Early Clinical Experience of Finerenone in People with Chronic Kidney Disease and Type 2 Diabetes in Japan—A Multi-Cohort Study from the FOUNTAIN (FinerenOne mUltidatabase NeTwork for Evidence generAtIoN) Platform
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Data Source, and Patient Selection
2.2. Variables
2.3. Statistical Analyses
2.4. Ethics Statement
3. Results
3.1. Baseline Characteristics at Finerenone Initiation in the Main Cohort
3.2. Baseline Characteristics in the Subgroups
3.3. Incidence of Clinical Outcomes after Finerenone Initiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Wu, B.; Bell, K.; Stanford, A.; Kern, D.M.; Tunceli, O.; Vupputuri, S.; Kalsekar, I.; Willey, V. Understanding CKD among patients with T2DM: Prevalence, temporal trends, and treatment patterns–NHAINES 2007–2012. BMJ Open Diabetes Res. Care 2016, 4, e000154. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Schmedt, N.; Broughton, J.; Kalra, P.A.; Thomlinson, L.A.; Quint, J.K. Characterising the burden of chronic kidney disease among people with type 2 diabetes in England: A cohort study using the Clinical Practice Research Datalink. BMJ Open 2023, 13, e065927. [Google Scholar] [CrossRef] [PubMed]
- Afkarian, M.; Sachs, M.C.; Kestenbaum, B.; Hirsch, I.B.; Tuttle, K.R.; Himmelfarb, J.; de Boer, I.H. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 2013, 24, 302–308. [Google Scholar] [CrossRef]
- Sawaf, H.; Thomas, G.; Taliercio, J.J.; Nakhoul, G.; Vachharajani, T.J.; Mehdi, A. Therapeutic advances in diabetic nephropathy. J. Clin. Med. 2022, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.; Bakris, G.; Baeres, F.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- The American Diabetes Association Professional Practice Committee. Standard of care in diabetes–2024. Diabetes Care 2024, 47 (Suppl. S1), S295–S306. [Google Scholar] [CrossRef]
- Kashihara, N.; Kanegae, H.; Okami, S.; Oberprieler, N.G.; Pladevall-Vila, M.; Layton, J.B.; Yamashita, S.; Johannes, C.; Farjat, A.; Kovesdy, C.P.; et al. Cardiorenal events in medication-initiator cohorts of patients with chronic kidney disease and type 2 diabetes in Japan. Diabetes Res. Clin. Pract. 2024, 209 (Suppl. S1), 111136. [Google Scholar] [CrossRef]
- Oshima, M.; Neuen, B.L.; Li, J.; Perkovic, V.; Charytan, D.M.; de Zeeuw, D.; Edwards, R.; Greene, T.; Levin, A.; Mahaffey, K.W.; et al. Early change in albuminuria with canagliflozin predicts kidney and cardiovascular outcomes: A post hoc analysis from the CREDENCE trial. J. Am. Soc. Nephrol. 2020, 31, 2925–2936. [Google Scholar] [CrossRef] [PubMed]
- Waijer, S.W.; Xie, D.; Inzucchi, S.E.; Zinman, B.; Koitka-Weber, A.; Mattheus, M.; von Eynatten, M.; Inker, L.A.; Wanner, C.; Heerspink, H.J.L. Short-term changes in albuminuria and risk of cardiovascular and renal outcomes in type 2 diabetes mellitus: A post hoc analysis of the EMPA-REG OUTCOME trial. J. Am. Heart Assoc. 2020, 9, e016976. [Google Scholar] [CrossRef]
- Wish, J.B.; Pergola, P. Evolution of mineralocorticoid receptor antagonists in the treatment of chronic kidney disease associated with type 2 diabetes mellitus. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Naaman, S.C.; Bakris, G.L. Diabetic nephropathy: Update on pillars of therapy slowing progression. Diabetes Care. 2023, 46, 1574–1586. [Google Scholar] [CrossRef]
- Katayama, S.; Yamada, D.; Nakayama, M.; Yamada, T.; Myoishi, M.; Kato, M.; Nowack, C.; Kolkhof, P.; Yamasaki, Y. A randomized controlled study of finerenone versus placebo in Japanese patients with type 2 diabetes mellitus and diabetic nephropathy. J. Diabetes Complicat. 2017, 31, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Prescribing Information for KERENDIA. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215341s000lbl.pdf (accessed on 24 June 2024).
- Pharmaceutical and Medical Devices Agency in Japan. KERENDIA Package Insert. Available online: https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/630004_2190044F1020_1_06 (accessed on 24 June 2024).
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; A Ajjan, R.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH guidelines for the management of arterial hypertension. The task force for the management of arterial hypertension of the European Society of Hypertension. J. Hypertens. 2023, 41, 1874–2071. [Google Scholar]
- Oberprieler, N.G.; Pladevall-Vila, M.; Johannes, C.B.; Layton, J.B.; Golozar, A.; Lavallee, M.; Kubin, M.; Vizcaya, D. FOUNTAIN: A modular research platform for integrated real-world evidence generation [Poster 186]. In Proceedings of the 39th International Conference on Pharmacoepidemiology & Therapeutic Risk Management, Halifax, NS, Canada, 23–27 August 2023. [Google Scholar]
- Hayashida, K.; Murakami, G.; Matsuda, S.; Fushimi, K. History and profile of diagnosis procedure combination (DPC): Development of a real data collection system for acute inpatient care in Japan. J. Epidemiol. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Kumamaru, H.; Togo, K.; Kimura, T.; Koide, D.; Iihara, N.; Tokumasu, H.; Imai, S. Inventory of real-world data sources in Japan: Annual survey conducted by the Japanese Society for Pharmacoepidemiology Task Force. Pharmacoepidemiol. Drug Saf. 2024, 33, e5680. [Google Scholar] [CrossRef] [PubMed]
- Observational Health Data Sciences and Informatics (OHDSI). OMOP Common Data Model. Available online: https://ohdsi.github.io/CommonDataModel/index.html (accessed on 30 January 2024).
- The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP). Guide on Methodological Standards in Pharmacoepidemiology; Report No.EMA/95098/2010; The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP): Amsterdam, The Netherlands, 2020. [Google Scholar]
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). E2A Clinical Safety Data Management: Definition and Standards for Expedited Reporting. Available online: https://www.ema.europa.eu/en/ich-e2a-clinical-safety-data-management-definitions-and-standards-expedited-reporting-scientific-guideline (accessed on 30 January 2024).
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson Comorbidity Index: A critical review of clinimetric properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef] [PubMed]
- Young, B.A.; Lin, E.; Von Korff, M.; Simon, G.; Ciechanowski, P.; Ludman, E.J.; Everson-Stewart, S.; Kinder, L.; Oliver, M.; Boyko, E.J.; et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am. J. Manag. Care 2008, 14, 15–23. [Google Scholar]
- Glasheen, W.P.; Renda, A.; Dong, Y. Diabetes complication severity index (DSCI)—Update and ICD-10 translation. J. Diabetes Complicat. 2017, 31, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Alvarez, P.J.; Woods, S.D.; Dai, D. A model to predict risk of hyperkalemia in patients with chronic kidney disease using a large administrative claims database. Clinicoecon Outcomes Res. 2020, 12, 657–667. [Google Scholar] [CrossRef]
- Observational Health Data Sciences and Informatics (OHDSI). The Book of OHDSI. 2019. Available online: https://ohdsi.github.io/TheBookOfOhdsi/ (accessed on 31 January 2024).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2005. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Int. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Ministry of Labour, Health and Welfare of Japan. Ethical Guidelines for Medical and Health Research Involving Human Subjects. Available online: https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf (accessed on 27 December 2023).
- Yanai, H.; Yamaguchi, N.; Adachi, H. Chronic kidney disease stage G4 in a diabetic patient improved by multi-disciplinary treatments based upon literature search for therapeutic evidence. Cardiol. Res. 2022, 13, 309–314. [Google Scholar] [CrossRef]
- Mima, A.; Lee, R.; Murakami, A.; Gotoda, H.; Akai, R.; Kidooka, S.; Nakamoto, T.; Kido, S.; Lee, S. Effect of finerenone on diabetic kidney outcomes with estimated glomerular filtration rate below 25 mL/min/1.73m2. Metabol. Open. 2023, 19, 100251. [Google Scholar] [CrossRef]
- Mima, A.; Saito, Y.; Matsumoto, K.; Nakamoto, T.; Lee, S. Effect of finerenone on nephrotic syndrome patients with diabetic kidney disease. Metabol. Open 2024, 22, 100294. [Google Scholar] [CrossRef]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur. Heart J. 2022, 43, 474–484. [Google Scholar] [CrossRef]
- Vizcaya, D.; Kovesdy, C.P.; Reyes, A.; Pessina, E.; Pujol, P.; James, G.; Oberprieler, N.G. Characteristics of patients with chronic kidney disease and type 2 diabetes initiating Finerenone in the USA: A multi-database, cross-sectional study. J. Comp. Eff. Res. 2023, 12, e230076. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for evaluation and management of chronic kidney disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Forbes, A.K.; Hinton, W.; Feher, M.D.; Elson, W.; Joy, M.; Ordóñez-Mena, J.; Fan, X.; Cole, N.I.; Banerjee, D.; Suckling, R.J.; et al. Implementation of chronic kidney disease guidelines for sodium-glucose co-transporter-2 inhibitor use in primary care in the UK: A cross-sectional study. eClinicalMedicine 2024, 68, 102426. [Google Scholar] [CrossRef] [PubMed]
- Japanese Diabetes Society. Japanese Clinical Practice Guideline for Diabetes; Japanese Diabetes Society: Tokyo, Japan, 2024. [Google Scholar]
- Agarwal, R.; Joseph, A.; Anker, S.D.; Filippatos, G.; Rossing, P.; Ruilope, L.M.; Pitt, B.; Kolkhof, P.; Scott, C.; Lawatscheck, R.; et al. Hyperkalemia risk with finerenone: Results from the FIDELIO-DKD trial. J. Am. Soc. Nephrol. 2022, 33, 225–237. [Google Scholar] [CrossRef]
- Roscioni, S.S.; de Zeeuw, D.; Bakker, S.J.L.; Heerspink, H.J.L. Management of hyperkalemia to mineralocorticoid-receptor antagonist therapy. Nat. Rev. Nephrol. 2012, 8, 691–699. [Google Scholar] [CrossRef]
- Humphrey, T.; Davids, M.R.; Chothia, M.Y.; Pecoits-Filho, R.; Pollock, C.; James, G. How common is hyperkalemia? A systematic review and meta-analysis of the prevalence and incidence of hyperkalemia reported in observational studies. Clin. Kidney J. 2022, 15, 727–737. [Google Scholar] [CrossRef]
- Shubrook, J.H.; Neumiller, J.J.; Wright, E. Management of chronic kidney disease in type 2 diabetes: Screening, diagnosis and treatment goals, and recommendations. Postgrad. Med. 2022, 134, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Oberprieler, N.G.; Kovesdy, C.P.; Layton, J.B.; Thapa, B.; Curhan, G.; E Farjat, A.; Liu, F.; Johannes, C.; Vizcaya, D. Clinical outcomes in US patients initiating finerenone—A report from the FOUNTAIN platform. In Proceedings of the Poster presented at the 61st European Renal Association (ERA) Congress, Stockholm, Sweden, 23–26 May 2024. [Google Scholar]
- Ruilope, L.M.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Filippatos, G.; Nowack, C.; Kolkhof, P.; Joseph, A.; Mentenich, N.; Pitt, B.; et al. Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial. Am. J. Nephrol. 2019, 50, 345–356. [Google Scholar] [CrossRef]
- Sundbøll, J.; Adelborg, K.; Munch, T.; Frøslev, T.; Sørensen, H.T.; Bøtker, H.E.; Schmidt, M. Positive predictive value of cardiovascular diagnoses in the Danish National Patient Registry: A validation study. BMJ Open 2016, 6, e012832. [Google Scholar] [CrossRef]
- Maru, S.; Koch, G.G.; Stender, M.; Clark, D.; Gibowski, L.; Petri, H.; White, A.D.; Simpson, R.J. Antidiabetic drugs and heart failure risk in patients with type 2 diabetes in the U.K. primary care setting. Diabetes Care. 2005, 28, 20–26. [Google Scholar] [CrossRef]
- Saczynski, J.S.; Andrade, S.E.; Harrold, L.R.; Tjia, J.; Cutrona, S.L.; Dodd, K.S.; Goldberg, R.J.; Gurwitz, J.H. A systematic review of validated methods for identifying heart failure using administrative data. Pharmacoepidemiol. Drug Saf. 2012, 21, 129–140. [Google Scholar] [CrossRef] [PubMed]
MDV (N = 967) | RWD Co. (N = 62) | |
---|---|---|
Age (years) | ||
Mean ± SD | 69.5 ± 12.4 | 72.4± 10.4 |
Median (Q1, Q3) | 72 (62, 79) | 74 (67, 80) |
Gender, female, n (%) | 264 (27.3) | 17 (27.4) |
Index year, n (%) | ||
2022 | 101 (10.4) | 28 (45.2) |
2023 | 866 (89.6) | 34 (54.8) |
Hemoglobin A1c, % | ||
Mean ± SD | 7.4 ± 1.5 | 7.3 ± 1.1 |
Median (Q1, Q3) | 7.0 (6.4, 8) | 7.0 (6.5, 7.8) |
Missing, n (%) | 827 (85.5) | 1 (1.6) |
eGFR, mg/min/1.73 m2 | ||
Mean ± SD | – | 43.4 ± 18.1 |
Category, n (%) | ||
Stage 2 60–89 | – | 2 (3.2) |
Stage 3 30–59 | – | 33 (53.2) |
Stage 4 15–29 | – | 27 (43.6) |
Finerenone dose initiation, n (%) | ||
10 mg | 854 (88.3) | 58 (93.6) |
20 mg | 113 (11.7) | 4 (6.5) |
Comorbidity, n (%) | ||
Hypertension | 894 (92.5) | 59 (95.2) |
Hyperlipidemia | 568 (58.7) | 44 (71.0) |
Congestive heart failure | 577 (59.7) | 41 (66.1) |
Prior hospitalization for heart failure | 212 (21.9) | 10 (16.1) |
Coronary heart disease | 372 (38.5) | 23 (37.1) |
Peripheral vascular disease | 137 (14.2) | 14 (22.6) |
Atrial fibrillation | 154 (15.9) | 10 (16.1) |
Acute coronary syndrome | 177 (18.3) | 16 (25.8) |
Myocardial infarction | 87 (9) | 8 (12.9) |
Cerebrovascular disease | 215 (22.2) | 15 (24.2) |
Neuropathy | 198 (20.5) | 9 (14.5) |
Retinopathy | 149 (15.4) | 9 (14.5) |
Charlson Comorbidity Index | ||
Mean ± SD | 8.2 ± 3.1 | 10.2 ± 3.5 |
Median (Q1, Q3) | 8 (6, 10) | 9 (8–12) |
Diabetes Complication Severity Index | ||
Mean ± SD | 5.2 ± 1.8 | 6.7 ± 2.1 |
Median (Q1, Q3) | 5 (4, 6) | 6 (5, 8) |
Comedications, n (%) | ||
ACEi or ARB | 776 (80.3) | 50 (80.7) |
ACEi | 350 (36.2) | 27 (43.6) |
ARB | 717 (74.2) | 45 (72.6) |
ARNI | 208 (21.5) | 10 (16.1) |
Calcium-channel blockers | 481 (49.7) | 30 (48.4) |
Beta-blockers | 297 (30.7) | 22(35.5) |
Loop diuretics | 218 (22.5) | 17 (27.4) |
Thiazide diuretics | 45 (4.7) | 2 (3.2) |
Steroidal MRA | 143 (14.8) | 5 (8.1) |
Non-steroidal MRA other than finerenone | 64 (6.6) | 1 (1.6) |
Statins | 571 (59.1) | 44 (71.0) |
Anticoagulants | 153 (15.8) | 11 (17.7) |
Potassium binders | 62 (6.4) | 2 (3.2) |
SGLT-2i | 694 (71.8) | 45 (72.6) |
GLP-1 RA | 268 (27.7) | 19 (30.7) |
SGLT-2i or GLP-1 RA | 760 (78.6) | 48 (77.4) |
SGLT-2i and GLP-1 RA | 202 (20.9) | 16 (25.8) |
Metformin | 322 (33.3) | 21 (33.9) |
Dipeptidyl peptidase 4 inhibitors | 480 (49.6) | 40 (64.5) |
Sulfonylureas | 133 (13.8) | 16 (25.8) |
Meglitinides | 122 (12.6) | 13 (21) |
Alpha-glucosidase inhibitors | 113 (11.7) | 4 (6.5) |
Thiazolidinediones | 30 (3.1) | 1 (1.6) |
Insulins | 295 (30.5) | 17 (27.4) |
MDV | RWD Co. | |||||
---|---|---|---|---|---|---|
SGLT-2i (N = 676) | GLP-1 RA (N = 256) | SGLT-2i and GLP-1 RA (N = 187) | SGLT-2i (N = 38) | GLP-1 RA (N = 15) | SGLT-2i and GLP-1 RA (N = 10) | |
Age (years) | ||||||
Mean ± SD | 68.1 ± 12.9 | 65.2 ± 12.5 | 63.4 ± 12.3 | 71.8 ± 10.0 | 71.9 ± 8.5 | 71.8 ± 8.3 |
Median (Q, Q3) | 71 (59, 77) | 67 (57, 75) | 65 (55, 74) | 74 (65, 79) | 72 (65, 79) | 72 (67, 77) |
Gender, female, n (%) | 176 (26) | 70 (27.3) | 44 (23.5) | 6 (15.8) | 6 (40) | 2 (20) |
Index year, n (%) | ||||||
2022 | 60 (8.9) | 35 (13.7) | 20 (10.7) | 12 (31.6) | 7 (46.7) | 4 (40) |
2023 | 616 (91.1) | 221 (86.3) | 167 (89.3) | 26 (68.4) | 8 (53.3) | 6 (60) |
Hemoglobin A1c, % | ||||||
Mean ± SD | 7.3 ± 1.4 | 7.9 ± 1.8 | 7.7 ± 1.7 | 7.4 ± 1.2 | 7.7 ± 1.3 | 8.1 ± 1.4 |
Median (Q1, Q3) | 7.1 (6.4, 7.9) | 7.3 (6.8, 8.5) | 7.3 (6.8, 8.3) | 7.1 (6.5, 8) | 7.4 (6.8, 8.3) | 7.7 (7, 9.1) |
Missing, n (%) | 579 (85.7) | 222 (86.7) | 162 (86.6) | 1 (2.6) | 0 (0) | 0 (0) |
eGFR, mg/min/1.73 m2 | ||||||
Mean ± SD | – | – | – | 46.5 ± 20.8 | 37.3 ± 13.2 | 37.1 ± 17.0 |
Category, n (%) | ||||||
Stage 2 60–89 | – | – | – | 2 (5.3) | 1 (6.7) | 1 (10) |
Stage 3 30–59 | – | – | – | 18 (47.4) | 7 (46.7) | 3 (30) |
Stage 4 15–29 | – | – | – | 18 (47.4) | 7 (46.7) | 6 (60) |
Finerenone dose initiation, n (%) | ||||||
10 mg | 598 (88.5) | 217 (84.8) | 158 (84.5) | 35 (92.1) | 15 (100) | 10 (100) |
20 mg | 78 (11.5) | 39 (15.2) | 29 (15.5) | 3 (7.9) | 0 (0) | 0 (0) |
Comorbidity, n (%) | ||||||
Hypertension | 627 (92.8) | 239 (93.4) | 175 (93.6) | 36 (94.7) | 13 (86.7) | 8 (80) |
Hyperlipidemia | 394 (58.3) | 174 (68) | 125 (66.8) | 25 (65.8) | 12 (80) | 8 (80) |
Congestive heart failure | 425 (62.9) | 148 (57.8) | 111 (59.4) | 24 (63.2) | 9 (60) | 6 (60) |
Prior hospitalization for heart failure | 171 (25.3) | 58 (22.7) | 43 (23.0) | 7 (18.4) | 1 (6.7) | 1 (10) |
Coronary heart disease | 272 (40.2) | 101 (39.5) | 82 (43.9) | 11 (29) | 3 (20) | 1 (10) |
Peripheral vascular disease | 87 (12.9) | 46 (18) | 31 (16.6) | 6 (15.8) | 4 (26.7) | 1 (10) |
Atrial fibrillation | 118 (17.5) | 22 (8.6) | 16 (8.6) | 7 (18.4) | 1 (6.7) | 0 (0) |
Acute coronary syndrome | 136 (20.1) | 45 (17.6) | 35 (18.7) | 12 (31.6) | 0 (0) | 0 (0) |
Myocardial infarction | 70 (10.4) | 19 (7.4) | 16 (8.6) | 7 (18.4) | 0 (0) | 0 (0) |
Cerebrovascular disease | 138 (20.4) | 68(26.6) | 40 (21.4) | 10 (26.3) | 3(20) | 2 (20) |
Neuropathy | 138 (20.4) | 65 (25.4) | 48 (25.7) | 4(10.5) | 3(20) | 2 (20) |
Retinopathy | 107 (15.8) | 38 (14.8) | 30 (16) | 8 (21.1) | 0 (0) | 0 (0) |
Charlson Comorbidity Index | ||||||
Mean ± SD | 8.1 ± 3.1 | 8.1 ± 3.0 | 8.0 ± 3.0 | 9.7 ± 3.9 | 8.8 ± 2.8 | 8.4 ± 3.1 |
Median (Q1, Q3) | 8 (6, 9) | 8 (6, 10) | 8 (6, 9) | 9 (7, 11) | 9 (7, 10) | 8 (6, 10) |
Diabetes Complication Severity Index | ||||||
Mean ± SD | 5.2 ± 1.8 | 5.2 ± 1.7 | 5.1 ± 1.7 | 6.3 ± 2.1 | 6.1 ± 1.7 | 5.8 ± 1.3 |
Median (Q1, Q3) | 6 (4, 6) | 6 (4, 6) | 5 (4, 6) | 6 (5, 8) | 6 (5, 7) | 6 (5, 7) |
Comedications, n (%) | ||||||
ACEi or ARB | 553 (81.8) | 213 (83.2) | 158 (84.5) | 31 (81.6) | 11 (73.3) | 6 (60) |
ACEi | 227 (33.6) | 89 (34.8) | 64 (34.2) | 14 (36.8) | 6 (40) | 3 (30) |
ARB | 523 (77.4) | 200 (78.1) | 153 (81.8) | 30 (79) | 8 (53.3) | 6 (60) |
ARNI | 184 (27.2) | 52 (20.3) | 46 (24.6) | 9 (23.7) | 1 (6.7) | 1 (10) |
Calcium-channel blockers | 326 (48.2) | 130 (50.8) | 96 (51.3) | 17 (44.7) | 7 (46.7) | 4 (40) |
Beta-blockers | 235 (34.8) | 77 (30.1) | 61 (32.6) | 15 (39.5) | 5 (33.3) | 3 (30) |
Loop diuretics | 170 (25.2) | 49 (19.1) | 40 (21.4) | 14 (36.8) | 3 (20) | 3 (30) |
Thiazide diuretics | 30 (4.4) | 17 (6.6) | 10 (5.4) | 1 (2.6) | 0 (0) | 0 (0) |
Steroidal MRA | 117 (17.3) | 29 (11.3) | 22 (11.8) | 3 (7.9) | 0 (0) | 0 (0) |
Non-steroidal MRA other than finerenone | 43 (6.4) | 16 (6.3) | 13 (7) | 1 (2.6) | 0 (0) | 0(0) |
Statins | 410 (60.7) | 169 (66) | 128 (68.5) | 27 (71.1) | 11 (73.3) | 7 (70) |
Anticoagulants | 114 (16.9) | 30 (11.7) | 22 (11.8) | 8 (21.1) | 1 (6.7) | 0 (0) |
Potassium binders | 41 (6.1) | 20 (7.8) | 14 (7.5) | 1 (2.6) | 0 (0) | 0 (0) |
SGLT-2i and GLP-1 RA | 192 (28.4) | 192 (75) | 183 (97.9) * | 13 (34.2) | 12 (80) | 10 (100) |
Metformin | 218 (32.3) | 112 (43.8) | 88 (47.1) | 13 (34.2) | 6 (40) | 5 (50) |
Dipeptidyl peptidase 4 inhibitors | 316 (46.8) | 59 (23.1) | 45 (24.1) | 24 (63.2) | 5 (33.3) | 3 (30) |
Sulfonylureas | 88 (13) | 40 (15.6) | 31 (16.6) | 9 (23.7) | 3 (20) | 3 (30) |
Meglitinides | 74 (11) | 49 (19.1) | 29 (15.5) | 6 (15.8) | 4 (26.7) | 3 (30) |
Alpha-glucosidase inhibitors | 74 (11) | 35 (13.7) | 25 (13.4) | 2 (5.3) | 1 (6.7) | 1 (10) |
Thiazolidinediones | 20 (3) | 17 (6.6) | 11 (5.9) | 1 (2.6) | 1 (6.7) | 1 (10) |
Insulins | 196 (29) | 147 (57.4) | 101 (54) | 10 (26.3) | 7 (46.7) | 5 (50) |
Number of Persons in Cohort | Number of Persons at Risk | Number of Events | Incidence Proportion (per 100 Persons) | |
---|---|---|---|---|
MDV | ||||
Hyperkalemia | 967 | 832 | 18 | 2.16 |
Hospitalization associated with hyperkalemia | 967 | 944 | 0 | 0 |
RWD Co. | ||||
Hyperkalemia | 62 | 37 | 1 | 2.70 |
Hospitalization associated with hyperkalemia | 62 | 48 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, A.; Rodriguez-Molina, D.; Yoshikawa-Ryan, K.; Yamashita, S.; Okami, S.; Liu, F.; Farjat, A.; Oberprieler, N.G.; Kovesdy, C.P.; Kanasaki, K.; et al. Early Clinical Experience of Finerenone in People with Chronic Kidney Disease and Type 2 Diabetes in Japan—A Multi-Cohort Study from the FOUNTAIN (FinerenOne mUltidatabase NeTwork for Evidence generAtIoN) Platform. J. Clin. Med. 2024, 13, 5107. https://doi.org/10.3390/jcm13175107
Sato A, Rodriguez-Molina D, Yoshikawa-Ryan K, Yamashita S, Okami S, Liu F, Farjat A, Oberprieler NG, Kovesdy CP, Kanasaki K, et al. Early Clinical Experience of Finerenone in People with Chronic Kidney Disease and Type 2 Diabetes in Japan—A Multi-Cohort Study from the FOUNTAIN (FinerenOne mUltidatabase NeTwork for Evidence generAtIoN) Platform. Journal of Clinical Medicine. 2024; 13(17):5107. https://doi.org/10.3390/jcm13175107
Chicago/Turabian StyleSato, Atsuhisa, Daloha Rodriguez-Molina, Kanae Yoshikawa-Ryan, Satoshi Yamashita, Suguru Okami, Fangfang Liu, Alfredo Farjat, Nikolaus G. Oberprieler, Csaba P. Kovesdy, Keizo Kanasaki, and et al. 2024. "Early Clinical Experience of Finerenone in People with Chronic Kidney Disease and Type 2 Diabetes in Japan—A Multi-Cohort Study from the FOUNTAIN (FinerenOne mUltidatabase NeTwork for Evidence generAtIoN) Platform" Journal of Clinical Medicine 13, no. 17: 5107. https://doi.org/10.3390/jcm13175107
APA StyleSato, A., Rodriguez-Molina, D., Yoshikawa-Ryan, K., Yamashita, S., Okami, S., Liu, F., Farjat, A., Oberprieler, N. G., Kovesdy, C. P., Kanasaki, K., & Vizcaya, D. (2024). Early Clinical Experience of Finerenone in People with Chronic Kidney Disease and Type 2 Diabetes in Japan—A Multi-Cohort Study from the FOUNTAIN (FinerenOne mUltidatabase NeTwork for Evidence generAtIoN) Platform. Journal of Clinical Medicine, 13(17), 5107. https://doi.org/10.3390/jcm13175107