Validation of an Artificial Intelligence-Based Model for Early Childhood Caries Detection in Dental Photographs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dental Images
2.2. Dental Image Evaluation (Reference Test)
2.3. AI-Based Image Evaluation (Test Method)
2.4. Data Management and Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Oral Disorders Collaborators; Bernabe, E.; Marcenes, W.; Hernandez, C.R.; Bailey, J.; Abreu, L.G.; Alipour, V.; Amini, S.; Arabloo, J.; Arefi, Z.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.J.; Bernabe, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Uribe, S.E.; Innes, N.; Maldupa, I. The global prevalence of early childhood caries: A systematic review with meta-analysis using the WHO diagnostic criteria. Int. J. Paediatr. Dent. 2021, 31, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Dye, B.A.; Hsu KL, C.; Afful, J. Prevalence and Measurement of Dental Caries in Young Children. Pediatr. Dent. 2015, 37, 200–216. [Google Scholar]
- Tinanoff, N.; Baez, R.J.; Diaz Guillory, C.; Donly, K.J.; Feldens, C.A.; McGrath, C.; Phantumvanit, P.; Pitts, N.B.; Seow, W.K.; Sharkov, N.; et al. Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: Global perspective. Int. J. Paediatr. Dent. 2019, 29, 238–248. [Google Scholar] [CrossRef]
- Seow, W.K. Early Childhood Caries. Pediatr. Clin. N. Am. 2018, 65, 941–954. [Google Scholar] [CrossRef]
- American Academy of Pediatric Dentistry. Policy on early childhood caries (ECC): Classifications, consequences, and preventive strategies. In The Reference Manual of Pediatric Dentistry; American Academy of Pediatric Dentistry: Chicago, IL, USA, 2020; pp. 79–81. [Google Scholar]
- Wyne, A.H. Early childhood caries: Nomenclature and case definition. Community Dent. Oral Epidemiol. 1999, 27, 313–315. [Google Scholar] [CrossRef]
- Ekstrand, K.R. Improving clinical visual detection--potential for caries clinical trials. J. Dent. Res. 2004, 83, C67–C71. [Google Scholar] [CrossRef]
- Ekstrand, K.R.; Gimenez, T.; Ferreira, F.R.; Mendes, F.M.; Braga, M.M. The International Caries Detection and Assessment System—ICDAS: A Systematic Review. Caries Res. 2018, 52, 406–419. [Google Scholar] [CrossRef]
- Ekstrand, K.R.; Ricketts, D.N.; Kidd, E.A. Reproducibility and accuracy of three methods for assessment of demineralization depth of the occlusal surface: An in vitro examination. Caries Res. 1997, 31, 224–231. [Google Scholar] [CrossRef]
- Kühnisch, J.; Goddon, I.; Berger, S.; Senkel, H.; Bücher, K.; Oehme, T.; Hickel, R.; Heinrich-Weltzien, R. Development, methodology and potential of the new Universal Visual Scoring System (UniViSS) for caries detection and diagnosis. Int. J. Environ. Res. Public Health 2009, 6, 2500–2509. [Google Scholar] [CrossRef] [PubMed]
- Nyvad, B.; Machiulskiene, V.; Baelum, V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res. 1999, 33, 252–260. [Google Scholar] [CrossRef]
- Felsch, M.; Meyer, O.; Schlickenrieder, A.; Engels, P.; Schonewolf, J.; Zollner, F.; Heinrich-Weltzien, R.; Hesenius, M.; Hickel, R.; Gruhn, V.; et al. Detection and localization of caries and hypomineralization on dental photographs with a vision transformer model. NPJ Digit. Med. 2023, 6, 198. [Google Scholar] [CrossRef]
- Yoon, K.; Jeong, H.M.; Kim, J.W.; Park, J.H.; Choi, J. AI-based dental caries and tooth number detection in intraoral photos: Model development and performance evaluation. J. Dent. 2024, 141, 104821. [Google Scholar] [CrossRef]
- Thanh, M.T.G.; Van Toan, N.; Ngoc, V.T.N.; Tra, N.T.; Giap, C.N.; Nguyen, D.M. Deep Learning Application in Dental Caries Detection Using Intraoral Photos Taken by Smartphones. Appl. Sci. 2022, 12, 5504. [Google Scholar] [CrossRef]
- Al-Jallad, N.; Ly-Mapes, O.; Hao, P.; Ruan, J.; Ramesh, A.; Luo, J.; Wu, T.T.; Dye, T.; Rashwan, N.; Ren, J.; et al. Artificial intelligence-powered smartphone application, AICaries, improves at-home dental caries screening in children: Moderated and unmoderated usability test. PLoS Digit. Health 2022, 1, e0000046. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhang, H.; Zhou, S.; Lu, M.; Huang, J.; Huang, Q.; Huang, B.; Ding, J. Simultaneous detection of dental caries and fissure sealant in intraoral photos by deep learning: A pilot study. BMC Oral Health 2024, 24, 553. [Google Scholar] [CrossRef]
- Chaves, E.T.; Vinayahalingam, S.; van Nistelrooij, N.; Xi, T.; Romero, V.H.D.; Flugge, T.; Saker, H.; Kim, A.; Lima, G.D.S.; Loomans, B.; et al. Detection of caries around restorations on bitewings using deep learning. J. Dent. 2024, 143, 104886. [Google Scholar] [CrossRef] [PubMed]
- Azhari, A.A.; Helal, N.; Sabri, L.M.; Abduljawad, A. Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition. Digit. Health 2023, 9, 20552076231216681. [Google Scholar] [CrossRef]
- Ma, T.; Zhu, J.; Wang, D.; Xu, Z.; Bai, H.; Ding, P.; Chen, X.; Xia, B. Deep learning-based detection of irreversible pulpitis in primary molars. Int. J. Paediatr. Dent. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Caliskan, S.; Tuloglu, N.; Celik, O.; Ozdemir, C.; Kizilaslan, S.; Bayrak, S. A pilot study of a deep learning approach to submerged primary tooth classification and detection. Int. J. Comput. Dent. 2021, 24, 1–9. [Google Scholar] [CrossRef]
- Kaya, E.; Gunec, H.G.; Gokyay, S.S.; Kutal, S.; Gulum, S.; Ates, H.F. Proposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographs. J. Clin. Pediatr. Dent. 2022, 46, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Hwang, J.J.; Jung, Y.H.; Jeong, T.; Shin, J. Automated Mesiodens Classification System Using Deep Learning on Panoramic Radiographs of Children. Diagnostics 2021, 11, 1477. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.J.; Ha, E.G.; Choi, H.; Lee, C.; Han, S.S. Performance comparison of three deep learning models for impacted mesiodens detection on periapical radiographs. Sci. Rep. 2022, 12, 15402. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, J.J.; Jeong, T.; Cho, B.H.; Shin, J. Deep learning-based identification of mesiodens using automatic maxillary anterior region estimation in panoramic radiography of children. Dentomaxillofac. Radiol. 2022, 51, 20210528. [Google Scholar] [CrossRef]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ 2015, 351, h5527. [Google Scholar] [CrossRef]
- Schwendicke, F.; Singh, T.; Lee, J.H.; Gaudin, R.; Chaurasia, A.; Wiegand, T.; Uribe, S.; Krois, J.; on behalf of the IADR e-oral health network and the ITU WHO focus group AI for Health. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J. Dent. 2021, 107, 103610. [Google Scholar] [CrossRef]
- Kühnisch, J.; Bücher, K.; Henschel, V.; Albrecht, A.; Garcia-Godoy, F.; Mansmann, U.; Hickel, R.; Heinrich-Weltzien, R. Diagnostic performance of the universal visual scoring system (UniViSS) on occlusal surfaces. Clin. Oral Investig. 2011, 15, 215–223. [Google Scholar] [CrossRef]
- Pitts, N.B. How the detection, assessment, diagnosis and monitoring of caries integrate with personalized caries management. Monogr. Oral Sci. 2009, 21, 1–14. [Google Scholar] [CrossRef]
- Kühnisch, J.; Janjic Rankovic, M.; Kapor, S.; Schüler, I.; Krause, F.; Michou, S.; Ekstrand, K.; Eggmann, F.; Lussi, A.; Neuhaus, K.; et al. Identifying and avoiding risk of bias in caries diagnostic studies. J. Clin. Med. 2021, 15, 3223. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, H.; Xiao, J.; Jallad, N.A.; Ly-Mapes, O.; Luo, J. A Smartphone-Based System for Real-Time Early Childhood Caries Diagnosis. In Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 233–242. [Google Scholar]
- Zhang, X.; Liang, Y.; Li, W.; Liu, C.; Gu, D.; Sun, W.; Miao, L. Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis. 2022, 28, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Park, E.Y.; Cho, H.; Kang, S.; Jeong, S.; Kim, E.K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Moharrami, M.; Farmer, J.; Singhal, S.; Watson, E.; Glogauer, M.; Johnson, A.E.W.; Schwendicke, F.; Quinonez, C. Detecting dental caries on oral photographs using artificial intelligence: A systematic review. Oral Dis. 2023, 30, 1765–1783. [Google Scholar] [CrossRef]
- Ines Meurer, M.; Caffery, L.J.; Bradford, N.K.; Smith, A.C. Accuracy of dental images for the diagnosis of dental caries and enamel defects in children and adolescents: A systematic review. J. Telemed. Telecare 2015, 21, 449–458. [Google Scholar] [CrossRef]
- Bottenberg, P.; Jacquet, W.; Behrens, C.; Stachniss, V.; Jablonski-Momeni, A. Comparison of occlusal caries detection using the ICDAS criteria on extracted teeth or their photographs. BMC Oral Health 2016, 16, 93. [Google Scholar] [CrossRef] [PubMed]
Caries Detection | Visual Evaluation (Reference Test) | |||
---|---|---|---|---|
Healthy | Caries | |||
AI-based evaluation (Test method) | Healthy | 35 | 3 | NPV = 92.1% |
Caries | 1 | 104 | PPV = 99.0% | |
SP = 97.2% | SE = 97.2% | ACC = 97.2% |
Caries Classification | Visual Evaluation (Reference Test) | ||||||
---|---|---|---|---|---|---|---|
Healthy * | Noncavitated Caries Lesion | Greyish Translucency/ Microcavity | Cavitation | Destructed Tooth | ∑ | ||
AI-based evaluation (Test method) | Healthy * | 35 | 1 | 0 | 2 | 1 | 39 |
Noncavitated caries lesion | 2 | 66 | 5 | 19 | 1 | 93 | |
Greyish translucency/Microcavity | 0 | 0 | 11 | 5 | 0 | 16 | |
Cavitation | 0 | 0 | 0 | 71 | 1 | 72 | |
Destructed tooth | 0 | 0 | 0 | 2 | 39 | 41 | |
∑ | 37 | 67 | 16 | 99 | 42 | 261 |
Healthy | Noncavitated Caries Lesion | Greyish Translucency/ Microcavity | Cavitation | Destructed Tooth | |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | |
True positives | 35 (13.4) | 66 (25.3) | 11 (4.2) | 71 (27.2) | 39 (14.9) |
True negatives | 220 (84.3) | 167 (64.0) | 240 (92.0) | 161 (61.7) | 217 (83.1) |
False positives | 4 (1.5) | 27 (10.3) | 5 (1.9) | 1 (0.4) | 2 (0.8) |
False negatives | 2 (0.8) | 1 (0.4) | 5 (1.9) | 28 (10.7) | 3 (1.2) |
∑ | 261 (100.0) | 261 (100.0) | 261 (100.0) | 261 (100.0) | 261 (100.0) |
Healthy | Noncavitated Caries Lesion | Greyish Translucency/ Microcavity | Cavitation | Destructed Tooth | |
---|---|---|---|---|---|
ACC (in %) | 97.7 | 89.3 | 96.2 | 88.9 | 98.1 |
SE (in %) | 94.6 | 98.5 | 68.8 | 71.7 | 92.9 |
SP (in %) | 98.2 | 86.1 | 98.0 | 99.4 | 99.1 |
PPV (in %) | 89.7 | 71.0 | 68.8 | 98.6 | 95.1 |
NPV (in %) | 99.1 | 99.4 | 98.0 | 85.2 | 98.6 |
AUC | 0.964 | 0.923 | 0.834 | 0.855 | 0.960 |
Healthy * | Noncavitated Caries Lesion | Greyish Translucency /Microcavity | Cavitation | Destructed Tooth | ∑ | |
---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Incorrect | 4 (1.5) | 2 (0.8) | - | - | - | 6 (2.3) |
Correct | - | 91 (34.9) | 16 (6.1) | 72 (27.6) | 41 (15.7) | 220 (84.3) |
Healthy * | 35 (13.4) | - | - | - | - | 35 (13.4) |
∑ | 39 (14.9) | 93 (35.7) | 16 (6.1) | 72 (27.6) | 41 (15.7) | 261 (100.0) |
Healthy * | Noncavitated Caries Lesion | Greyish Translucency /Microcavity | Cavitation | Destructed Tooth | ∑ | |
---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Incorrect | 4 (1.5) | 2 (0.8) | 1 (0.4) | 3 (1.2) | 1 (0.4) | 11 (4.3) |
Partially correct | - | 31 (11.9) | 9 (3.4) | 36 (13.8) | 25 (9.6) | 101 (38.7) |
Fully correct | - | 60 (23.0) | 6 (2.3) | 33 (12.6) | 15 (5.7) | 114 (43.6) |
Healthy * | 35 (13.4) | - | - | - | - | 35 (13.4) |
∑ | 39 (14.9) | 93 (35.7) | 16 (6.1) | 72 (27.6) | 41 (15.7) | 261 (100.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarzmaier, J.; Frenkel, E.; Neumayr, J.; Ammar, N.; Kessler, A.; Schwendicke, F.; Kühnisch, J.; Dujic, H. Validation of an Artificial Intelligence-Based Model for Early Childhood Caries Detection in Dental Photographs. J. Clin. Med. 2024, 13, 5215. https://doi.org/10.3390/jcm13175215
Schwarzmaier J, Frenkel E, Neumayr J, Ammar N, Kessler A, Schwendicke F, Kühnisch J, Dujic H. Validation of an Artificial Intelligence-Based Model for Early Childhood Caries Detection in Dental Photographs. Journal of Clinical Medicine. 2024; 13(17):5215. https://doi.org/10.3390/jcm13175215
Chicago/Turabian StyleSchwarzmaier, Julia, Elisabeth Frenkel, Julia Neumayr, Nour Ammar, Andreas Kessler, Falk Schwendicke, Jan Kühnisch, and Helena Dujic. 2024. "Validation of an Artificial Intelligence-Based Model for Early Childhood Caries Detection in Dental Photographs" Journal of Clinical Medicine 13, no. 17: 5215. https://doi.org/10.3390/jcm13175215
APA StyleSchwarzmaier, J., Frenkel, E., Neumayr, J., Ammar, N., Kessler, A., Schwendicke, F., Kühnisch, J., & Dujic, H. (2024). Validation of an Artificial Intelligence-Based Model for Early Childhood Caries Detection in Dental Photographs. Journal of Clinical Medicine, 13(17), 5215. https://doi.org/10.3390/jcm13175215