Vitiligo: From Pathogenesis to Treatment
Abstract
:1. Introduction
1.1. Pathogenesis
1.1.1. Vitiligo (Non-Segmental)
Melanocyte-Specific T Cells
Melanocyte Reservoirs
Memory T Cells
Memory Tregs
1.1.2. Segmental Vitiligo
2. Treatments
2.1. Topical Treatments
2.1.1. Topical Treatments Targeting the Immune Response
2.1.2. (Topical) Treatments Stimulating Melanocytes
2.2. Systemic Treatments
2.2.1. Systemic Treatments Targeting the Immune Response
2.2.2. Systemic Treatments Stimulating Melanocytes
3. Future Treatment Options
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- van Geel, N.; Speeckaert, R.; Taïeb, A.; Ezzedine, K.; Lim, H.W.; Pandya, A.G.; Passeron, T.; Wolkerstorfer, A.; Abdallah, M.; Alomar, A.; et al. Worldwide Expert Recommendations for the Diagnosis and Management of Vitiligo: Position Statement from the International Vitiligo Task Force Part 1: Towards a New Management Algorithm. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2173–2184. [Google Scholar] [CrossRef]
- Kumar, R.; Parsad, D. Melanocytorrhagy and Apoptosis in Vitiligo: Connecting Jigsaw Pieces. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 19–23. [Google Scholar] [CrossRef]
- Dong, B.-Q.; Liao, Z.-K.; Le, Y.; Jiang, S.; Luo, L.-F.; Miao, F.; Le Poole, I.C.; Lei, T.-C. Acceleration of Melanocyte Senescence by the Proinflammatory Cytokines IFNγ and TNFα Impairs the Repigmentation Response of Vitiligo Patients to Narrowband Ultraviolet B (NBUVB) Phototherapy. Mech. Ageing Dev. 2023, 211, 111779. [Google Scholar] [CrossRef] [PubMed]
- Al Abadie, M.S.; Gawkrodger, D.J. Integrating Neuronal Involvement into the Immune and Genetic Paradigm of Vitiligo. Clin. Exp. Dermatol. 2021, 46, 646–650. [Google Scholar] [CrossRef]
- Maeda, Y.; Nishikawa, H.; Sugiyama, D.; Ha, D.; Hamaguchi, M.; Saito, T.; Nishioka, M.; Wing, J.B.; Adeegbe, D.; Katayama, I.; et al. Detection of Self-Reactive CD8+ T Cells with an Anergic Phenotype in Healthy Individuals. Science 2014, 346, 1536–1540. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Boussemart, L.; Mateus, C.; Routier, E.; Boutros, C.; Cazenave, H.; Viollet, R.; Thomas, M.; Roy, S.; Benannoune, N.; et al. Association of Vitiligo with Tumor Response in Patients with Metastatic Melanoma Treated with Pembrolizumab. JAMA Dermatol. 2016, 152, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Lommerts, J.E.; Teulings, H.-E.; Ezzedine, K.; van Geel, N.; Hartmann, A.; Speeckaert, R.; Spuls, P.I.; Wolkerstorfer, A.; Luiten, R.M.; Bekkenk, M.W. Melanoma-Associated Leukoderma and Vitiligo Cannot Be Differentiated Based on Blinded Assessment by Experts in the Field. J. Am. Acad. Dermatol. 2016, 75, 1198–1204. [Google Scholar] [CrossRef]
- Hartmann, A.; Bedenk, C.; Keikavoussi, P.; Becker, J.C.; Hamm, H.; Bröcker, E.-B. Vitiligo and Melanoma-Associated Hypopigmentation (MAH): Shared and Discriminative Features. JDDG J. Dtsch. Dermatol. Ges. 2008, 6, 1053–1059. [Google Scholar] [CrossRef]
- Teulings, H.E.; Lommerts, J.E.; Wolkerstorfer, A.; Nieuweboer-Krobotova, L.; Luiten, R.M.; Bekkenk, M.W.; van der Veen, J.P.W. Vitiligo-like Depigmentations as the First Sign of Melanoma: A Retrospective Case Series from a Tertiary Vitiligo Centre. Br. J. Dermatol. 2017, 176, 503–506. [Google Scholar] [CrossRef]
- Teulings, H.E.; Overkamp, M.; Ceylan, E.; Nieuweboer-Krobotova, L.; Bos, J.D.; Nijsten, T.; Wolkerstorfer, A.W.; Luiten, R.M.; van der Veen, J.P.W. Decreased Risk of Melanoma and Nonmelanoma Skin Cancer in Patients with Vitiligo: A Survey among 1307 Patients and Their Partners. Br. J. Dermatol. 2013, 168, 162–171. [Google Scholar] [CrossRef]
- Ferguson, J.; Eleftheriadou, V.; Nesnas, J. Risk of Melanoma and Nonmelanoma Skin Cancer in People with Vitiligo: United Kingdom Population-Based Cohort Study. J. Investig. Dermatol. 2023, 143, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Rooker, A.; Ouwerkerk, W.; Bekkenk, M.W.; Luiten, R.M.; Bakker, W.J. The Risk of Keratinocyte Cancer in Vitiligo and the Potential Mechanisms Involved. J. Investig. Dermatol. 2024, 144, 234–242. [Google Scholar] [CrossRef]
- Florell, S.R.; Zone, J.J.; Gerwels, J.W. Basal Cell Carcinomas Are Populated by Melanocytes and Langerhans [Correction of Langerhan’s] Cells. Am. J. Dermatopathol. 2001, 23, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Molotkov, I.; Klebanov, N.; Shaughnessy, M.; Daly, M.J.; Artomov, M.; Tsao, H. Mendelian Randomization Analysis Reveals Inverse Genetic Risks between Skin Cancers and Vitiligo. JID Innov. 2023, 3, 100217. [Google Scholar] [CrossRef]
- Hoisnard, L.; Lebrun-Vignes, B.; Maury, S.; Mahevas, M.; El Karoui, K.; Roy, L.; Zarour, A.; Michel, M.; Cohen, J.L.; Amiot, A.; et al. Adverse Events Associated with JAK Inhibitors in 126,815 Reports from the WHO Pharmacovigilance Database. Sci. Rep. 2022, 12, 7140. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Zhang, W.; Li, S.; Chen, X.; Chang, Y.; Yi, X.; Kang, P.; Yang, Y.; Chen, J.; Liu, L.; et al. Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. J. Investig. Dermatol. 2019, 139, 2174–2184.e4. [Google Scholar] [CrossRef]
- Speeckaert, R.; Voet, S.; Hoste, E.; van Geel, N. S100B Is a Potential Disease Activity Marker in Nonsegmental Vitiligo. J. Investig. Dermatol. 2017, 137, 1445–1453. [Google Scholar] [CrossRef]
- Mosenson, J.A.; Flood, K.; Klarquist, J.; Eby, J.M.; Koshoffer, A.; Boissy, R.E.; Overbeck, A.; Tung, R.C.; Le Poole, I.C. Preferential Secretion of Inducible HSP70 by Vitiligo Melanocytes under Stress. Pigment Cell Melanoma Res. 2014, 27, 209–220. [Google Scholar] [CrossRef]
- Białczyk, A.; Wełniak, A.; Kamińska, B.; Czajkowski, R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol. Diagn. Ther. 2023, 27, 723–739. [Google Scholar] [CrossRef]
- Richmond, J.M.; Bangari, D.S.; Essien, K.I.; Currimbhoy, S.D.; Groom, J.R.; Pandya, A.G.; Youd, M.E.; Luster, A.D.; Harris, J.E. Keratinocyte-Derived Chemokines Orchestrate T-Cell Positioning in the Epidermis during Vitiligo and May Serve as Biomarkers of Disease. J. Investig. Dermatol. 2017, 137, 350–358. [Google Scholar] [CrossRef]
- Li, S.; Zhu, G.; Yang, Y.; Jian, Z.; Guo, S.; Dai, W.; Shi, Q.; Ge, R.; Ma, J.; Liu, L.; et al. Oxidative Stress Drives CD8+ T-Cell Skin Trafficking in Patients with Vitiligo through CXCL16 Upregulation by Activating the Unfolded Protein Response in Keratinocytes. J. Allergy Clin. Immunol. 2017, 140, 177–189.e9. [Google Scholar] [CrossRef]
- Speeckaert, R.; Belpaire, A.; Speeckaert, M.M.; van Geel, N. A Meta-Analysis of Chemokines in Vitiligo: Recruiting Immune Cells towards Melanocytes. Front. Immunol. 2023, 14, 1112811. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.E.; Harris, T.H.; Weninger, W.; Wherry, E.J.; Hunter, C.A.; Turka, L.A. A Mouse Model of Vitiligo with Focused Epidermal Depigmentation Requires IFN-γ for Autoreactive CD8+ T-Cell Accumulation in the Skin. J. Investig. Dermatol. 2012, 132, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- van den Boorn, J.G.; Konijnenberg, D.; Dellemijn, T.A.M.; van der Veen, J.P.W.; Bos, J.D.; Melief, C.J.M.; Vyth-Dreese, F.A.; Luiten, R.M. Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients. J. Investig. Dermatol. 2009, 129, 2220–2232. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.S.; Kohil, M.M.; Sayed, S.S.E.; Mahmoud, S.B. Immunohistochemical Study of Perforin and Apoptosis Stimulation Fragment Ligand (FasL) in Active Vitiligo. Arch. Dermatol. Res. 2021, 313, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Bergqvist, C.; Ezzedine, K. Vitiligo: A Focus on Pathogenesis and Its Therapeutic Implications. J. Dermatol. 2021, 48, 252–270. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Li, C. Mechanisms of Melanocyte Death in Vitiligo. Med. Res. Rev. 2021, 41, 1138–1166. [Google Scholar] [CrossRef]
- Tulic, M.K.; Cavazza, E.; Cheli, Y.; Jacquel, A.; Luci, C.; Cardot-Leccia, N.; Hadhiri-Bzioueche, H.; Abbe, P.; Gesson, M.; Sormani, L.; et al. Innate Lymphocyte-Induced CXCR3B-Mediated Melanocyte Apoptosis Is a Potential Initiator of T-Cell Autoreactivity in Vitiligo. Nat. Commun. 2019, 10, 2178. [Google Scholar] [CrossRef]
- Willemsen, M.; Krebbers, G.; Tjin, E.P.M.; Willemsen, K.J.; Louis, A.; Konijn, V.A.L.; Narayan, V.S.; Post, N.F.; Bakker, W.J.; Melief, C.J.M.; et al. IFN-γ-Induced PD-L1 Expression on Human Melanocytes Is Impaired in Vitiligo. Exp. Dermatol. 2022, 31, 556–566. [Google Scholar] [CrossRef]
- Speeckaert, R.; van Geel, N. Targeting CTLA-4, PD-L1 and IDO to Modulate Immune Responses in Vitiligo. Exp. Dermatol. 2017, 26, 630–634. [Google Scholar] [CrossRef]
- Bergstresser, P.R.; Taylor, J.R. Epidermal ’Turnover Time’--a New Examination. Br. J. Dermatol. 1977, 96, 503–509. [Google Scholar] [CrossRef]
- Falabella, R.; Barona, M.I.; Echeverri, I.C.; Alzate, A. Substance P May Play a Part during Depigmentation in Vitiligo. A Pilot Study. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Zhao, D.; Lin, X. Levels of Neuropeptide-Y in the Plasma and Skin Tissue Fluids of Patients with Vitiligo. J. Dermatol. Sci. 2001, 27, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Anbar, T.; Abdelraouf, H.; Abd Elfattah Afify, A.; Ragaie, M.H.; Eid, A.A.; Moneib, H. Videodermoscopic Changes of the Hair in Vitiligo Lesions in Relation to Disease Duration. Dermatol. Pract. Concept. 2022, 12, e2022163. [Google Scholar] [CrossRef]
- Huang, L.; Zuo, Y.; Li, S.; Li, C. Melanocyte Stem Cells in the Skin: Origin, Biological Characteristics, Homeostatic Maintenance and Therapeutic Potential. Clin. Transl. Med. 2024, 14, e1720. [Google Scholar] [CrossRef]
- Riding, R.L.; Harris, J.E. The Role of Memory CD8+ T Cells in Vitiligo. J. Immunol. 2019, 203, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Lin, J.-X.; Leonard, W.J. IL-2 Family Cytokines: New Insights into the Complex Roles of IL-2 as a Broad Regulator of T Helper Cell Differentiation. Curr. Opin. Immunol. 2011, 23, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Blauvelt, A.; Asada, H.; Klaus-Kovtun, V.; Altman, D.J.; Lucey, D.R.; Katz, S.I. Interleukin-15 MRNA Is Expressed by Human Keratinocytes, Langerhans Cells, and Blood-Derived Dendritic Cells and Is Downregulated by Ultraviolet B Radiation. J. Investig. Dermatol. 1996, 106, 1047–1052. [Google Scholar] [CrossRef]
- Jacquemin, C.; Martins, C.; Lucchese, F.; Thiolat, D.; Taieb, A.; Seneschal, J.; Boniface, K. NKG2D Defines a Subset of Skin Effector Memory CD8 T Cells with Proinflammatory Functions in Vitiligo. J. Investig. Dermatol. 2020, 140, 1143–1153.e5. [Google Scholar] [CrossRef]
- Starner, R.J.; McClelland, L.; Abdel-Malek, Z.; Fricke, A.; Scott, G. PGE(2) Is a UVR-Inducible Autocrine Factor for Human Melanocytes That Stimulates Tyrosinase Activation. Exp. Dermatol. 2010, 19, 682–684. [Google Scholar] [CrossRef]
- Shah, F.; Giri, P.S.; Bharti, A.H.; Dwivedi, M. Compromised Melanocyte Survival Due to Decreased Suppression of CD4+ & CD8+ Resident Memory T Cells by Impaired TRM-Regulatory T Cells in Generalized Vitiligo Patients. Exp. Dermatol. 2024, 33, e14982. [Google Scholar] [CrossRef] [PubMed]
- Essien, K.I.; Katz, E.L.; Strassner, J.P.; Harris, J.E. Regulatory T Cells Require CCR6 for Skin Migration and Local Suppression of Vitiligo. J. Investig. Dermatol. 2022, 142, 3158–3166.e7. [Google Scholar] [CrossRef]
- Gellatly, K.J.; Strassner, J.P.; Essien, K.; Refat, M.A.; Murphy, R.L.; Coffin-Schmitt, A.; Pandya, A.G.; Tovar-Garza, A.; Frisoli, M.L.; Fan, X.; et al. ScRNA-Seq of Human Vitiligo Reveals Complex Networks of Subclinical Immune Activation and a Role for CCR5 in Treg Function. Sci. Transl. Med. 2021, 13, eabd8995. [Google Scholar] [CrossRef]
- Eby, J.M.; Kang, H.-K.; Tully, S.T.; Bindeman, W.E.; Peiffer, D.S.; Chatterjee, S.; Mehrotra, S.; Le Poole, I.C. CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo. J. Investig. Dermatol. 2015, 135, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Klarquist, J.; Denman, C.J.; Hernandez, C.; Wainwright, D.A.; Strickland, F.M.; Overbeck, A.; Mehrotra, S.; Nishimura, M.I.; Le Poole, I.C. Reduced Skin Homing by Functional Treg in Vitiligo. Pigment Cell Melanoma Res. 2010, 23, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Tembhre, M.K.; Parihar, A.S.; Sharma, V.K.; Sharma, A.; Chattopadhyay, P.; Gupta, S. Alteration in Regulatory T Cells and Programmed Cell Death 1-Expressing Regulatory T Cells in Active Generalized Vitiligo and Their Clinical Correlation. Br. J. Dermatol. 2015, 172, 940–950. [Google Scholar] [CrossRef]
- Giri, P.S.; Mistry, J.; Dwivedi, M. Meta-Analysis of Alterations in Regulatory T Cells’ Frequency and Suppressive Capacity in Patients with Vitiligo. J. Immunol. Res. 2022, 2022, 6952299. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Cui, T.; Ni, Q.; Zhang, Q.; Zou, D.; He, K.; Wu, W.; Ma, J.; Wang, Y.; et al. Th1-like Treg in Vitiligo: An Incompetent Regulator in Immune Tolerance. J. Autoimmun. 2022, 131, 102859. [Google Scholar] [CrossRef]
- van Geel, N.; Speeckaert, R. Segmental Vitiligo. Dermatol. Clin. 2017, 35, 145–150. [Google Scholar] [CrossRef]
- Speeckaert, R.; Lambert, J.; Bulat, V.; Belpaire, A.; Speeckaert, M.; van Geel, N. Autoimmunity in Segmental Vitiligo. Front. Immunol. 2020, 11, 568447. [Google Scholar] [CrossRef]
- Schaffer, J. Pigmentary Mosaicism. Clin. Dermatol. 2022, 40, 322–338. [Google Scholar] [CrossRef]
- van Geel, N.; Speeckaert, R.; Melsens, E.; Toelle, S.P.; Speeckaert, M.; De Schepper, S.; Lambert, J.; Brochez, L. The Distribution Pattern of Segmental Vitiligo: Clues for Somatic Mosaicism. Br. J. Dermatol. 2013, 168, 56–64. [Google Scholar] [CrossRef] [PubMed]
- van Geel, N.A.C.; Mollet, I.G.; De Schepper, S.; Tjin, E.P.M.; Vermaelen, K.; Clark, R.A.; Kupper, T.S.; Luiten, R.M.; Lambert, J. First Histopathological and Immunophenotypic Analysis of Early Dynamic Events in a Patient with Segmental Vitiligo Associated with Halo Nevi. Pigment Cell Melanoma Res. 2010, 23, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jiang, M.; Zhang, C.; Qiao, Z.; Liu, W.; Le, Y.; Wu, J.; Ma, W.; Xiang, L.F. New Insights into Segmental Vitiligo: A Clinical and Immunological Comparison with Nonsegmental Vitiligo. Pigment Cell Melanoma Res. 2022, 35, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; McNutt, N.S. Lichen Striatus. J. Cutan. Pathol. 2001, 28, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Malmqvst, V.E.A.; Bzioueche, H.; Marchetti, S.; Rocchi, S.; Tulic, M.K. Increased Activation of Innate Immunity and Pro-Apoptotic CXCR3B in Normal-Appearing Skin on the Lesional Site of Patients with Segmental Vitiligo. J. Investig. Dermatol. 2022, 142, 480–483.e2. [Google Scholar] [CrossRef]
- Barnes, P.J. Corticosteroid Effects on Cell Signalling. Eur. Respir. J. 2006, 27, 413–426. [Google Scholar] [CrossRef]
- Sauder, D.N. Mechanism of Action and Emerging Role of Immune Response Modifier Therapy in Dermatologic Conditions. J. Cutan. Med. Surg. 2004, 8, 3–12. [Google Scholar] [CrossRef]
- Aomatsu, T.; Imaeda, H.; Takahashi, K.; Fujimoto, T.; Kasumi, E.; Yoden, A.; Tamai, H.; Fujiyama, Y.; Andoh, A. Tacrolimus (FK506) Suppresses TNF-α-Induced CCL2 (MCP-1) and CXCL10 (IP-10) Expression via the Inhibition of P38 MAP Kinase Activation in Human Colonic Myofibroblasts. Int. J. Mol. Med. 2012, 30, 1152–1158. [Google Scholar] [CrossRef]
- Xu, P.; Chen, J.; Tan, C.; Lai, R.-S.; Min, Z.-S. Pimecrolimus Increases the Melanogenesis and Migration of Melanocytes in Vitro. Korean J. Physiol. Pharmacol. 2017, 21, 287–292. [Google Scholar] [CrossRef]
- Jung, H.; Oh, E.-S. FK506 Positively Regulates the Migratory Potential of Melanocyte-Derived Cells by Enhancing Syndecan-2 Expression. Pigment Cell Melanoma Res. 2016, 29, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Azzolino, V.; Zapata, L.; Garg, M.; Gjoni, M.; Riding, R.L.; Strassner, J.P.; Richmond, J.M.; Harris, J.E. Jak Inhibitors Reverse Vitiligo in Mice but Do Not Deplete Skin Resident Memory T Cells. J. Investig. Dermatol. 2021, 141, 182–184.e1. [Google Scholar] [CrossRef]
- Kapoor, R.; Phiske, M.M.; Jerajani, H.R. Evaluation of Safety and Efficacy of Topical Prostaglandin E2 in Treatment of Vitiligo. Br. J. Dermatol. 2009, 160, 861–863. [Google Scholar] [CrossRef] [PubMed]
- Neinaa, Y.M.E.-H.; Mahmoud, M.A.E.; El Maghraby, G.M.; Ibrahim, Z.A.E. Efficacy of Prostaglandin E2 versus Prostaglandin F2 Alpha Assisted with Narrowband-UVB in Stable Vitiligo. Arch. Dermatol. Res. 2023, 315, 2647–2653. [Google Scholar] [CrossRef]
- Niezgoda, A.; Winnicki, A.; Krysiński, J.; Niezgoda, P.; Nowowiejska, L.; Czajkowski, R. Topical Application of Simvastatin Acid Sodium Salt and Atorvastatin Calcium Salt in Vitiligo Patients. Results of the Randomized, Double-Blind EVRAAS Pilot Study. Sci. Rep. 2024, 14, 14612. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Rashighi, M.; Essien, K.I.; Richmond, J.M.; Randall, L.; Pazoki-Toroudi, H.; Hunter, C.A.; Harris, J.E. Simvastatin Prevents and Reverses Depigmentation in a Mouse Model of Vitiligo. J. Investig. Dermatol. 2015, 135, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Vanderweil, S.G.; Amano, S.; Ko, W.-C.; Richmond, J.M.; Kelley, M.; Senna, M.M.; Pearson, A.; Chowdary, S.; Hartigan, C.; Barton, B.; et al. A Double-Blind, Placebo-Controlled, Phase-II Clinical Trial to Evaluate Oral Simvastatin as a Treatment for Vitiligo. J. Am. Acad. Dermatol. 2017, 76, 150–151.e3. [Google Scholar] [CrossRef]
- Sun, X.; Sheng, A.; Xu, A. Successful Treatment of Vitiligo with Crisaborole Ointment: A Report of Two Cases. Br. J. Dermatol. 2023, 188, 436–437. [Google Scholar] [CrossRef]
- Tam, I.; Kahn, J.S.; Rosmarin, D. Repigmentation in a Patient with Vitiligo on Crisaborole 2% Ointment. JAAD Case Rep. 2021, 11, 99–101. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Xie, Y.; Nie, S.; Chen, B.; Wu, Z. Roflumilast Enhances the Melanogenesis and Attenuates Oxidative Stress-Triggered Damage in Melanocytes. J. Dermatol. Sci. 2023, 110, 44–52. [Google Scholar] [CrossRef]
- Abdel-Hamid, S.; Ibrahim, H.M.; Hameed, A.M.; Hegazy, E.M. Effectiveness of Fractional Erbium-YAG Laser, Microneedling, Platelet-Rich Plasma in Localized Stable Vitiligo Patients: Randomized Clinical Trial. Arch. Dermatol. Res. 2024, 316, 399. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.-K.; Hu, S.-H.; Han, B.-Y.; Qiu, X.; Jiang, S.; Lei, T.-C. Pro-Pigmentary Action of 5-Fluorouracil through the Stimulated Secretion of CXCL12 by Dermal Fibroblasts. Chin. Med. J 2021, 134, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Hasegawa, S.; Hasebe, Y.; Kawagishi-Hotta, M.; Arima, M.; Iwata, Y.; Kobayashi, T.; Numata, S.; Yamamoto, N.; Nakata, S.; et al. CXCL12 Regulates Differentiation of Human Immature Melanocyte Precursors as Well as Their Migration. Arch. Dermatol. Res. 2019, 311, 55–62. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Del Duca, E.; Da Rosa, J.C.; Bar, J.; Ezzedine, K.; Ye, Z.; He, W.; Hyde, C.; Hassan-Zahraee, M.; Yamaguchi, Y.; et al. Improvements in Immune/Melanocyte Biomarkers with JAK3/TEC Family Kinase Inhibitor Ritlecitinib in Vitiligo. J. Allergy Clin. Immunol. 2024, 153, 161–172.e8. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, R.; Lambert, J.; van Geel, N. Clinical Significance of Serum Soluble CD Molecules to Assess Disease Activity in Vitiligo. JAMA Dermatol. 2016, 152, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, R.; Mylle, S.; van Geel, N. IL-17A Is Not a Treatment Target in Progressive Vitiligo. Pigment Cell Melanoma Res. 2019, 32, 842–847. [Google Scholar] [CrossRef]
- Thomas, S.; Fisher, K.H.; Snowden, J.A.; Danson, S.J.; Brown, S.; Zeidler, M.P. Methotrexate Is a JAK/STAT Pathway Inhibitor. PLoS ONE 2015, 10, e0130078. [Google Scholar] [CrossRef]
- Speeckaert, R.; van Geel, N. The Real-Life Efficacy of Methotrexate in Vitiligo: A Retrospective Study and Literature Review. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 2267–2269. [Google Scholar] [CrossRef]
- Toussirot, É.; Aubin, F. Paradoxical Reactions under TNF-α Blocking Agents and Other Biological Agents given for Chronic Immune-Mediated Diseases: An Analytical and Comprehensive Overview. RMD Open 2016, 2, e000239. [Google Scholar] [CrossRef]
- Ruiz-Argüelles, A.; García-Carrasco, M.; Jimenez-Brito, G.; Sánchez-Sosa, S.; Pérez-Romano, B.; Garcés-Eisele, J.; Camacho-Alarcón, C.; Reyes-Núñez, V.; Sandoval-Cruz, M.; Mendoza-Pinto, C.; et al. Treatment of Vitiligo with a Chimeric Monoclonal Antibody to CD20: A Pilot Study. Clin. Exp. Immunol. 2013, 174, 229–236. [Google Scholar] [CrossRef]
- Kim, H.J.; Singer, G.K.; Del Duca, E.; Abittan, B.J.; Chima, M.A.; Kimmel, G.; Bares, J.; Gagliotti, M.; Genece, J.; Chu, J.; et al. Combination of Apremilast and Narrowband Ultraviolet B Light in the Treatment of Generalized Vitiligo in Skin Phototypes IV to VI: A Randomized Split-Body Pilot Study. J. Am. Acad. Dermatol. 2021, 85, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, A.J.; Mahajan, R.; Parsad, D. Low-Dose Oral Mini-Pulse Dexamethasone Therapy in Progressive Unstable Vitiligo. J. Cutan. Med. Surg. 2013, 17, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Alvarez, S.; Herz-Ruelas, M.; Raygoza-Cortez, A.K.; Suro-Santos, Y.; Ocampo-Candiani, J.; Alvarez-Villalobos, N.A.; Villarreal-Martinez, A. Oral Mini-Pulse Therapy in Vitiligo: A Systematic Review. Int. J. Dermatol. 2021, 60, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Toh, J.J.H.; Chuah, S.Y.; Jhingan, A.; Chong, W.-S.; Thng, S.T.G. Afamelanotide Implants and Narrow-Band Ultraviolet B Phototherapy for the Treatment of Nonsegmental Vitiligo in Asians. J. Am. Acad. Dermatol. 2020, 82, 1517–1519. [Google Scholar] [CrossRef]
- Lim, H.W.; Grimes, P.E.; Agbai, O.; Hamzavi, I.; Henderson, M.; Haddican, M.; Linkner, R.V.; Lebwohl, M. Afamelanotide and Narrowband UV-B Phototherapy for the Treatment of Vitiligo: A Randomized Multicenter Trial. JAMA Dermatol. 2015, 151, 42–50. [Google Scholar] [CrossRef]
- Passeron, T. Indications and Limitations of Afamelanotide for Treating Vitiligo. JAMA Dermatol. 2015, 151, 349–350. [Google Scholar] [CrossRef]
- A Clinical Study of MK-6194 for the Treatment of Vitiligo (MK-6194-007). Available online: https://app.trialscreen.org/trials/phase-2-clinical-mk-6194-treatment-vitiligo-007-trial-nct06113328 (accessed on 25 August 2024).
- Hsueh, Y.-C.; Wang, Y.; Riding, R.L.; Catalano, D.E.; Lu, Y.-J.; Richmond, J.M.; Siegel, D.L.; Rusckowski, M.; Stanley, J.R.; Harris, J.E. A Keratinocyte-Tethered Biologic Enables Location-Precise Treatment in Mouse Vitiligo. J. Investig. Dermatol. 2022, 142, 3294–3303. [Google Scholar] [CrossRef]
- Bossi, G.; Lopes, R.; Adams, K.; Gonzalez, V.; Wiseman, K.; Overton, D.; Carreira, R.; Curnock, A.; Mahon, T.; Weber, P. Melanocyte-Targeted Bispecific PD-1 Agonists as Localized Immune Suppressants against Vitiligo. J. Investig. Dermatol. 2022, 142, S188. [Google Scholar] [CrossRef]
- Shen, P.-C.; Tsai, T.-F.; Lai, Y.-J.; Liu, T.-L.; Ng, C.Y. From Zero to One: Recent Advances in the Pathogenesis, Diagnosis, and Treatment of Vitiligo. Dermatol. Sin. 2023, 41, 133. [Google Scholar] [CrossRef]
- Passeron, T. Vitiligo: 30 Years to Put Together the Puzzle Pieces and to Give Rise to a New Era of Therapeutic Options. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 2305–2307. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speeckaert, R.; Caelenberg, E.V.; Belpaire, A.; Speeckaert, M.M.; Geel, N.v. Vitiligo: From Pathogenesis to Treatment. J. Clin. Med. 2024, 13, 5225. https://doi.org/10.3390/jcm13175225
Speeckaert R, Caelenberg EV, Belpaire A, Speeckaert MM, Geel Nv. Vitiligo: From Pathogenesis to Treatment. Journal of Clinical Medicine. 2024; 13(17):5225. https://doi.org/10.3390/jcm13175225
Chicago/Turabian StyleSpeeckaert, Reinhart, Elise Van Caelenberg, Arno Belpaire, Marijn M. Speeckaert, and Nanja van Geel. 2024. "Vitiligo: From Pathogenesis to Treatment" Journal of Clinical Medicine 13, no. 17: 5225. https://doi.org/10.3390/jcm13175225
APA StyleSpeeckaert, R., Caelenberg, E. V., Belpaire, A., Speeckaert, M. M., & Geel, N. v. (2024). Vitiligo: From Pathogenesis to Treatment. Journal of Clinical Medicine, 13(17), 5225. https://doi.org/10.3390/jcm13175225