it is imperative that users have a strong understanding of prompt
engineering, specifically limiting ambiguities when providing input to LLMs.

3. Prompt Engineering

Utilizing prompting techniques is crucial for limiting hallucinations and ensuring time
efficiency. Clear and concise prompts not only reduce ambiguity, enhancing the precision
of information retrieval, but also result in quicker responses due to decreased processing
time. These techniques significantly improve the user experience by minimizing delays,
and are instrumental across all facets of medicine. Mastering effective prompting practices
thus plays a key role in optimizing LLM outputs.

3.1. Prompt Design

At its core, prompt engineering seeks to optimize the structure and verbiage of the
prompt, as the prompt is what contains the textual signals that steer the action of LLMs,
influencing the ambiguities and factual inconsistencies within the output. Table 1 provides
an overview of prompt design as well as relevant examples. A prompt consists of three
main elements: instruction, output indicator, and context. The instruction component of
the prompt presents a task that the LLM is to execute. This component usually begins with
a verb. The output indicator provides the selected type or format of the output. The context
provides extra information that helps shortlist the results of the LLM to more relevant
outputs [22]. Not all prompts need to necessarily contain all three of these elements,
depending on the task and the desired precision.

Table 1. Prompt Design Overview and Examples.

Element Description Example

Instruction Presents a task that the LLM is to execute,
usually begins with a verb.

Explain, Summarize, Translate, Generate,
Compare, Create, Solve, Identify, Analyze, etc.

Output Indicator Provides the selected type or format of
the output. Text, List, Table, Graph, Bullet Points, Code

Context Enhances precision by adding extra details that
guide LLM towards more relevant outputs.

Background information, Technical
specifications, Length constraints, Tone, Style,

Purpose, Audience

3.2. Zero-Shot, One-Shot, Few-Shot

Zero-shot, one-shot, and few-shot learning are terms that describe the ability of a
model to understand and execute tasks with minimal examples or prior knowledge. Zero-
shot learning refers to the model’s ability to correctly perform a task without any specific
examples provided in advance. The model relies solely on its pre-existing knowledge
and the instructions given in the prompt [23]. Table 2 provides an overview as well as
relevant examples. One-shot learning involves providing the model with a single example
to illustrate the task. This example serves as a pattern that the model can use to perform
similar tasks [24]. Few-shot learning requires providing the model with several examples
of the desired task or output. These examples help the model to better understand the
nuances of the task and adjust its responses accordingly [24].

One- and few-shot learning approaches leverage the underlying capabilities of the
LLM to adapt and generalize. The LLM deduces the preferred format and style by ref-
erencing the provided examples. The effectiveness of each approach can depend on the
complexity of the task and the specificity of the domain. In general, more examples tend to
give the model a better understanding of the task at hand, leading to more accurate and
contextually appropriate outputs. However, even zero-shot learning can be surprisingly
effective, particularly when the model has been well-trained in a specific domain or task
type. For example, summarization will rarely require one-shot or few-shot learning.
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Table 2. Zero-shot, One-shot, Few-shot Overview and Examples.

Learning Type Definition Example

Zero-Shot The model performs tasks without any specific
examples, relying on pre-existing knowledge [23].

Generate a summary of an article without a
prior example.

One-Shot The model is given a single example to illustrate
the task, using it as a pattern for similar tasks [24].

Diagnose a specific fracture type using an
example radiograph.

Few-Shot The model receives several examples to better
understand the nuances of the task [24].

Identify various types of surgical tools with a
few example images of each.

3.3. Templating

Instead of providing examples or instructions, templating is a methodical approach to
shaping the content and structure of model outputs [2]. By utilizing a predefined structure,
templates ensure uniformity in the model’s responses. This method of templating can
effectively supplant the need for one-shot or few-shot examples in situations where output
variation is nominal, and the anticipated response can be aptly encapsulated within the
confines of a template, allowing for consistent and precise responses.

Templates are constructed with varying degrees of sophistication, tailored to the
complexity of the task at hand. Basic templating adopts a straightforward design, with
placeholders—often denoted by brackets or other delimiters—where context variables are
to be inserted. Complex templating provides a more elaborate framework for the LLM. It
not only incorporates context variables, but is also imbued with additional logic layers,
such as conditional statements that guide the generation process based on the input [2].
For instance, a template may contain branches that direct the content flow depending on
whether certain conditions are met, thereby allowing for a dynamic response that aligns
with the nuances of the input data. Additional abilities, such as a data integration point
with Electronic Health Record (EHR) systems, are also possible, but require the use of the
Open AI API, which is beyond the scope of this paper. Relevant clinical examples are
provided in Table 3.

Table 3. Clinical Templating Examples.

Template Type Example:

Basic

Post-Operative Instructions Template

1. Wound Care: Keep the surgical site clean and dry. Cover the area with [Type of Dressing] and
change the dressing every [Frequency].

2. Activity: Limit your activity to [Activity Level] for [Duration]. Avoid activities such as [Re-
stricted Activities].

3. Medication: Take [Medication Name] for pain every [Dosage Interval] as needed. Begin [Antibiotic
Name] the day after surgery and continue for [Duration].

4. Follow-Up: Schedule a follow-up appointment with your surgeon on [Follow-Up Date].
5. Additional Instructions: [Any Additional Instructions].
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Table 3. Cont.

Template Type Example:

Advanced

Template for Patient Clinical Q&A:
“Hello [Patient Name], thank you for reaching out with your concerns. You mentioned

[Symptom/Condition]. Could you specify [Duration/Severity/Associated Symptoms]?”

Conditional Logic for Symptom Assessment:

• If [Duration] > 2 weeks, then “Given the duration of your symptoms...”
• If [Severity] is high or [Associated Symptoms] include [List Severe Symptoms], then “These symp-

toms might suggest...”
• “Considering [Symptom/Condition] and [Duration/Severity/Associated Symptoms], the following

steps are recommended...”

Conditional Logic for Treatment Options:

• If [Symptom/Condition] is [Non-urgent Condition], then “Please consider the following treatment
options. . .”

• If [Symptom/Condition] is potentially severe or requires immediate attention, then “It is important
to seek immediate medical attention...”

Follow-up Actions:

• “Please monitor your symptoms and [List Specific Actions].”
• “Should you experience [List of Warning Signs], seek immediate medical assistance.”

4. Applications for Medicine
4.1. Patient Communication

From direct conversations between patients and healthcare providers to indirect
communications through Electronic Health Record (EHR) systems, patient reviews, and
feedback mechanisms, communication is key to patient-centered care, yet it often imposes
a significant time burden on healthcare professionals. Managing inquiries, responding to
feedback, and ensuring effective communication can be time-consuming tasks that detract
from direct patient care activities.

However, LLMs offer a transformative approach to patient engagement and commu-
nication in healthcare, given their potential to streamline or automate various forms of
communications. This innovation significantly alleviates the administrative burden on
hospital staff, enabling a more focused allocation of time and resources towards patient
care and interactions that demand human expertise. Although direct patient management
and diagnosis remain beyond the capabilities of LLMs, their strength lies in efficiently
handling patient-initiated messages. LLMs excel in addressing routine patient inquiries
related to treatment plans, recovery processes, and procedural logistics. By providing
prompt and personalized responses that are aligned with individual patient profiles and
medical histories, they enhance the quality of care and ensure information accessibility [25].
This strategic integration of LLMs into patient communication frameworks allows health-
care providers to focus on essential patient care while maintaining high communication
standards, optimizing overall healthcare delivery. Currently, however, there are no FDA-
approved devices that utilize generative AI for clinical communication with patients, as
the focus remains on devices that integrate AI for tasks like image processing and triage
notification management [26]. Thus, this gap underscores the evolving landscape of AI in
healthcare, where significant potential exists for enhancing patient–provider interactions
through integration of LLMs.

Additionally, LLMs can be configured to deliver tailored educational materials based
on individual patient profiles, thereby enhancing understanding and engagement in the
treatment process. This personalized approach can be complemented by automated
follow-up and monitoring capabilities, which ensure continuous engagement with pa-
tients, prompt detection of potential complications, and timely adjustments to treatment
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plans [27]. Patawut et al. also demonstrated that LLMs can be used in analyzing patient
feedback and reviews, underscoring the critical role of communication and perceived
empathy in patient satisfaction [28]. Despite the varied impact of negative comments on
traditional outcome measures, these studies highlight the importance of addressing patient
concerns and improving the patient–clinician relationship. Furthermore, the use of NLP
and sentiment analysis in examining patient comments and reviews, as seen in Khalid
et al.’s work, validates the accuracy and utility of LLMs in gauging patient experiences
and opinions, thereby offering a powerful tool for service enhancement based on direct
patient feedback [29]. By systematically leveraging LLMs for feedback collection, healthcare
providers can identify and address areas for improvement in patient–provider interactions
and overall service delivery [30]. This comprehensive approach not only enhances patient
satisfaction, but also contributes to better health outcomes, exemplifying the broader scope
and potential of LLMs in revolutionizing patient engagement and communication within
the healthcare sector.

Furthermore, LLMs possess the ability to alleviate a provider’s administrative obli-
gations, which include documentation and writing clinical notes. LLMs can transform
unstructured notes from a patient’s clinical record into a more structured format, simpli-
fying documentation tasks in both routine patient care and clinical care trials which take
up to 25% of a clinician’s time on average [7]. LLMs can also bridge the language barrier
between a patient and a clinician through offering reliable, fast, and accurate translations,
which allow for patients to comprehend the diagnostic process, regardless of the language
they speak. Such multilingual capacity has recently been introduced in translating reports
from other languages such as Spanish, Hindi, and Russian to English. More specifically,
50 deidentified abdomen-pelvis CT reports from the radiology archives at Mercy Fitzger-
ald Hospital were given to the ChaptGPT 4.0 model to translate, in which the translated
English version showed no significant deviation from the Spanish and Russian versions
in terms of factual correctness, potentially harmful errors, and completeness [31]. Thus,
this approach of utilizing LLMs in multilingual settings demonstrates promise in provid-
ing greater transparency in patient–provider communication upon further training of the
AI model.

4.2. Clinical Decision-Making

LLMs offer significant promise in supporting clinical decision-making, as they can sift
through vast amounts of medical literature to provide evidence-based recommendations,
summarizing the latest research findings and clinical guidelines, as well as assist in inter-
preting radiographic images and identifying relevant medical guidelines [32]. A recent
LLM was developed for this specific purpose in the field of radiology, called Radiology-GPT.
This LLM has been trained on a large, public dataset consisting of deidentified chest X-rays
of nearly 60,000 patients from the Beth Israel Deaconess Center and is now capable of
providing advice to clinicians on tasks such as preparing radiology reports and displaying
clinical findings from an X-ray report [33]. This could support clinicians by offering a dis-
tilled view of current best practices and emerging treatments, streamlining the diagnostic
process [34].

Furthermore, the application of LLMs extends to the operating room, as they have
been shown to be effective in optimizing the selection of preoperative patients based on
analysis of risk factors, planning out costs and resources needed for the hospital including
length of stay and discharge for patients, and improving efficiency in surgical procedures
regarding recommending techniques for the operative procedure [35,36]. However, while
studies have shown LLMs like ChatGPT to be effective in diagnosing diseases based on
symptom descriptions, their capabilities in proposing patient management strategies re-
main limited [25]. This stems primarily from the limited data set availability that LLMs
can be trained on, which can lead to an output containing biased or highly inaccurate
information [37]. The use of LLMs also raises ethical concerns, including patient privacy,
data security, and model biases, necessitating transparent methodologies and strict over-
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sight. Real-world integration of LLMs into healthcare also requires adherence to regulatory
standards and validation to ensure AI-assisted decisions’ safety and reliability [25].

To fully harness the benefits of LLMs in healthcare, they should be integrated as part of
a broader clinical decision-making framework. This approach ensures that LLMs enhance,
rather than supplant, the expertise of medical professionals, providing a valuable tool
in delivering comprehensive and informed patient care. To do so, clinicians must learn
how to conduct proper prompt engineering in order to obtain the optimal support and
guidance from LLMs. When utilizing prompt engineering correctly, clinicians have the
ability to harness the power of LLMs to produce prompts specific to their needs [38]. Proper
prompt engineering is the embedding of the task description that an AI intends to achieve
within the prompt itself, often in the form of a question, instead of providing it explicitly.
Such results can be achieved through providing a variety of prompts to the LLM, such
as instructive prompts (in which the clinician can guide the LLM towards a specific task),
system prompt (which provides context to the LLM for the input at hand), question–answer
prompts (a question is asked to the LLM that is the emphasis of the input), and a mixed
prompt (a combination of all the elements of the prompts aforementioned) [38].

4.3. Research and Education

LLMs have demonstrated mixed performance on medical specialty board exams.
While more advanced models like GPT-4 have shown greater reliability, passing written
sections of exams in fields such as general surgery, neurosurgery, orthopedics, and psychi-
atry, they have not passed exams in other specialties such as obstetrics and gynecology,
gastroenterology, and radiology. Of note, earlier LLM models, such as GPT-3.5, have strug-
gled more broadly with specialty board exams, but are still capable of passing the USMLE.
These results underscore the variability in LLM capabilities, highlighting their strengths
in knowledge recall and interpretation, but also their limitations in advanced judgment
and complex reasoning. Consequently, LLM models should be used as supplementary
resources in research and education to enhance learning and support inquiries focused on
knowledge and interpretation.

LLMs are capable of revolutionizing education for medical students, residents, and
clinicians by providing interactive learning tools. Whether supplementing resident training
or continuing medical education (CME) programs, LLMs can create, and curate, education
content tailored for each individual. LLMs enhance learning through creating simulation
and case-based scenarios content, enabling learners to practice clinical reasoning [37].
Recently, AI Tutor, a web-based application, has become widely used through its utilization
of (LLMs) to systematically curate an adaptive knowledge base [1]. This knowledge base is
tailored to the specific nuances of the course, and constructed based on a comprehensive
analysis of the input derived from the course materials [1]. The utilization of ChatGPT
in surgical resident education during their trauma rotation has also been said to produce
a more engaging and accessible learning environment, leading to increased standards of
patient care and education [3].

Beyond their use in education, LLMs offer significant utility in research. Notably, they
can greatly streamline literature reviews with their capability to efficiently sift through
extensive medical literature and synthesize succinct summaries from each. An example of
the literature search process being simplified through LLMs can be seen in the comparison
between a PubMed search and a ChatGPT literature search. In a typical PubMed search,
the user types in a query, and then the PubMed search engine seeks exact matches in the
following indexed fields of the article: title, abstract, author list, keywords, and MeSH
terms. In 2017, this search process was revised so that the most relevant articles were
returned among the top results instead of the most recent articles. On the other hand, a
ChatGPT literature search would be able to summarize the results of the literature search,
provide answers directly to the user’s query through amalgamation of the results of the
literature search, and provide recommendations for which literature to utilize to answer
the user’s question. Furthermore, LLMs possess the capacity to explain the content of the
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literature to the user, thereby enhancing the user’s understanding of the content [39]. This
ability enables students and researchers to distill key insights from a multitude of studies,
facilitating a deeper understanding of prevalent themes and emerging trends.

With the advent of this transformative service comes concerns surrounding academic
journals distancing themselves from plagiarism and false information that generative AI
can sometimes produce. To address these concerns, students and researchers can take
several measures, including clearly stating the way LLM tools were used in the research
process, ensuring that human oversight was utilized in the final output, including fact-
checking and utilizing as many open-source AI models as possible to ensure reproducibility
of information [40]. To check hallucinations produced by the AI model, proper prompt
engineering and cross-verification of AI-generated information with verified sources must
be utilized to ensure that the information presented in the research piece is reliable [40].
Such actions will allow research to proceed in a positive manner through the added
efficiency provided by LLMs.

In short, in order for students and clinicians to fully harness the benefits of LLMs in
education and research, they should be incorporated within a comprehensive education
system and research process [1].

5. Ethical Considerations

Patient data is highly sensitive, and any misuse or unauthorized access can lead to
serious breaches of privacy. The protection of patient data requires robust measures to
ensure that it is kept confidential and secure. Strong encryption methods are vital in
safeguarding this information, making it difficult for unauthorized individuals to access
or decipher the data. Adherence to regulations like the Health Insurance Portability and
Accountability Act (HIPAA) is essential [8].

Ensuring informed consent is another critical aspect of protecting patient data. Pa-
tients must be fully aware of how their data will be used, stored, and shared. This trans-
parency helps build trust and ensures that patients’ rights are respected. Employing robust
anonymization techniques further safeguards patient information by removing or obfuscat-
ing personal identifiers, making it difficult to trace the data back to individual patients [41].
This is particularly important in research and data analysis, where the use of de-identified
data can help protect patient privacy while still allowing valuable insights to be gained.

Closely related to patient privacy is data security, which involves preventing unau-
thorized access to or breaches of patient data. Comprehensive cybersecurity protocols are
essential in this regard. These protocols include measures such as firewalls, intrusion detec-
tion systems, and regular security audits to identify and address potential vulnerabilities.
Strict access control mechanisms are also crucial. By limiting access to sensitive health
information to only those individuals who need it for their work, organizations can reduce
the risk of unauthorized access [42].

Another significant ethical issue in the realm of patient data is the potential for large
language models (LLMs) to perpetuate and even amplify existing biases present in their
training data [43]. This can lead to unjust treatment of marginalized populations, which is
misaligned with societal moral grounds and can further exacerbate health disparities [12].
For example, if the training data contains biases against specific racial or ethnic groups, the
model might produce outputs that are prejudiced [44]. This can affect various aspects of
healthcare, including diagnosis, treatment options, and patient outcomes. Such biases can
result in some groups receiving substandard care or being misdiagnosed, which can have
serious and long-lasting consequences, including misrepresentation of health outcomes
and furthering health inequality between socioeconomic groups [42].

Furthermore, considerable declines in standards of safety and ethical consideration
can occur in the realm of research when relying heavily on LLM assistance. Although such
issues can be avoided through training of an LLM model, there can be uses of prompts
designed to “jailbreak” the model, and thus avoid its inbuilt safety considerations [45].
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To mitigate these risks, it is crucial to use diverse and representative datasets when
training LLMs [46]. This helps ensure that the models are exposed to a wide range of
scenarios and perspectives, reducing the likelihood of bias. Implementing rigorous bias
detection and correction strategies is also essential. These strategies involve identifying
potential biases in the models’ outputs and adjusting the models or their training data
accordingly [47]. Continuous monitoring of LLM performance across different patient
groups is another important step. By regularly assessing how the models perform for
various populations, organizations can identify and address any disparities, ensuring that
all patients receive fair and accurate treatment.

Protecting patient data is a multifaceted challenge that requires a combination of strong
technical measures, adherence to regulations, and ethical considerations. Robust data
protection strategies, such as encryption and anonymization, are essential in safeguarding
sensitive information. At the same time, addressing the potential biases in LLMs is crucial
to ensuring that all patients receive equitable care. By taking these steps, healthcare
organizations can protect patient privacy, secure sensitive data, and provide fair treatment
to all individuals, regardless of their background.

6. Conclusions

The integration of LLMs within healthcare represents a transformative shift towards
leveraging AI to enhance healthcare delivery, clinical decision making, and medical ed-
ucation. Proper prompt engineering ensures that LLMs produce accurate, relevant, and
contextually appropriate outputs, minimizing the risk of misinformation. The importance
of continued growth is underscored here by detailing the unexplored area of strategic
prompt engineering as a tool to mitigate the risks of hallucinations, biases, and the misap-
plication of knowledge in clinical contexts. Moreover, the adoption of zero-shot, one-shot,
and few-shot learning, along with strategic templating, can further refine the utility of
LLMs, making them more adaptable to the nuanced requirements of medical practice.

It is well known that LLMs can generate contextually relevant outputs based on vast
training datasets, making them valuable assets in tasks such as automatic summarization
and clinical decision-making. Yet, there are still many unknown factors, including how
specific prompting techniques can systematically reduce risks such as hallucinations or
biased information in clinical settings through practical applications. By clearly articulating
these contributions, the current understanding of LLM applications is not only advanced,
but actionable insights that can be directly applied in clinical practice are also offered,
thereby paving the way for future research and AI-driven solutions in healthcare.

In conclusion, while challenges remain, the strategic application of LLMs in medicine
presents a promising avenue for advancing healthcare. By fostering a collaborative rela-
tionship between AI technology and medical professionals, we can enhance the quality
of care provided to patients and pave the way for innovative practices in both treatment
and education. The future of medicine, enriched by AI, holds the promise of more efficient,
accessible, and personalized care, underscoring the importance of continued research and
development in this field.
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