Sperm DNA Fragmentation in Male Infertility: Tests, Mechanisms, Meaning and Sperm Population to Be Tested
Abstract
:1. Introduction
SDF and Its Use as an Adjunct of Routine Semen Analysis
2. Tests for sDF Detection
- SCSA
- TUNEL
- Alkaline COMET Assay
- SCD Test
2.1. Comparing Tests for sDF Detection
2.2. Novel Tests to Detect sDF
3. Mechanisms Inducing sDF
3.1. Contribution of Each Mechanism
3.2. Treatment Strategies for High Levels of sDF
4. The Biological Meaning of Sperm DNA Breakage
5. The Sperm Population Where sDF Should Be Detected
6. Conclusive Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ombelet, W. WHO Fact Sheet on Infertility Gives Hope to Millions of Infertile Couples Worldwide. Facts Views Vison Obgyn 2020, 12, 249. [Google Scholar]
- Tournaye, H.; Krausz, C.; Oates, R.D. Novel Concepts in the Aetiology of Male Reproductive Impairment. Lancet Diabetes Endocrinol. 2017, 5, 544–553. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, C.; Matsushita-Fournier, D. Reactive Oxygen Species and Protein Modifications in Spermatozoa. Biol. Reprod. 2017, 97, 577–585. [Google Scholar] [CrossRef] [PubMed]
- James, E.R.; Carrell, D.T.; Aston, K.I.; Jenkins, T.G.; Yeste, M.; Salas-Huetos, A. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int. J. Mol. Sci. 2020, 21, 5377. [Google Scholar] [CrossRef]
- Guzick, D.S.; Overstreet, J.W.; Factor-Litvak, P.; Brazil, C.K.; Nakajima, S.T.; Coutifaris, C.; Carson, S.A.; Cisneros, P.; Steinkampf, M.P.; Hill, J.A.; et al. Sperm Morphology, Motility, and Concentration in Fertile and Infertile Men. N. Engl. J. Med. 2001, 345, 1388–1393. [Google Scholar] [CrossRef]
- Leushuis, E.; van der Steeg, J.W.; Steures, P.; Repping, S.; Bossuyt, P.M.M.; Mol, B.W.J.; Hompes, P.G.A.; van der Veen, F. Semen Analysis and Prediction of Natural Conception. Hum. Reprod. 2014, 29, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Messerlian, C.; Hauser, R. Fathers Matter: Why It’s Time to Consider the Impact of Paternal Environmental Exposures on Children’s Health. Curr. Epidemiol. Rep. 2017, 4, 46–55. [Google Scholar] [CrossRef]
- Sakkas, D.; Ramalingam, M.; Garrido, N.; Barratt, C.L.R. Sperm Selection in Natural Conception: What Can We Learn from Mother Nature to Improve Assisted Reproduction Outcomes? Hum. Reprod. Update 2015, 21, 711–726. [Google Scholar] [CrossRef]
- Muratori, M.; Marchiani, S.; Tamburrino, L.; Cambi, M.; Lotti, F.; Natali, I.; Filimberti, E.; Noci, I.; Forti, G.; Maggi, M.; et al. DNA Fragmentation in Brighter Sperm Predicts Male Fertility Independently from Age and Semen Parameters. Fertil. Steril. 2015, 104, 582–590.e4. [Google Scholar] [CrossRef]
- Giwercman, A.; Lindstedt, L.; Larsson, M.; Bungum, M.; Spano, M.; Levine, R.J.; Rylander, L. Sperm Chromatin Structure Assay as an Independent Predictor of Fertility in Vivo: A Case-Control Study. Int. J. Androl. 2010, 33, e221–e227. [Google Scholar] [CrossRef]
- Sergerie, M.; Laforest, G.; Bujan, L.; Bissonnette, F.; Bleau, G. Sperm DNA Fragmentation: Threshold Value in Male Fertility. Human. Reprod. 2005, 20, 3446–3451. [Google Scholar] [CrossRef] [PubMed]
- Santi, D.; Spaggiari, G.; Simoni, M. Sperm DNA Fragmentation Index as a Promising Predictive Tool for Male Infertility Diagnosis and Treatment Management—Meta-Analyses. Reprod. Biomed. Online 2018, 37, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; García-Peiró, A.; Fernández-Encinas, A.; Abad, C.; Amengual, M.J.; Prada, E.; Navarro, J.; Benet, J. Comprehensive Analysis of Sperm DNA Fragmentation by Five Different Assays: TUNEL Assay, SCSA, SCD Test and Alkaline and Neutral Comet Assay. Andrology 2013, 1, 715–722. [Google Scholar] [CrossRef]
- Evenson, D.P.; Jost, L.K.; Marshall, D.; Zinaman, M.J.; Clegg, E.; Purvis, K.; de Angelis, P.; Claussen, O.P. Utility of the Sperm Chromatin Structure Assay as a Diagnostic and Prognostic Tool in the Human Fertility Clinic. Hum. Reprod. 1999, 14, 1039–1049. [Google Scholar] [CrossRef]
- Cho, C.-L.; Agarwal, A. Role of Sperm DNA Fragmentation in Male Factor Infertility: A Systematic Review. Arab. J. Urol. 2018, 16, 21–34. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2021; ISBN 9240030786. [Google Scholar]
- Tharakan, T.; Bettocchi, C.; Carvalho, J.; Corona, G.; Jones, T.H.; Kadioglu, A.; Salamanca, J.I.M.; Serefoglu, E.C.; Verze, P.; Salonia, A. European Association of Urology Guidelines Panel on Male Sexual and Reproductive Health: A Clinical Consultation Guide on the Indications for Performing Sperm DNA Fragmentation Testing in Men with Infertility and Testicular Sperm Extraction in Nonazoospermic Men. Eur. Urol. Focus. 2022, 8, 339–350. [Google Scholar]
- Agarwal, A.; Majzoub, A.; Baskaran, S.; Selvam, M.K.P.; Cho, C.L.; Henkel, R.; Finelli, R.; Leisegang, K.; Sengupta, P.; Barbarosie, C. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J. Mens. Health 2020, 38, 412. [Google Scholar] [CrossRef]
- Evenson, D.P.; Wixon, R. Clinical Aspects of Sperm DNA Fragmentation Detection and Male Infertility. Theriogenology 2006, 65, 979–991. [Google Scholar] [CrossRef]
- Evenson, D.P. Sperm Chromatin Structure Assay (SCSA®) for Fertility Assessment. Curr. Protoc. 2022, 2, e508. [Google Scholar] [CrossRef]
- Aravindan, G.R.; Bjordahl, J.; Jost, L.K.; Evenson, D.P. Susceptibility of Human Sperm to in Situ DNA Denaturation Is Strongly Correlated with DNA Strand Breaks Identified by Single-Cell Electrophoresis. Exp. Cell Res. 1997, 236, 231–237. [Google Scholar] [CrossRef]
- Domínguez-Fandos, D.; Camejo, M.I.; Ballescà, J.L.; Oliva, R. Human Sperm DNA Fragmentation: Correlation of TUNEL Results as Assessed by Flow Cytometry and Optical Microscopy. Cytom. A 2007, 71, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Muratori, M.; Marchiani, S.; Tamburrino, L.; Tocci, V.; Failli, P.; Forti, G.; Baldi, E. Nuclear Staining Identifies Two Populations of Human Sperm with Different DNA Fragmentation Extent and Relationship with Semen Parameters. Hum. Reprod. 2008, 23, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Tamburrino, L.; Marchiani, S.; Muratori, M.; Corona, G.; Fino, M.G.; Degl’Innocenti, S.; Forti, G.; Maggi, M.; Baldi, E. Semen Apoptotic M540 Body Levels Correlate with Testis Abnormalities: A Study in a Cohort of Infertile Subjects. Hum. Reprod. 2012, 27, 3393–3402. [Google Scholar] [CrossRef]
- Mitchell, L.A.; De Iuliis, G.N.; Aitken, R.J. The TUNEL Assay Consistently Underestimates DNA Damage in Human Spermatozoa and Is Influenced by DNA Compaction and Cell Vitality: Development of an Improved Methodology. Int. J. Androl. 2011, 34, 2–13. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Muratori, M.; De Geyter, M.; De Geyter, C. TUNEL Labeling with BrdUTP/Anti-BrdUTP Greatly Underestimates the Level of Sperm DNA Fragmentation in Semen Evaluation. PLoS ONE 2017, 12, e0181802. [Google Scholar] [CrossRef]
- Simon, L.; Carrell, D.T. Sperm DNA Damage Measured by Comet Assay. Methods Mol. Biol. 2013, 927, 137–146. [Google Scholar]
- Javed, A.; Talkad, M.S.; Ramaiah, M.K. Evaluation of Sperm DNA Fragmentation Using Multiple Methods: A Comparison of Their Predictive Power for Male Infertility. Clin. Exp. Reprod. Med. 2019, 46, 14–21. [Google Scholar] [CrossRef]
- Simon, L.; Liu, L.; Murphy, K.; Ge, S.; Hotaling, J.; Aston, K.I.; Emery, B.; Carrell, D.T. Comparative Analysis of Three Sperm DNA Damage Assays and Sperm Nuclear Protein Content in Couples Undergoing Assisted Reproduction Treatment. Hum. Reprod. 2014, 29, 904–917. [Google Scholar] [CrossRef]
- Fernández, J.L.; Muriel, L.; Rivero, M.T.; Goyanes, V.; Vazquez, R.; Alvarez, J.G. The Sperm Chromatin Dispersion Test: A Simple Method for the Determination of Sperm DNA Fragmentation. J. Androl. 2003, 24, 59–66. [Google Scholar] [CrossRef]
- Cissen, M.; van Wely, M.; Scholten, I.; Mansell, S.; de Bruin, J.P.; Mol, B.W.; Braat, D.; Repping, S.; Hamer, G. Measuring Sperm DNA Fragmentation and Clinical Outcomes of Medically Assisted Reproduction: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0165125. [Google Scholar] [CrossRef]
- Simon, L.; Zini, A.; Dyachenko, A.; Ciampi, A.; Carrell, D.T. A Systematic Review and Meta-Analysis to Determine the Effect of Sperm DNA Damage on in Vitro Fertilization and Intracytoplasmic Sperm Injection Outcome. Asian J. Androl. 2017, 19, 80–90. [Google Scholar] [PubMed]
- Ribas-Maynou, J.; Yeste, M.; Becerra-Tomás, N.; Aston, K.I.; James, E.R.; Salas-Huetos, A. Clinical Implications of Sperm DNA Damage in IVF and ICSI: Updated Systematic Review and Meta-Analysis. Biol. Rev. Camb. Philos. Soc. 2021, 96, 1284–1300. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, H.; Elsuity, M.A.; Adel, N.; Magdi, Y.; Abdelbadie, A.S.; Rashwan, M.M.; Ahmed, O.Y.; Elmahdy, M.; Khan, K.S.; Fawzy, M. Quantifying the Association of Sperm DNA Fragmentation with Assisted Reproductive Technology Outcomes: An Umbrella Review. BJOG 2024, 131, 1181–1196. [Google Scholar] [CrossRef]
- Natarajan, A.T.; Obe, G. Molecular Mechanisms Involved in the Production of Chromosomal Aberrations. III. Restriction Endonucleases. Chromosoma 1984, 90, 120–127. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; García-Peiró, A.; Fernandez-Encinas, A.; Amengual, M.J.; Prada, E.; Cortés, P.; Navarro, J.; Benet, J. Double Stranded Sperm DNA Breaks, Measured by Comet Assay, Are Associated with Unexplained Recurrent Miscarriage in Couples without a Female Factor. PLoS ONE 2012, 7, e44679. [Google Scholar] [CrossRef]
- Lara-Cerrillo, S.; Ribas-Maynou, J.; Rosado-Iglesias, C.; Lacruz-Ruiz, T.; Benet, J.; García-Peiró, A. Sperm Selection during ICSI Treatments Reduces Single- but Not Double-Strand DNA Break Values Compared to the Semen Sample. J. Assist. Reprod. Genet. 2021, 38, 1187–1196. [Google Scholar] [CrossRef]
- Pastuszek, E.; Kiewisz, J.; Skowronska, P.; Liss, J.; Lukaszuk, M.; Bruszczynska, A.; Jakiel, G.; Lukaszuk, K. An Investigation of the Potential Effect of Sperm Nuclear Vacuoles in Human Spermatozoa on DNA Fragmentation Using a Neutral and Alkaline Comet Assay. Andrology 2017, 5, 392–398. [Google Scholar] [CrossRef]
- ùTímermans, A.; Vázquez, R.; Otero, F.; Gosálvez, J.; Johnston, S.; Fernández, J.L. DNA Fragmentation of Human Spermatozoa: Simple Assessment of Single- and Double-Strand DNA Breaks and Their Respective Dynamic Behavioral Response. Andrology 2020, 8, 1287–1303. [Google Scholar] [CrossRef]
- Wang, T.-E.; Lee, C.-I.; Huang, C.-C.; Tsao, H.-M.; Chang, H.-C.; Chang, L.-S.; Chang, T.A.; Lee, M.-S.; Hsu, C.-T. Innovative Technology for Evaluation of Sperm DNA Double-Strand Breaks Diagnoses Male Factor Infertility and Prevents Reproductive Failures. Sci. Rep. 2023, 13, 18996. [Google Scholar] [CrossRef]
- Szabó, A.; Váncsa, S.; Hegyi, P.; Váradi, A.; Forintos, A.; Filipov, T.; Ács, J.; Ács, N.; Szarvas, T.; Nyirády, P.; et al. Lifestyle-, Environmental-, and Additional Health Factors Associated with an Increased Sperm DNA Fragmentation: A Systematic Review and Meta-Analysis. Reprod. Biol. Endocrinol. 2023, 21, 5. [Google Scholar] [CrossRef]
- Gawecka, J.E.; Boaz, S.; Kasperson, K.; Nguyen, H.; Evenson, D.P.; Ward, W.S. Luminal Fluid of Epididymis and Vas Deferens Contributes to Sperm Chromatin Fragmentation. Hum. Reprod. 2015, 30, 2725–2736. [Google Scholar] [CrossRef] [PubMed]
- Gandini, L.; Lombardo, F.; Paoli, D.; Caponecchia, L.; Familiari, G.; Verlengia, C.; Dondero, F.; Lenzi, A. Study of Apoptotic DNA Fragmentation in Human Spermatozoa. Hum. Reprod. 2000, 15, 830–839. [Google Scholar] [CrossRef]
- Ammar, O.; Mehdi, M.; Tekeya, O.; Neffati, F.; Haouas, Z. Novel Association between Apoptotic Sperm Biomarkers with Seminal Biochemical Parameters and Acetylcholinesterase Activity in Patients with Teratozoospermia. J. Assist. Reprod. Genet. 2019, 36, 2367–2378. [Google Scholar] [CrossRef] [PubMed]
- Mupfiga, C.; Fisher, D.; Kruger, T.; Henkel, R. The Relationship between Seminal Leukocytes, Oxidative Status in the Ejaculate, and Apoptotic Markers in Human Spermatozoa. Syst. Biol. Reprod. Med. 2013, 59, 304–311. [Google Scholar] [CrossRef]
- Asadi, A.; Ghahremani, R.; Sc, M.; Abdolmaleki, A.; Rajaei, F.; Abbas, A. Role of Sperm Apoptosis and Oxidative Stress in Male Infertility: A Narrative Review. Int. J. Reprod. BioMedicine 2021, 19, 493. [Google Scholar] [CrossRef]
- Koji, T.; Shibata, Y. Global Changes in Epigenomes during Mouse Spermatogenesis: Possible Relation to Germ Cell Apoptosis. Histochem. Cell Biol. 2020, 154, 123–134. [Google Scholar] [CrossRef]
- Blanco-Rodríguez, J.; Martínez-García, C. Apoptosis Is Physiologically Restricted to a Specialized Cytoplasmic Compartment in Rat Spermatids. Biol. Reprod. 1999, 61, 1541–1547. [Google Scholar] [CrossRef]
- Leduc, F.; Maquennehan, V.; Nkoma, G.B.; Boissonneault, G. DNA Damage Response during Chromatin Remodeling in Elongating Spermatids of Mice. Biol. Reprod. 2008, 78, 324–332. [Google Scholar] [CrossRef]
- Muratori, M.; Tamburrino, L.; Marchiani, S.; Cambi, M.; Olivito, B.; Azzari, C.; Forti, G.; Baldi, E. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol. Med. 2015, 21, 109–122. [Google Scholar] [CrossRef]
- Zhao, G.; Jiang, X.; Zheng, Y.; Bai, H.; Jiang, Z.; Cheng, S.; Li, D. Outcomes Comparison of Testicular versus Ejaculated Sperm for Intracytoplasmic Sperm Injection in Infertile Men with High DNA Fragmentation: Updated Systematic Review and Meta-Analysis. Transl. Androl. Urol. 2023, 12, 1785–1802. [Google Scholar] [CrossRef]
- Len, J.S.; Koh, W.S.D.; Tan, S.-X. The Roles of Reactive Oxygen Species and Antioxidants in Cryopreservation. Biosci. Rep. 2019, 39, BSR20191601. [Google Scholar] [CrossRef]
- Aitken, R.J.; Finnie, J.M.; Muscio, L.; Whiting, S.; Connaughton, H.S.; Kuczera, L.; Rothkirch, T.B.; De Iuliis, G.N. Potential Importance of Transition Metals in the Induction of DNA Damage by Sperm Preparation Media. Hum. Reprod. 2014, 29, 2136–2147. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.; Ammar, O.; Mello, T.; Giovannelli, L.; Vignozzi, L.; Muratori, M. Novel Methods to Detect ROS in Viable Spermatozoa of Native Semen Samples. Reprod. Toxicol. 2021, 106, 51–60. [Google Scholar] [CrossRef]
- Aitken, R.J.; Gibb, Z.; Baker, M.A.; Drevet, J.; Gharagozloo, P. Causes and Consequences of Oxidative Stress in Spermatozoa. Reprod. Fertil. Dev. 2016, 28, 1–10. [Google Scholar] [CrossRef]
- Aitken, R.J.; Lewis, S.E.M. DNA Damage in Testicular Germ Cells and Spermatozoa. When and How Is It Induced? How Should We Measure It? What Does It Mean? Andrology 2023, 11, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; De Iuliis, G.N.; Finnie, J.M.; Hedges, A.; McLachlan, R.I. Analysis of the Relationships between Oxidative Stress, DNA Damage and Sperm Vitality in a Patient Population: Development of Diagnostic Criteria. Hum. Reprod. 2010, 25, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Muratori, M.; Pellegrino, G.; Mangone, G.; Azzari, C.; Lotti, F.; Tarozzi, N.; Boni, L.; Borini, A.; Maggi, M.; Baldi, E. DNA Fragmentation in Viable and Non-Viable Spermatozoa Discriminates Fertile and Subfertile Subjects with Similar Accuracy. J. Clin. Med. 2020, 9, 1341. [Google Scholar] [CrossRef]
- Punjabi, U.; Goovaerts, I.; Peeters, K.; De Neubourg, D. Antioxidants in Male Infertility-If We Want to Get This Right We Need to Take the Bull by the Horns: A Pilot Study. Antioxidants 2023, 12, 1805. [Google Scholar] [CrossRef]
- Panghal, A.; Sahu, C.; Singla, S.; Jena, G. Juvenile Exposure and Adult Risk Assessment with Single versus Repeated Exposure of Melphalan in the Germ Cells of Male SD Rat: Deciphering the Molecular Mechanisms. Reprod. Toxicol. 2022, 113, 71–84. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Sun, K.; Wang, S.; Gong, D. Polystyrene Microplastics Induce Apoptosis and Necroptosis in Swine Testis Cells via ROS/MAPK/HIF1α Pathway. Environ. Toxicol. 2022, 37, 2483–2492. [Google Scholar] [CrossRef]
- Ruwanpura, S.M.; McLachlan, R.I.; Stanton, P.G.; Loveland, K.L.; Meachem, S.J. Pathways Involved in Testicular Germ Cell Apoptosis in Immature Rats after FSH Suppression. J. Endocrinol. 2008, 197, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Tesarik, J.; Martinez, F.; Rienzi, L.; Iacobelli, M.; Ubaldi, F.; Mendoza, C.; Greco, E. In-Vitro Effects of FSH and Testosterone Withdrawal on Caspase Activation and DNA Fragmentation in Different Cell Types of Human Seminiferous Epithelium. Human Reprod. 2002, 17, 1811–1819. [Google Scholar] [CrossRef]
- Krishnamurthy, H.; Danilovich, N.; Morales, C.R.; Sairam, M.R. Qualitative and Quantitative Decline in Spermatogenesis of the Follicle-Stimulating Hormone Receptor Knockout (FORKO) Mouse. Biol. Reprod. 2000, 62, 1146–1159. [Google Scholar] [CrossRef] [PubMed]
- Casamonti, E.; Vinci, S.; Serra, E.; Fino, M.G.; Brilli, S.; Lotti, F.; Maggi, M.; Coccia, M.E.; Forti, G.; Krausz, C. Short-term FSH Treatment and Sperm Maturation: A Prospective Study in Idiopathic Infertile Men. Andrology 2017, 5, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Lispi, M.; Drakopoulos, P.; Spaggiari, G.; Caprio, F.; Colacurci, N.; Simoni, M.; Santi, D. Testosterone Serum Levels Are Related to Sperm DNA Fragmentation Index Reduction after FSH Administration in Males with Idiopathic Infertility. Biomedicines 2022, 10, 2599. [Google Scholar] [CrossRef]
- Walke, G.; Gaurkar, S.S.; Prasad, R.; Lohakare, T.; Wanjari, M. The Impact of Oxidative Stress on Male Reproductive Function: Exploring the Role of Antioxidant Supplementation. Cureus 2023, 15, e42583. [Google Scholar] [CrossRef]
- Alharbi, M. Impact of Antioxidants on Conventional and Advanced Sperm Function Parameters: An Updated Review. Cureus 2024, 16, e54253. [Google Scholar] [CrossRef]
- Smits, R.M.; Mackenzie-Proctor, R.; Yazdani, A.; Stankiewicz, M.T.; Jordan, V.; Showell, M.G. Antioxidants for Male Subfertility. Cochrane Database Syst. Rev. 2019, 3, CD007411. [Google Scholar] [CrossRef]
- de Ligny, W.; Smits, R.M.; Mackenzie-Proctor, R.; Jordan, V.; Fleischer, K.; de Bruin, J.P.; Showell, M.G. Antioxidants for Male Subfertility. Cochrane Database Syst. Rev. 2022, 5, CD007411. [Google Scholar] [CrossRef]
- Esteves, S.C.; Santi, D.; Simoni, M. An Update on Clinical and Surgical Interventions to Reduce Sperm DNA Fragmentation in Infertile Men. Andrology 2020, 8, 53–81. [Google Scholar] [CrossRef]
- Esteves, S.C.; Roque, M.; Bradley, C.K.; Garrido, N. Reproductive Outcomes of Testicular versus Ejaculated Sperm for Intracytoplasmic Sperm Injection among Men with High Levels of DNA Fragmentation in Semen: Systematic Review and Meta-Analysis. Fertil. Steril. 2017, 108, 456–467.e1. [Google Scholar] [CrossRef] [PubMed]
- Khoo, C.C.; Cayetano-Alcaraz, A.A.; Rashid, R.; Tharakan, T.; Yap, T.; Sofikitis, N.; Salonia, A.; Corona, G.; Giwercman, A.; Jayasena, C.N.; et al. Does Testicular Sperm Improve Intracytoplasmic Sperm Injection Outcomes for Nonazoospermic Infertile Men with Elevated Sperm DNA Fragmentation? A Systematic Review and Meta-Analysis. Eur. Urol. Focus. 2024, 10, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Setti, A.S.; Braga, D.P.d.A.F.; Provenza, R.R.; Iaconelli, A., Jr.; Borges, E., Jr. Oocyte Ability to Repair Sperm DNA Fragmentation: The Impact of Maternal Age on Intracytoplasmic Sperm Injection Outcomes. Fertil. Steril. 2021, 116, 123–129. [Google Scholar] [CrossRef]
- Tesarik, J.; Greco, E.; Mendoza, C. Late, but Not Early, Paternal Effect on Human Embryo Development Is Related to Sperm DNA Fragmentation. Human. Reprod. 2004, 19, 611–615. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Benet, J. Single and Double Strand Sperm DNA Damage: Different Reproductive Effects on Male Fertility. Genes 2019, 10, 105. [Google Scholar] [CrossRef]
- Evenson, D.P.; Larson, K.L.; Jost, L.K. Sperm Chromatin Structure Assay: Its Clinical Use for Detecting Sperm DNA Fragmentation in Male Infertility and Comparisons with Other Techniques. J. Androl. 2002, 23, 25–43. [Google Scholar] [CrossRef]
- Santiso, R.; Tamayo, M.; Gosálvez, J.; Johnston, S.; Mariño, A.; Fernández, C.; Losada, C.; Fernández, J.L. DNA Fragmentation Dynamics Allows the Assessment of Cryptic Sperm Damage in Human: Evaluation of Exposure to Ionizing Radiation, Hyperthermia, Acidic PH and Nitric Oxide. Mutat. Res. 2012, 734, 41–49. [Google Scholar] [CrossRef]
- García-Peiró, A.; Martínez-Heredia, J.; Oliver-Bonet, M.; Abad, C.; Amengual, M.J.; Navarro, J.; Jones, C.; Coward, K.; Gosálvez, J.; Benet, J. Protamine 1 to Protamine 2 Ratio Correlates with Dynamic Aspects of DNA Fragmentation in Human Sperm. Fertil. Steril. 2011, 95, 105–109. [Google Scholar] [CrossRef]
- Gosálvez, J.; Cortés-Gutiérrez, E.I.; Nuñez, R.; Fernández, J.L.; Caballero, P.; López-Fernández, C.; Holt, W.V. A Dynamic Assessment of Sperm DNA Fragmentation versus Sperm Viability in Proven Fertile Human Donors. Fertil. Steril. 2009, 92, 1915–1919. [Google Scholar] [CrossRef]
- Gosálvez, J.; Cortés-Gutierez, E.; López-Fernández, C.; Fernández, J.L.; Caballero, P.; Nuñez, R. Sperm Deoxyribonucleic Acid Fragmentation Dynamics in Fertile Donors. Fertil. Steril. 2009, 92, 170–173. [Google Scholar] [CrossRef]
- Muratori, M.; Tarozzi, N.; Carpentiero, F.; Danti, S.; Perrone, F.M.; Cambi, M.; Casini, A.; Azzari, C.; Boni, L.; Maggi, M.; et al. Sperm Selection with Density Gradient Centrifugation and Swim up: Effect on DNA Fragmentation in Viable Spermatozoa. Sci. Rep. 2019, 9, 7492. [Google Scholar] [CrossRef]
- Muratori, M.; Tarozzi, N.; Cambi, M.; Boni, L.; Iorio, A.L.; Passaro, C.; Luppino, B.; Nadalini, M.; Marchiani, S.; Tamburrino, L.; et al. Variation of DNA Fragmentation Levels During Density Gradient Sperm Selection for Assisted Reproduction Techniques: A Possible New Male Predictive Parameter of Pregnancy? Medicine 2016, 95, e3624. [Google Scholar] [CrossRef] [PubMed]
- Netherton, J.; Ogle, R.A.; Hetherington, L.; Silva Balbin Villaverde, A.I.; Hondermarck, H.; Baker, M.A. Proteomic Analysis Reveals That Topoisomerase 2A Is Associated with Defective Sperm Head Morphology. Mol. Cell Proteom. 2020, 19, 444–455. [Google Scholar] [CrossRef]
- Esteves, S.C.; Agarwal, A.; Cho, C.-L.; Majzoub, A. A Strengths-Weaknesses-Opportunities-Threats (SWOT) Analysis on the Clinical Utility of Sperm DNA Fragmentation Testing in Specific Male Infertility Scenarios. Transl. Androl. Urol. 2017, 6, S734–S760. [Google Scholar] [CrossRef]
- Bungum, M.; Spanò, M.; Humaidan, P.; Eleuteri, P.; Rescia, M.; Giwercman, A. Sperm Chromatin Structure Assay Parameters Measured after Density Gradient Centrifugation Are Not Predictive for the Outcome of ART. Hum. Reprod. 2008, 23, 4–10. [Google Scholar] [CrossRef]
- Simon, L.; Castillo, J.; Oliva, R.; Lewis, S.E.M. Relationships between Human Sperm Protamines, DNA Damage and Assisted Reproduction Outcomes. Reprod. Biomed. Online 2011, 23, 724–734. [Google Scholar] [CrossRef]
- Zhang, X.; Chao, S.; Ye, N.; Ouyang, D. Emerging Trends in Sperm Selection: Enhancing Success Rates in Assisted Reproduction. Reprod. Biol. Endocrinol. 2024, 22, 67. [Google Scholar] [CrossRef]
- Cherouveim, P.; Velmahos, C.; Bormann, C.L. Artificial Intelligence for Sperm Selection—A Systematic Review. Fertil. Steril. 2023, 120, 24–31. [Google Scholar] [CrossRef]
- Jahangiri, A.R.; Ziarati, N.; Dadkhah, E.; Bucak, M.N.; Rahimizadeh, P.; Shahverdi, A.; Sadighi Gilani, M.A.; Topraggaleh, T.R. Microfluidics: The Future of Sperm Selection in Assisted Reproduction. Andrology 2024, 12, 1236–1252. [Google Scholar] [CrossRef]
SCSA | TUNEL Fluorescence Microscopy | TUNEL Flow Cytometry | Alkaline COMET Assay | SCD Test | ||
---|---|---|---|---|---|---|
Key features | Reveals the susceptibility of sperm DNA to denaturation. Flow cytometry | Reveals DNA breakage by enzymatically labelling the 3′OH ends of DNA | Reveals DNA breakage by enzymatically labelling the 3′OH ends of DNA | Reveals DNA breakage by electrophoretic migration of DNA fragments after sperm lysis/decondensation and DNA unwinding. Fluorescence microscopy | Reveals the ability/inability to disperse DNA fragments after sperm lysis/denaturation. Light or fluorescent microscopy | |
Advantages | Use of very low sperm number (thousands) | ✓ | ✓ | ✓ | ✓ | |
Use of frozen semen samples (or dry specimens) | ✓ | ✓ | ✓ | ✓ | ||
Presence of a standardised procedure | ✓ | |||||
Analysis of thousands of spermatozoa | ✓ | ✓ | ||||
Coupling to detection of other parameters | ✓ | |||||
Disadvantages | Request of experts in flow cytometry | ✓ | ✓ | |||
Request of a specific software | ✓ | ✓ | ||||
Request of a high number of spermatozoa (millions) | ✓ | |||||
Labour intensive | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, D.; Calamai, C.; Muratori, M. Sperm DNA Fragmentation in Male Infertility: Tests, Mechanisms, Meaning and Sperm Population to Be Tested. J. Clin. Med. 2024, 13, 5309. https://doi.org/10.3390/jcm13175309
Conti D, Calamai C, Muratori M. Sperm DNA Fragmentation in Male Infertility: Tests, Mechanisms, Meaning and Sperm Population to Be Tested. Journal of Clinical Medicine. 2024; 13(17):5309. https://doi.org/10.3390/jcm13175309
Chicago/Turabian StyleConti, Donata, Costanza Calamai, and Monica Muratori. 2024. "Sperm DNA Fragmentation in Male Infertility: Tests, Mechanisms, Meaning and Sperm Population to Be Tested" Journal of Clinical Medicine 13, no. 17: 5309. https://doi.org/10.3390/jcm13175309
APA StyleConti, D., Calamai, C., & Muratori, M. (2024). Sperm DNA Fragmentation in Male Infertility: Tests, Mechanisms, Meaning and Sperm Population to Be Tested. Journal of Clinical Medicine, 13(17), 5309. https://doi.org/10.3390/jcm13175309