Dermatological Neoplastic Diseases Complicating Treatment with Monoclonal Antibodies for Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Natalizumab (NTZ)
3.2. Anti CD20 mAbs
3.3. Alemtuzumab (ALZ)
4. Discussion
4.1. Natalizumab (NTZ)
4.2. Anti CD20 mAbs
4.3. Alemtuzumab
5. Conclusions
Funding
Conflicts of Interest
References
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef]
- Krajnc, N.; Bsteh, G.; Berger, T.; Mares, J.; Hartung, H.P. Monoclonal Antibodies in the Treatment of Relapsing Multiple Sclerosis: An Overview with Emphasis on Pregnancy, Vaccination, and Risk Management. Neurotherapeutics 2022, 19, 753–773. [Google Scholar] [CrossRef]
- Hartung, H.P.; Cree, B.A.C.; Barnett, M.; Meuth, S.G.; Bar-Or, A.; Steinman, L. Bioavailable central nervous system disease-modifying therapies for multiple sclerosis. Front. Immunol. 2023, 14, 1290666. [Google Scholar] [CrossRef]
- Voge, N.V.; Alvarez, E. Monoclonal Antibodies in Multiple Sclerosis: Present and Future. Biomedicines 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. FREEDOMS Study Group. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Lam, L.; Zhuang, Y.; Goh, R.; Kovoor, J.G.; Gupta, A.K.; Smith, W.B.; Slee, M.; Bacchi, S. Incidence and Characteristics of Melanoma in Multiple Sclerosis Patients Treated With Fingolimod: A Systematic Review. Curr. Derm. Rep. 2023, 12, 300–313. [Google Scholar] [CrossRef]
- Rudick, R.; Polman, C.; Clifford, D.; Miller, D.; Steinman, L. Natalizumab: Bench to bedside and beyond. JAMA Neurol. 2013, 70, 172–182. [Google Scholar] [CrossRef]
- Khoy, K.; Mariotte, D.; Defer, G.; Petit, G.; Toutirais, O.; Le Mauff, B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front. Immunol. 2020, 11, 549842. [Google Scholar] [CrossRef]
- Stüve, O.; Marra, C.M.; Jerome, K.R.; Cook, L.; Cravens, P.D.; Cepok, S.; Frohman, E.M.; Phillips, J.T.; Arendt, G.; Hemmer, B.; et al. Immune surveillance inmultiple sclerosis patients treated with natalizumab. Ann. Neurol. 2006, 59, 743–747. [Google Scholar]
- Tysabri: EPAR—Medicine Overview European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/product-information/tysabri-epar-product-information_en.pdf (accessed on 13 June 2024).
- Hellwig, K.; Gold, R. Progressive multifocal leukoencephalopathy and natalizumab. J. Neurol. 2011, 258, 1920–1928. [Google Scholar] [CrossRef]
- Polman, C.H.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; et al. AFFIRM Investigators. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 354, 899–910. [Google Scholar] [CrossRef]
- Butzkueven, H.; Kappos, L.; Wiendl, H.; Trojano, M.; Spelman, T.; Chang, I.; Kasliwal, R.; Jaitly, S.; Campbell, N.; Ho, P.R.; et al. Long-term safety and effectiveness of natalizumab treatment in clinical practice: 10 years of real-world data from the Tysabri Observational Program (TOP). J. Neurol. Neurosurg. Psychiatry 2020, 91, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Sabol, R.A.; Noxon, V.; Sartor, O.; Berger, J.R.; Qureshi, Z.; Raisch, D.W.; Norris, L.B.; Yarnold, P.R.; Georgantopoulos, P.; Hrushesky, W.J.; et al. Melanoma complicating treatment with natalizumab for multiple sclerosis: A report from the Southern Network on Adverse Reactions (SONAR). Cancer Med. 2017, 6, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Kelm, R.C.; Hagstrom, E.L.; Mathieu, R.J.; Orrell, K.A.; Serrano, L.; Mueller, K.A.; Laumann, A.E.; West, D.P.; Nardone, B. Melanoma subsequent to natalizumab exposure: A report from the RADAR (Research on Adverse Drug events And Reports) program. J. Am. Acad. Dermatol. 2019, 80, 820–821. [Google Scholar] [CrossRef]
- Castela, E.; Lebrun-Frenay, C.; Laffon, M.; Rocher, F.; Cohen, M.; Leccia, N.C.; Bahadoran, P.; Lacour, J.P.; Ortonne, J.P.; Passeron, T. Evolution of nevi during treatment with natalizumab: A prospective follow-up of patients treated with natalizumab for multiple sclerosis. Arch. Dermatol. 2011, 147, 72–76. [Google Scholar] [CrossRef]
- Pharaon, M.; Tichet, M.; Lebrun-Frénay, C.; Tartare-Deckert, S.; Passeron, T. Risk for Nevus Transformation and Melanoma Proliferation and Invasion During Natalizumab Treatment: Four Years of Dermoscopic Follow-up With Immunohistological Studies and Proliferation and Invasion Assays. JAMA Dermatol. 2014, 150, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Alping, P.; Askling, J.; Burman, J.; Fink, K.; Fogdell-Hahn, A.; Gunnarsson, M.; Hillert, J.; Langer-Gould, A.; Lycke, J.; Nilsson, P.; et al. Cancer Risk for Fingolimod, Natalizumab, and Rituximab in Multiple Sclerosis Patients. Ann. Neurol. 2020, 87, 688–699. [Google Scholar] [CrossRef]
- Foley, J.; Carrillo-Infante, C.; Smith, J.; Evans, K.; Ho, P.R.; Lee, L.; Kasliwal, R.; Stangel, M.; Vermersch, P.; Hutchinson, M.; et al. TYGRIS investigators. The 5-year Tysabri global observational program in safety (TYGRIS) study confirms the long-term safety profile of natalizumab treatment in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 39, 101863. [Google Scholar] [CrossRef]
- Lamb, Y.N. Ocrelizumab: A Review in Multiple Sclerosis. Drugs 2022, 82, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Ocrevus: EPAR—Medicine Overview European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/ocrevus (accessed on 20 December 2023).
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef]
- Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.-P.; Hemmer, B.; et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 2017, 376, 209–220. [Google Scholar] [CrossRef]
- Vermersch, P.; Oreja-Guevara, C.; Siva, A.; Van Wijmeersch, B.; Wiendl, H.; Wuerfel, J.; Buffels, R.; Kadner, K.; Kuenzel, T.; Comi, G. CASTING Investigators. Efficacy and safety of ocrelizumab in patients with relapsing-remitting multiple sclerosis with suboptimal response to prior disease-modifying therapies: A primary analysis from the phase 3b CASTING single-arm, open-label trial. Eur. J. Neurol. 2022, 29, 790–801. [Google Scholar] [CrossRef]
- Hauser, S.L.; Kappos, L.; Montalban, X.; Craveiro, L.; Chognot, C.; Hughes, R.; Koendgen, H.; Pasquarelli, N.; Pradhan, A.; Prajapati, K.; et al. Safety of Ocrelizumab in Patients with Relapsing and Primary Progressive Multiple Sclerosis. Neurology 2021, 97, e1546–e1559. [Google Scholar] [CrossRef] [PubMed]
- Smoot, K.; Chen, C.; Stuchiner, T.; Lucas, L.; Grote, L.; Cohan, S. Clinical outcomes of patients with multiple sclerosis treated with ocrelizumab in a US community MS center: An observational study. BMJ Neurol. Open 2021, 3, e000108. [Google Scholar] [CrossRef]
- Dirks, P.; Zingler, V.; Leemhuis, J.; Berthold, H.; Hieke-Schulz, S.; Wormser, D.; Ziemssen, T. Design of a non-interventional post-marketing study to assess the long-term safety and effectiveness of ocrelizumab in German real world multiple sclerosis cohorts—The CONFIDENCE study protocol. BMC Neurol. 2020, 20, 95. [Google Scholar] [CrossRef] [PubMed]
- Wormser, D.; Evershed, J.; Ferreira, G.; Stokmaier, D.; Wang, Q.; Ziemseen, T. VERISMO: A post-marketing safety study to determine the incidence of all malignancies and breast cancer in patients with multiple sclerosis treated with ocrelizumab (P4.2-043). Neurology 2019, 92 (Suppl. S15), P4.2. [Google Scholar]
- Weber, M.S.; Buttmann, M.; Meuth, S.G.; Dirks, P.; Muros-Le Rouzic, E.; Eggebrecht, J.C.; Hieke-Schulz, S.; Leemhuis, J.; Ziemssen, T. Safety, Adherence and Persistence in a Real-World Cohort of German MS Patients Newly Treated With Ocrelizumab: First Insights From the CONFIDENCE Study. Front. Neurol. 2022, 13, 863105. [Google Scholar] [CrossRef]
- Lebrun, C.; Vermersch, P.; Brassat, D.; Defer, G.; Rumbach, L.; Clavelou, P.; Debouverie, M.; de Seze, J.; Wiertlevsky, S.; Heinzlef, O.; et al. Cancer and multiple sclerosis in the era of disease-modifying treatments. J. Neurol. 2011, 258, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Stamatellos, V.; Siafis, S.; Papazisis, G. Disease-modifying agents for multiple sclerosis and the risk for reporting cancer: A disproportionality analysis using the US Food and Drug Administration Adverse Event Reporting System database. Br. J. Clin. Pharmacol. 2021, 87, 4769–4779. [Google Scholar] [CrossRef]
- Dolladille, C.; Chrétien, B.; Peyro-Saint-Paul, L.; Alexandre, J.; Dejardin, O.; Fedrizzi, S.; Defer, G. Association Between Disease-Modifying Therapies Prescribed to Persons with Multiple Sclerosis and Cancer: A WHO Pharmacovigilance Database Analysis. Neurotherapeutics 2021, 18, 1657–1664. [Google Scholar] [CrossRef]
- Hauser, S.L.; Kappos, L.; Bar-Or, A.; Wiendl, H.; Paling, D.; Williams, M.; Gold, R.; Chan, A.; Milo, R.; Das Gupta, A.; et al. The Development of Ofatumumab, a Fully Human Anti-CD20 Monoclonal Antibody for Practical Use in Relapsing Multiple Sclerosis Treatment. Neurol. Ther. 2023, 12, 1491–1515. [Google Scholar] [CrossRef]
- Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; et al. ASCLEPIOS I and ASCLEPIOS II Trial Groups. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N. Engl. J. Med. 2020, 383, 546–557. [Google Scholar] [CrossRef]
- Hauser, S.L.; Zielman, R.; Das Gupta, A.; Xi, J.; Stoneman, D.; Karlsson, G.; Robertson, D.; Cohen, J.A.; Kappos, L. Efficacy and safety of four-year ofatumumab treatment in relapsing multiple sclerosis: The ALITHIOS open-label extension. Mult. Scler. 2023, 29, 1452–1464. [Google Scholar] [CrossRef]
- Mariottini, A.; Muraro, P.A.; Lünemann, J.D. Antibody-mediated cell depletion therapies in multiple sclerosis. Front. Immunol. 2022, 13, 953649. [Google Scholar] [CrossRef] [PubMed]
- Evan, J.R.; Bozkurt, S.; Thomas, N.C.; Bagnato, F. Alemtuzumab for the treatment of multiple sclerosis. Expert Opin. Biol. Ther. 2018, 18, 323–334. [Google Scholar] [CrossRef] [PubMed]
- CAMMS223 Trial Investigators; Coles, A.J.; Compston, D.A.; Selmaj, K.W.; Lake, S.L.; Moran, S.; Margolin, D.H.; Norris, K.; Tandon, P.K. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N. Engl. J. Med. 2008, 359, 1786–1801. [Google Scholar]
- Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012, 380, 1819–1828. [Google Scholar] [CrossRef]
- Coles, A.J.; Twyman, C.L.; Arnold, D.L.; Cohen, J.A.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet 2012, 380, 1829–1839. [Google Scholar] [CrossRef]
- Theodorsdottir, A.; Debrabant, B.; Magyari, M.; Kant, M.; Rasmussen, P.V.; Malmberg, C.F.; Norberg, I.A.; Hansen, V.; Bech, D.; Schmidt, M.F.; et al. Alemtuzumab treatment in Denmark: A national study based on the Danish Multiple Sclerosis Registry. Mult. Scler. 2021, 27, 2254–2266. [Google Scholar] [CrossRef] [PubMed]
- Pace, A.A.; Zajicek, J.P. Melanoma following treatment with alemtuzumab for multiple sclerosis. Eur. J. Neurol. 2009, 16, e70-1. [Google Scholar] [CrossRef]
- Fiegl, M.; Falkner, A.; Hopfinger, G.; Brugger, S.; Zabernigg, A.; Bauer, F.; Haslbauer, F.; Demirtas, D.; Grossschmidt, P.; Tatzreiter, G.; et al. for the Austrian Collaborative Study Group on Alemtuzumab in Chronic Lymphocytic Leukaemia. Routine clinical use of alemtuzumab in patients with heavily pretreated B-cell chronic lymphocytic leukemia. Cancer 2006, 107, 2408–2416. [Google Scholar] [CrossRef]
- Havrdova, E.; Arnold, D.L.; Cohen, J.A.; Hartung, H.P.; Fox, E.J.; Giovannoni, G.; Schippling, S.; Selmaj, K.W.; Traboulsee, A.; Compston, D.A.S.; et al. Alemtuzumab CARE-MS I 5-year follow-up: Durable efficacy in the absence of continuous MS therapy. Neurology 2017, 89, 1107–1116. [Google Scholar] [CrossRef]
- Coles, A.J.; Arnold, D.L.; Bass, A.D.; Boster, A.L.; Compston, D.A.S.; Fernández, Ó.; Havrdová, E.K.; Nakamura, K.; Traboulsee, A.; Ziemssen, T.; et al. Efficacy and safety of alemtuzumab over 6 years: Final results of the 4-year CARE-MS extension trial. Ther. Adv. Neurol. Disord. 2021, 14, 1756286420982134. [Google Scholar] [CrossRef] [PubMed]
- Okai, A.F.; Amezcua, L.; Berkovich, R.R.; Chinea, A.R.; Edwards, K.R.; Steingo, B.; Walker, A.; Jacobs, A.K.; Daizadeh, N.; Williams; et al. Efficacy and Safety of Alemtuzumab in Patients of African Descent with Relapsing-Remitting Multiple Sclerosis: 8-Year Follow-up of CARE-MS I and II (TOPAZ Study). Neurol. Ther. 2019, 8, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Rofstad, E.K. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J. Exp. Clin. Cancer Res. 2018, 37, 92. [Google Scholar] [CrossRef]
- Schlesinger, M.; Roblek, M.; Ortmann, K.; Naggi, A.; Torri, G.; Borsig, L.; Bendas, G. The role of VLA-4 binding for experimental melanoma metastasis and its inhibition by heparin. Thromb. Res. 2014, 133, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Garmy-Susini, B.; Avraamides, C.J.; Schmid, M.C.; Foubert, P.; Ellies, L.G.; Barnes, L.; Feral, C.; Papayannopoulou, T.; Lowy, A.; Blair, S.L.; et al. Integrin alpha4beta1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res. 2010, 70, 3042–3051. [Google Scholar] [CrossRef]
- Qian, F.; Vaux, D.L.; Weissman, I.L. Expression of the integrin alpha 4 beta 1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 1994, 77, 335–347. [Google Scholar] [CrossRef]
- Carbone, M.L.; Lacal, P.M.; Messinese, S.; De Giglio, L.; Pozzilli, C.; Persechino, S.; Mazzanti, C.; Failla, C.M.; Pagnanelli, G. Multiple Sclerosis Treatment and Melanoma Development. Int. J. Mol. Sci. 2020, 21, 2950. [Google Scholar] [CrossRef]
- Gandoglia, I.; Ivaldi, F.; Carrega, P.; Armentani, E.; Ferlazzo, G.; Mancardi, G.; Kerlero de Rosbo, N.; Uccelli, A.; Laroni, A. In vitro VLA-4 blockade results in an impaired NK cell-mediated immune surveillance against melanoma. Immunol. Lett. 2017, 181, 109–115. [Google Scholar] [CrossRef]
- Kimura, K.; Nakamura, M.; Sato, W.; Okamoto, T.; Araki, M.; Lin, Y.; Murata, M.; Takahashi, R.; Yamamura, T. Disrupted balance of T cells under natalizumab treatment in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e210. [Google Scholar] [CrossRef]
- Nizar, S.; Meyer, B.; Galustian, C.; Kumar, D.; Dalgleish, A. T regulatory cells, the evolution of targeted immunotherapy. Biochim. Biophys. Acta 2010, 1806, 7–17. [Google Scholar] [CrossRef]
- Jacobs, J.F.; Nierkens, S.; Figdor, C.G.; de Vries, I.J.; Adema, G.J. Regulatory T cells in melanoma: The final hurdle towards effective immunotherapy? Lancet Oncol. 2012, 13, e32–e42. [Google Scholar] [CrossRef] [PubMed]
- Ladányi, A.; Kiss, J.; Mohos, A.; Somlai, B.; Liszkay, G.; Gilde, K.; Fejös, Z.; Gaudi, I.; Dobos, J.; Tímár, J. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol. Immunother. 2011, 60, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Erdag, G.; Schaefer, J.T.; Smolkin, M.E.; Deacon, D.H.; Shea, S.M.; Dengel, L.T.; Patterson, J.W.; Slingluff, C.L. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012, 72, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Garg, K.; Maurer, M.; Griss, J.; Brüggen, M.C.; Wolf, I.H.; Wagner, C.; Willi, N.; Mertz, K.D.; Wagner, S.N. Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum. Pathol. 2016, 54, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.R.; Elsers, D.A.; Fadel, S.A.; Omar, A.E. Immunohistological characterisation of tumour infiltrating lymphocytes in melanocytic skin lesions. J. Clin. Pathol. 2006, 59, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rodriguez, M.; Thompson, A.K.; Monteagudo, C. A significant percentage of CD20-positive TILs correlates with poor prognosis in patients with primary cutaneous malignant melanoma. Histopathology 2014, 65, 726–728. [Google Scholar] [CrossRef]
- Chiaruttini, G.; Mele, S.; Opzoomer, J.; Crescioli, S.; Ilieva, K.M.; Lacy, K.E.; Karagiannis, S.N. B cells and the humoral response in melanoma: The overlooked players of the tumor microenvironment. OncoImmunology 2017, 6, 4. [Google Scholar] [CrossRef]
- Kok, L.F.; Ferguson, A.L.; Marshall, J.E.; Tse, B.C.Y.; Halliday, G.M.; Byrne, S.N. B Cell-Targeted Immunotherapy Limits Tumor Growth, Enhances Survival, and Prevents Lymph Node Metastasis of UV-Induced Keratinocyte Cancers in Mice. J. Invest. Dermatol. 2020, 140, 1459–1463. [Google Scholar] [CrossRef]
- Byrne, S.N.; Halliday, G.M. B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. J. Invest. Dermatol. 2005, 124, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Alatrash, G.; Albitar, M.; O’Brien, S.; Wang, X.; Manshouri, T.; Faderl, S.; Ferrajoli, A.; Burger, J.; Garcia-Manero, G.; Kantarjian, H.M.; et al. Circulating CD52 and CD20 levels at end of treatment predict for progression and survival in patients with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab (FCR). Br. J. Haematol. 2010, 148, 386–393. [Google Scholar] [CrossRef]
- Albitar, M.; Do, K.A.; Johnson, M.M.; Giles, F.J.; Jilani, I.; O’Brien, S.; Cortes, J.; Thomas, D.; Rassenti, L.Z.; Kipps, T.J.; et al. Free circulating soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its implication in therapy with anti-CD52 antibodies. Cancer 2004, 101, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, G.; Sui, Y.; Yang, Z.; Chu, Y.; Tang, H.; Guo, B.; Zhang, C.; Wu, C. CD52 Is a Prognostic Biomarker and Associated With Tumor Microenvironment in Breast Cancer. Front. Genet. 2020, 11, 578002. [Google Scholar] [CrossRef] [PubMed]
- de Vos-Hillebrand, L.; Fietz, S.; Hillebrand, P.; Kulcsár, Z.; Diop, M.Y.; Hollick, S.; Maas, A.P.; Strieth, S.; Landsberg, J.; Dietrich, D. CD52 mRNA expression predicts prognosis and response to immune checkpoint blockade in melanoma. Pigment. Cell Melanoma Res. 2024, 37, 309–315. [Google Scholar] [CrossRef] [PubMed]
Monoclonal Antibody | Study | Skin Malignancies |
---|---|---|
NATALIZUMAB | AFFIRM [12] | 1 metastatic melanoma |
TOP [13] | 2 basal cell carcinomas, 2 melanomas in situ, 1 lentigo maligna, 1 choroidal melanoma 1 ocular melanoma | |
SONAR [14] | 137 melanomas (from FAERS) 7 melanomas (from peer-reviewed publications) | |
RADAR [15] | 205 melanomas (from FAERS) 78 melanomas (from EudraVigilance) 3 melanomas (from NMEDW) | |
Castela et al. [16] | No changes in 248 pigmented lesions | |
Pharaon et al. [17] | No changes in 775 melanocytic skin lesions | |
Alping et al. [18] | 2 melanomas | |
TYGRIS [19] | 10 basal cell carcinomas 13 melanomas | |
OCRELIZUMAB | OPERA [22] | 1 melanoma in EP: 1 melanoma and 2 basal cell carcinoma |
ORATORIO [23] | 3 basal cell carcinomas in EP: 1 squamous-cell carcinoma and 1 basal cell carcinoma | |
CASTING [24] | 1 basal cell carcinoma | |
Smoot et al. [26] | 4 basal cell carcinomas 1 melanoma | |
CONFIDENCE [27] | 3 melanomas, 2 basal cell carcinoma, 1 squamous cell carcinoma of the skin | |
OFATUMUMAB | ASCLEPIOS [34] | 2 basal cell carcinomas 1 melanoma |
ALEMTUZUMAB | CARE-MS I–II [38,39,40] | 6 basal cell carcinomas 4 melanomas |
CAMMS03409 and TOPAZ [44,46] | 2 melanomas |
Strengths | Weaknesses |
---|---|
|
|
Opportunities | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bile, F.; Sparaco, M.; Ruocco, E.; Miele, G.; Maida, E.; Vele, R.; Mele, D.; Bonavita, S.; Lavorgna, L. Dermatological Neoplastic Diseases Complicating Treatment with Monoclonal Antibodies for Multiple Sclerosis. J. Clin. Med. 2024, 13, 5133. https://doi.org/10.3390/jcm13175133
Bile F, Sparaco M, Ruocco E, Miele G, Maida E, Vele R, Mele D, Bonavita S, Lavorgna L. Dermatological Neoplastic Diseases Complicating Treatment with Monoclonal Antibodies for Multiple Sclerosis. Journal of Clinical Medicine. 2024; 13(17):5133. https://doi.org/10.3390/jcm13175133
Chicago/Turabian StyleBile, Floriana, Maddalena Sparaco, Eleonora Ruocco, Giuseppina Miele, Elisabetta Maida, Renato Vele, Davide Mele, Simona Bonavita, and Luigi Lavorgna. 2024. "Dermatological Neoplastic Diseases Complicating Treatment with Monoclonal Antibodies for Multiple Sclerosis" Journal of Clinical Medicine 13, no. 17: 5133. https://doi.org/10.3390/jcm13175133
APA StyleBile, F., Sparaco, M., Ruocco, E., Miele, G., Maida, E., Vele, R., Mele, D., Bonavita, S., & Lavorgna, L. (2024). Dermatological Neoplastic Diseases Complicating Treatment with Monoclonal Antibodies for Multiple Sclerosis. Journal of Clinical Medicine, 13(17), 5133. https://doi.org/10.3390/jcm13175133