Match Point: Nuclear Medicine Imaging for Recurrent Thyroid Cancer in TENIS Syndrome—Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection Process
2.3. Quality Assessment
2.4. Data Extraction and Synthesis
2.5. Meta-Analysis
3. Results
3.1. Study Selection and Quality Assessment
3.2. Study Characteristics
3.3. Studies Using [18F]FDG PET/CT as Primary Imaging Modality
3.4. Studies Using Other PET Radiopharmaceuticals Alongside [18F]FDG PET/CT as Primary Imaging Modality
3.5. Studies Using Scintigraphy as Primary Imaging Modality
3.6. Meta-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Surveillance Research Program, National Cancer Institute. Cancer Stat Fact Sheets. Cancer Statistics, Surveillance Research Program, National Cancer Institute. Available online: http://seer.cancer.gov/statfacts (accessed on 1 March 2024).
- Avram, A.M.; Giovanella, L.; Greenspan, B.; Lawson, S.A.; Luster, M.; Van Nostrand, D.; Peacock, J.G.; Ovcaricek, P.P.; Silberstein, E.; Tulchinsky, M.; et al. SNMMI Procedure Standard/EANM Practice Guideline for Nuclear Medicine Evaluation and Therapy of Differentiated Thyroid Cancer: Abbreviated Version. J. Nucl. Med. 2022, 63, 15N–35N. [Google Scholar]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Iglesias, L.; Klain, M.; Pitoia, F.; Schlumberger, M.J. Radioactive iodine-refractory differentiated thyroid cancer: An uncommon but challenging situation. Arch. Endocrinol. Metab. 2017, 61, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Palmer, F.L.; Nixon, I.J.; Thomas, D.; Patel, S.G.; Shaha, A.R.; Shah, J.P.; Tuttle, R.M.; Ganly, I. Multi-organ distant metastases confer worse disease-specific survival in differentiated thyroid cancer. Thyroid 2014, 24, 1594–1599. [Google Scholar] [CrossRef] [PubMed]
- Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; De Vathaire, F.; et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 2006, 91, 2892–2899. [Google Scholar] [CrossRef]
- Silberstein, E.B. The problem of the patient with thyroglobulin elevation but negative iodine scintigraphy: The TENIS syndrome. Semin. Nucl. Med. 2011, 41, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Sabra, M.M.; Grewal, R.K.; Tala, H.; Larson, S.M.; Tuttle, R.M. Clinical Outcomes Following Empiric Radioiodine Therapy in Patients with Structurally Identifiable Metastatic Follicular Cell–Derived Thyroid Carcinoma with Negative Diagnostic but Positive Post-Therapy 131I Whole-Body Scans. Thyroid 2012, 22, 877–883. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.; Pan, L.; Feng, H.; Chen, P.; Luo, J.; Xie, J.; Xiong, X.; Wu, J.; Ouyang, W. Outcome of patients with differentiated thyroid cancer treated with empirical radioiodine therapy on the basis of Thyroglobulin Elevation Negative Iodine Scintigraphy (TENIS) syndrome without structural disease: A retrospective cohort study. Ann. Nucl. Med. 2023, 37, 18–25. [Google Scholar] [CrossRef]
- Basu, S.; Dandekar, M.; Joshi, A.; D’Cruz, A. Defining a rational step-care algorithm for managing thyroid carcinoma patients with elevated thyroglobulin and negative on radioiodine scintigraphy (TENIS): Considerations and challenges towards developing an appropriate roadmap. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1167–1171. [Google Scholar] [CrossRef]
- Fugazzola, L.; Elisei, R.; Fuhrer, D.; Jarzab, B.; Leboulleux, S.; Newbold, K.; Smit, J. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur. Thyroid J. 2019, 8, 227–245. [Google Scholar] [CrossRef]
- Kim, S.J.; Chang, S. Predictive value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodules according to Bethesda categories of fine needle aspiration biopsy results. Endocrine 2015, 50, 681–688. [Google Scholar] [CrossRef]
- Choudhury, P.S.; Gupta, M. Differentiated thyroid cancer theranostics: Radioiodine and beyond. Br. J. Radiol. 2018, 91, 20180136. [Google Scholar] [CrossRef] [PubMed]
- Versari, A.; Sollini, M.; Frasoldati, A.; Fraternali, A.; Filice, A.; Froio, A.; Asti, M.; Fioroni, F.; Cremonini, N.; Putzer, D.; et al. Differentiated thyroid cancer: A new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 2014, 24, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Parghane, R.V. Grouping of Metastatic Thyroid Carcinoma by Molecular Imaging Features to Allow for Individualized Treatment, with Emphasis on the TENIS Syndrome. J. Nucl. Med. Technol. 2016, 44, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Huang, J.; Zhao, T.; Wang, H.; Chen, Y.; Xu, W.; Pang, Y.; Guo, W.; Sun, L.; Wu, H.; et al. Fibroblast Activation Protein-Targeted Radioligand Therapy with 177Lu-EB-FAPI for Metastatic Radioiodine-Refractory Thyroid Cancer: First-in-Human, Dose-Escalation Study. Clin. Cancer Res. 2023, 29, 4740–4750. [Google Scholar] [CrossRef] [PubMed]
- de Vries, L.H.; Lodewijk, L.; Braat, A.J.A.T.; Krijger, G.C.; Valk, G.D.; Lam, M.G.E.H.; Borel Rinkes, I.M.H.M.; Vriens, M.R.; de Keizer, B. 68Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177Lu-PSMA-617. EJNMMI Res. 2020, 10, 18. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 2021, 372. [Google Scholar]
- Whiting, P.; Rutjes, A.; Westwood, M.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Nyaga, V.N.; Arbyn, M. Metadta: A Stata command for meta-analysis and meta-regression of diagnostic test accuracy data—A tutorial. Arch. Public Health 2022, 80, 95. [Google Scholar] [CrossRef]
- Zhou, Y.; Dendukuri, N. Statistics for quantifying heterogeneity in univariate and bivariate meta-analyses of binary data: The case of meta-analyses of diagnostic accuracy. Stat. Med. 2014, 33, 2701–2717. [Google Scholar] [CrossRef]
- Higgins, J.P.T. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.; Froehlich, F.; Decristoforo, C.; Ensinger, C.; Donnemiller, E.; von Guggenberg, E.; Heute, D.; Moncayo, R. 99mTc-EDDA/HYNIC-TOC and 18F-FDG in thyroid cancer patients with negative 131I whole-body scans. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 330–341. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, G.J.; Wang, Y.B.; Liu, Y.; Wang, F.; Jia, X.; Liang, Y.Q.; Yang, A.M. Clinical Value of 99mTc-3PRGD2 SPECT/CT in Differentiated Thyroid Carcinoma with Negative 131I Whole-Body Scan and Elevated Thyroglobulin Level. Sci. Rep. 2018, 8, 473. [Google Scholar] [CrossRef]
- Grünwald, F.; Kälicke, T.; Feine, U.; Lietzenmayer, R.; Scheidhauer, K.; Dietlein, M.; Schober, O.; Lerch, H.; Brandt-Mainz, K.; Burchert, W.; et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: Results of a multicentre study. Eur. J. Nucl. Med. 1999, 26, 1547–1552. [Google Scholar] [CrossRef]
- Helal, B.O.; Merlet, P.; Toubert, M.-E.; Franc, B.; Schvartz, C.; Gauthier-Koelesnikov, H.; Prigent, A.; Syrota, A. Clinical Impact of 18 F-FDG PET in Thyroid Carcinoma Patients with Elevated Thyroglobulin Levels and Negative 131 I Scanning Results After Therapy. J. Nucl. Med. 2001, 42, 1464–1469. [Google Scholar] [PubMed]
- Palmedo, H.; Bucerius, J.; Joe, A.; Strunk, H.; Hortling, N.; Meyka, S.; Roedel, R.; Wolff, M.; Wardelmann, E.; Biersack, H.J.; et al. Integrated PET/CT in Differentiated Thyroid Cancer: Diagnostic Accuracy and Impact on Patient Management. J. Nucl. Med. 2006, 47, 616–624. [Google Scholar] [PubMed]
- Mirallié, E.; Guillan, T.; Bridji, B.; Resche, I.; Rousseau, C.; Ansquer, C.; Bodet-Milin, C.; Curtet, C.; Carnaille, B.; Murat, A.; et al. Therapeutic impact of 18FDG-PET/CT in the management of iodine-negative recurrence of differentiated thyroid carcinoma. Surgery 2007, 142, 952–958. [Google Scholar] [CrossRef]
- Esteva, D.; Muros, M.A.; Llamas-Elvira, J.M.; Jiménez Alonso, J.; Villar, J.M.; López de la Torre, M.; Muros, T. Clinical and pathological factors related to 18F-FDG-PET positivity in the diagnosis of recurrence and/or metastasis in patients with differentiated thyroid cancer. Ann. Surg. Oncol. 2009, 16, 2006–2013. [Google Scholar] [CrossRef]
- Giovanella, L.; Ceriani, L.; De Palma, D.; Suriano, S.; Castellani, M.; Verburg, F.A. Relationship between serum thyroglobulin and 18FDG-PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck 2012, 34, 626–631. [Google Scholar] [CrossRef]
- Bannas, P.; Derlin, T.; Groth, M.; Apostolova, I.; Adam, G.; Mester, J.; Klutmann, S. Can 18F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann. Nucl. Med. 2012, 26, 77–85. [Google Scholar] [CrossRef]
- Kunawudhi, A.; Pak-Art, R.; Keelawat, S.; Tepmongkol, S. Detection of subcentimeter metastatic cervical lymph node by 18F-FDG PET/CT in patients with well-differentiated thyroid carcinoma and high serum thyroglobulin but negative 131I whole-body scan. Clin. Nucl. Med. 2012, 37, 561–567. [Google Scholar] [CrossRef]
- Vural, G.U.; Akkas, B.E.; Ercakmak, N.; Basu, S.; Alavi, A. Prognostic significance of FDG PET/CT on the follow-up of patients of differentiated thyroid carcinoma with negative 131I whole-body scan and elevated thyroglobulin levels: Correlation with clinical and histopathologic characteristics and long-term follow-up data. Clin. Nucl. Med. 2012, 37, 953–959. [Google Scholar] [PubMed]
- Van Dijk, D.; Plukker, J.T.M.; Phan, H.T.T.; Muller Kobold, A.C.; van der Horst-Schrivers, A.N.; Jansen, L.; Sluiter, W.J.; Brouwers, A.H.; Links, T.P. 18-fluorodeoxyglucose positron emission tomography in the early diagnostic workup of differentiated thyroid cancer patients with a negative post-therapeutic iodine scan and detectable thyroglobulin. Thyroid 2013, 23, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, E.; Aras, G.; Kucuk, N.O. Correlation of 18F-FDG PET/CT findings with histopathological results in differentiated thyroid cancer patients who have increased thyroglobulin or antithyroglobulin antibody levels and negative 131I whole-body scan results. Clin. Nucl. Med. 2013, 38, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Kundu, P.; Lata, S.; Sharma, P.; Singh, H.; Malhotra, A.; Bal, C. Prospective evaluation of (68)Ga-DOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative (131)I-whole body scan: Comparison with (18)F-FDG PET-CT. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1354–1362. [Google Scholar] [CrossRef]
- Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Ezziddin, S.; Görges, R.; Sabet, A.; Beiderwellen, K.; Bockisch, A.; Rosenbaum-Krumme, S.J. 68Ga-DOTATOC PET/CT in Patients with Iodine- and 18F-FDG–Negative Differentiated Thyroid Carcinoma and Elevated Serum Thyroglobulin. J. Nucl. Med. 2016, 57, 1512–1517. [Google Scholar] [CrossRef]
- Hempel, J.M.; Kloeckner, R.; Krick, S.; Pinto Dos Santos, D.; Schadmand-Fischer, S.; Boeßert, P.; Bisdas, S.; Weber, M.M.; Fottner, C.; Musholt, T.J.; et al. Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer. Cancer Imaging 2016, 16, 37. [Google Scholar] [CrossRef]
- Stangierski, A.; Kaznowski, J.; Wolinski, K.; Jodlowska, E.; Michaliszyn, P.; Kubiak, K.; Czepczynski, R.; Ruchala, M. The usefulness of fluorine-18 fluorodeoxyglucose PET in the detection of recurrence in patients with differentiated thyroid cancer with elevated thyroglobulin and negative radioiodine whole-body scan. Nucl. Med. Commun. 2016, 37, 935–938. [Google Scholar] [CrossRef]
- Kaewput, C.; Pusuwan, P. Diagnostic Usefulness of 18F-FDG PET/CT in Differentiated Thyroid Cancer Patients with Elevated Serum Thyroglobulin or Thyroglobulin Antibody Levels. J. Med. Assoc. Thail. 2017, 100, 1027. [Google Scholar]
- Tkk, A.; Mudalegundi, S.; Switchenko, J.; Lee, D.; Halkar, R.; Chen, A.Y. Assessment of the Role of Different Imaging Modalities with Emphasis on Fdg Pet/Ct in the Management of Well Differentiated Thyroid Cancer (WDTC). J. Thyroid. Disord. Ther. 2016, 5, 202. [Google Scholar]
- Parihar, A.S.; Mittal, B.R.; Kumar, R.; Shukla, J.; Bhattacharya, A. 68Ga-DOTA-RGD2 Positron Emission Tomography/Computed Tomography in Radioiodine Refractory Thyroid Cancer: Prospective Comparison of Diagnostic Accuracy with 18F-FDG Positron Emission Tomography/Computed Tomography and Evaluation Toward Potential Theranostics. Thyroid 2020, 30, 557–567. [Google Scholar] [PubMed]
- Ora, M.; Nazar, A.; Pradhan, P.; Mishra, P.; Barai, S.; Arya, A.; Dixit, M.; Parashar, A.; Gambhir, S. The Utility of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Differentiated Thyroid Cancer Patients with Biochemical Recurrence and Negative Whole-Body Radioiodine Scintigraphy and Evaluation of the Possible Role of a Limited Regional Scan. Indian. J. Nucl. Med. 2020, 35, 203. [Google Scholar] [PubMed]
- Boktor, R.R.; Lee, S.T.; Berlangieri, S.U.; Scott, A.M. Impact of 18F-FDG PET/CT on treatment of patients with differentiated thyroid carcinoma, negative 131I whole body scan and elevated serum thyroglobulin. Asia Ocean. J. Nucl. Med. Biol. 2022, 10, 20–27. [Google Scholar] [PubMed]
- Joensuu, H.; Ahonen, A. Imaging of Metastases of Thyroid Carcinoma with Fluorine-18 Fluorodeoxyglucose. J. Nucl. Med. 1987, 28, 910–914. [Google Scholar] [PubMed]
- Grabellus, F.; Nagarajah, J.; Bockisch, A.; Schmid, K.W.; Sheu, S.-Y. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin. Nucl. Med. 2012, 37, 121–127. [Google Scholar] [CrossRef]
- Haslerud, T.; Brauckhoff, K.; Reisæter, L.; Küfner Lein, R.; Heinecke, A.; Varhaug, J.E.; Biermann, M. F18-FDG-PET for recurrent differentiated thyroid cancer: A systematic meta-analysis. Acta Radiol. 2016, 57, 1193–1200. [Google Scholar] [CrossRef]
- Moon, S.H.; Oh, Y.L.; Choi, J.Y.; Baek, C.H.; Son, Y.I.; Jeong, H.S.; Choe, Y.S.; Lee, K.H.; Kim, B.T. Comparison of 18F-fluorodeoxyglucose uptake with the expressions of glucose transporter type 1 and Na+/I- symporter in patients with untreated papillary thyroid carcinoma. Endocr. Res. 2013, 38, 77–84. [Google Scholar] [CrossRef]
- Albano, D.; Dondi, F.; Mazzoletti, A.; Bellini, P.; Rodella, C.; Bertagna, F. Prognostic Role of 2-[18F]FDG PET/CT Metabolic Volume Parameters in Patients Affected by Differentiated Thyroid Carcinoma with High Thyroglobulin Level, Negative 131I WBS and Positive 2-[18F]-FDG PET/CT. Diagnostics 2021, 11, 2189. [Google Scholar] [CrossRef]
- Robbins, R.J.; Wan, Q.; Grewal, R.K.; Reibke, R.; Gonen, M.; Strauss, H.W.; Tuttle, R.M.; Drucker, W.; Larson, S.M. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J. Clin. Endocrinol. Metab. 2006, 91, 498–505. [Google Scholar] [CrossRef]
- Kirienko, M.; Gelardi, F.; Fiz, F.; Bauckneht, M.; Ninatti, G.; Pini, C.; Chiti, A.; Sollini, M. Personalised PET Imaging in Oncology: An Umbrella Review of Meta-Analyses to Guide the Appropriate Radiopharmaceutical Choice and Indication. Eur. J. Nucl. Med. Mol. Imaging 2024. [Google Scholar]
- Dong, M.J.; Zhao, K.; Lin, X.T.; Zhao, J.; Ruan, L.X.; Liu, Z.F. Role of fluorodeoxyglucose-pet versus fluorodeoxyglucose-pet/computed tomography in detection of unknown primary tumor: A meta-analysis of the literature. Nucl. Med. Commun. 2008, 29, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Riaz, S.; Bashir, H.; Nawaz, M.K.; Hussain, R. Can the American Thyroid Association Risk of Recurrence Predict Radioiodine Refractory Disease in Differentiated Thyroid Cancer? Eur. Thyroid J. 2016, 5, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Diehl, N.; Bernet, V. Practice trends in patients with persistent detectable thyroglobulin and negative diagnostic radioiodine whole body scans: A survey of American Thyroid Association members. Thyroid 2014, 24, 1501–1507. [Google Scholar] [CrossRef]
- Ferrari, C.; Santo, G.; Ruta, R.; Lavelli, V.; Rubini, D.; Mammucci, P.; Sardaro, A.; Rubini, G. Early Predictive Response to Multi-Tyrosine Kinase Inhibitors in Advanced Refractory Radioactive-Iodine Differentiated Thyroid Cancer: A New Challenge for [18F]FDG PET/CT. Diagnostics 2021, 11, 1417. [Google Scholar] [CrossRef]
- Valerio, L.; Guidoccio, F.; Giani, C.; Tardelli, E.; Puccini, G.; Puleo, L.; Minaldi, E.; Boni, G.; Elisei, R.; Volterrani, D. [18F]-FDG-PET/CT Correlates with the Response of Radiorefractory Thyroid Cancer to Lenvatinib and Patient Survival. J. Clin. Endocrinol. Metab. 2021, 106, 2355–2366. [Google Scholar] [CrossRef]
- Ahmaddy, F.; Burgard, C.; Beyer, L.; Koehler, V.F.; Bartenstein, P.; Fabritius, M.P.; Geyer, T.; Wenter, V.; Ilhan, H.; Spitzweg, C.; et al. 18F-FDG-PET/CT in Patients with Advanced, Radioiodine Refractory Thyroid Cancer Treated with Lenvatinib. Cancers 2021, 13, 317. [Google Scholar] [CrossRef]
- Aide, N.; Lasnon, C.; Kesner, A.; Levin, C.S.; Buvat, I.; Iagaru, A.; Hermann, K.; Badawi, R.D.; Cherry, S.R.; Bradley, K.M.; et al. New PET technologies—Embracing progress and pushing the limits. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2711–2726. [Google Scholar] [CrossRef]
- Saab, G.; Driedger, A.A.; Pavlosky, W.; McDonald, T.; Wong, C.Y.; Yoo, J.; Urbain, J.L. Thyroid-stimulating hormone-stimulated fused positron emission tomography/computed tomography in the evaluation of recurrence in 131I-negative papillary thyroid carcinoma. Thyroid 2006, 16, 267–272. [Google Scholar] [CrossRef]
- Giovanella, L.; D’aurizio, F.; Petranovic, P.; Ovčariček, P.; Görges, R. Diagnostic, Theranostic and Prognostic Value of Thyroglobulin in Thyroid Cancer. J. Clin. Med. 2024, 13, 2463. [Google Scholar] [CrossRef]
- Morbelli, S.; Ferrarazzo, G.; Pomposelli, E.; Pupo, F.; Pesce, G.; Calamia, I.; Fiz, F.; Clapasson, A.; Bauckneht, M.; Minuto, M.; et al. Relationship between circulating anti-thyroglobulin antibodies (TgAb) and tumor metabolism in patients with differentiated thyroid cancer (DTC): Prognostic implications. J. Endocrinol. Invest. 2017, 40, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Garo, M.L.; Albano, D.; Görges, R.; Ceriani, L. The role of thyroglobulin doubling time in differentiated thyroid cancer: A meta-analysis. Endocr. Connect. 2022, 11, e210648. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.M.; Olsen, M.W.B.; Ley, C.D.; Klausen, T.L.; Mortensen, J.; Højgaard, L.; Kristjansen, P.E. How few cancer cells can be detected by positron emission tomography? A frequent question addressed by an in vitro study. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Pauws, E.; Moreno, J.C.; Tijssen, M.; Baas, F.; de Vijlder, J.J.M.; Ris-Stalpers, C. Serial Analysis of Gene Expression as a Tool to Assess the Human Thyroid Expression Profile and to Identify Novel Thyroidal Genes. J. Clin. Endocrinol. Metab. 2000, 85, 1923–1927. [Google Scholar] [PubMed]
- Robbins, R.J.; Srivastava, S.; Shaha, A.; Ghossein, R.; Larson, S.M.; Fleisher, M.; Tuttle, R.M. Factors Influencing the Basal and Recombinant Human Thyrotropin-Stimulated Serum Thyroglobulin in Patients with Metastatic Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2004, 89, 6010–6016. [Google Scholar] [CrossRef]
- Li, S.; Ren, C.; Gong, Y.; Ye, F.; Tang, Y.; Xu, J.; Guo, C.; Huang, J. The Role of Thyroglobulin in Preoperative and Postoperative Evaluation of Patients with Differentiated Thyroid Cancer. Front Endocrinol. 2022, 13, 872527. [Google Scholar] [CrossRef]
- Ullrich, S.; Leidescher, S.; Feodorova, Y.; Thanisch, K.; Fini, J.B.; Kaspers, B.; Weber, F.; Markova, B.; Führer, D.; Romitti, M.; et al. The highly and perpetually upregulated thyroglobulin gene is a hallmark of functional thyrocytes. Front. Cell Dev. Biol. 2023, 11, 1265407. [Google Scholar] [CrossRef]
- Ranade, R.; Kand, P.; Basu, S. Value of 18F-FDG PET negativity and Tg suppressibility as markers of prognosis in patients with elevated Tg and 131I-negative differentiated thyroid carcinoma (TENIS syndrome). Nucl. Med. Commun. 2015, 36, 1014–1020. [Google Scholar] [CrossRef]
- Sollini, M.; Erba, P.A.; Fraternali, A.; Casali, M.; Di Paolo, M.L.; Froio, A.; Frasoldati, A.; Versari, A. PET and PET/CT with 68gallium-labeled somatostatin analogues in non GEP-NETs tumors. Sci. World J. 2014, 2014, 194123. [Google Scholar] [CrossRef]
- Gabriel, M.; Andergassen, U.; Putzer, D.; Kroiss, A.; Waitz, D.; Von Guggenberg, E.; Kendler, D.; Virgolini, I.J. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q. J. Nucl. Med. Mol. Imaging 2010, 54, 92–99. [Google Scholar]
- Basu, S.; Kalshetty, A.; Fargose, P. Interlesional “flip-flop” between 68Ga-DOTATATE and FDG-PET/CT in thyroglobulin-elevated negative iodine scintigraphy (TENIS) syndrome. Natl. Med. J. India 2017, 30, 48. [Google Scholar]
- Phan, H.T.T.; Jager, P.L.; Plukker, J.T.M.; Wolffenbuttel, B.H.R.; Dierckx, R.A.; Links, T.P. Comparison of 11C-methionine PET and 18F-fluorodeoxyglucose PET in differentiated thyroid cancer. Nucl. Med. Commun. 2008, 29, 711–716. [Google Scholar] [CrossRef]
- Piccardo, A.; Trimboli, P.; Puntoni, M.; Foppiani, L.; Treglia, G.; Naseri, M.; Bottoni, G.L.; Massollo, M.; Sola, S.; Ferrarazzo, G.; et al. Role of 18F-Choline Positron Emission Tomography/Computed Tomography to Detect Structural Relapse in High-Risk Differentiated Thyroid Cancer Patients. Thyroid 2019, 29, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, A.; Massollo, M.; Bandelloni, R.; Arlandini, A.; Foppiani, L. Lymph Node Metastasis from Tall-Cell Thyroid Cancer Negative on 18F-FDG PET/CT and Detected by 18F-Choline PET/CT. Clin. Nucl. Med. 2015, 40, e417–e419. [Google Scholar] [CrossRef] [PubMed]
- Coerts, H.I.; De Keizer, B.; Verburg, F.A. Advances in the Development of Positron Emission Tomography Tracers for Improved Detection of Differentiated Thyroid Cancer. Cancers 2024, 16, 1401. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Racca, M.; Dall’Armellina, S.; Delgado Bolton, R.C.; Albano, D.; Dondi, F.; Bertagna, F.; Annunziata, S.; Treglia, G. Potential Role of PSMA-Targeted PET in Thyroid Malignant Disease: A Systematic Review. Diagnostics 2023, 13, 564. [Google Scholar] [CrossRef]
- Santhanam, P.; Russell, J.; Rooper, L.M.; Ladenson, P.W.; Pomper, M.G.; Rowe, S.P. The prostate-specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL detects tumor neovasculature in metastatic, advanced, radioiodine-refractory, differentiated thyroid cancer. Med. Oncol. 2020, 37, 98. [Google Scholar] [CrossRef]
- Shi, Y.; Feng, Y.; Xu, L.; Li, W.; Guan, L.; Zuo, R.; Liu, S.; Pang, H.; Wang, Z. The value of Gallium-68 prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) PET/CT and 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT in the detection of thyroid cancer lesions: A prospective head-to-head comparison. Br. J. Radiol. 2023, 97, 1501–1510. [Google Scholar] [CrossRef]
- Verburg, F.A.; Krohn, T.; Heinzel, A.; Mottaghy, F.M.; Behrendt, F.F. First evidence of PSMA expression in differentiated thyroid cancer using [68Ga]PSMA-HBED-CC PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1622–1623. [Google Scholar] [CrossRef]
- Taywade, S.K.; Damle, N.A.; Bal, C. PSMA Expression in Papillary Thyroid Carcinoma: Opening a New Horizon in Management of Thyroid Cancer? Clin. Nucl. Med. 2016, 41, e263–e265. [Google Scholar] [CrossRef]
- Lütje, S.; Gomez, B.; Cohnen, J.; Umutlu, L.; Gotthardt, M.; Poeppel, T.D.; Bockisch, A.; Rosenbaum-Krumme, S. Imaging of Prostate-Specific Membrane Antigen Expression in Metastatic Differentiated Thyroid Cancer Using 68Ga-HBED-CC-PSMA PET/CT. Clin. Nucl. Med. 2017, 42, 20–25. [Google Scholar] [CrossRef]
- Verma, P.; Malhotra, G.; Meshram, V.; Chandak, A.; Sonavane, S.; Lila, A.R.; Bandgar, T.R.; Asopa, R.V. Prostate-Specific Membrane Antigen Expression in Patients With Differentiated Thyroid Cancer With Thyroglobulin Elevation and Negative Iodine Scintigraphy Using 68Ga-PSMA-HBED-CC PET/CT. Clin. Nucl. Med. 2021, 46, E406–E409. [Google Scholar] [CrossRef]
- Rizzo, A.; Dall’Armellina, S.; Pizzuto, D.A.; Perotti, G.; Zagaria, L.; Lanni, V.; Treglia, G.; Racca, M.; Annunziata, S. PSMA Radioligand Uptake as a Biomarker of Neoangiogenesis in Solid Tumours: Diagnostic or Theragnostic Factor? Cancers 2022, 14, 4039. [Google Scholar] [CrossRef]
- Moore, M.; Panjwani, S.; Mathew, R.; Crowley, M.; Liu, Y.F.; Aronova, A.; Finnerty, B.; Zarnegar, R.; Fahey, T.J., 3rd; Scognamiglio, T. Well-Differentiated Thyroid Cancer Neovasculature Expresses Prostate-Specific Membrane Antigen—A Possible Novel Therapeutic Target. Endocr. Pathol. 2017, 28, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; Kirienko, M.; di Tommaso, L.; Pini, C.; Gelardi, F.; Ariano, S.; Lania, A.G.; Mazziotti, G.; Mercante, G.; Chiti, A. The complementary role of PSMA expression and [18F]FDG PET/CT in predicting thyroid cancer outcome: From black and white to shades of gray, in the era of precision oncology. EJNMMI Res. 2023, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; di Tommaso, L.; Kirienko, M.; Piombo, C.; Erreni, M.; Lania, A.G.; Erba, P.A.; Antunovic, L.; Chiti, A. PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome. EJNMMI Res. 2019, 9, 93. [Google Scholar] [CrossRef]
- Fu, H.; Wu, J.; Huang, J.; Sun, L.; Wu, H.; Guo, W.; Qiu, S.; Chen, H. 68Ga Fibroblast Activation Protein Inhibitor PET/CT in the Detection of Metastatic Thyroid Cancer: Comparison with 18F-FDG PET/CT. Radiology 2022, 304, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Pucci, M.; Pontieri, G.; Formisano, P.; Esposito, R. Preliminary Results of a Double-Blind Randomized Controlled Trial Evaluating the Cardiometabolic Effects of Levothyroxine and Liothyronine Compared to Levothyroxine with Placebo in Athyreotic Low-Risk Thyroid Cancer Patients. Thyroid 2023, 33, 1402–1413. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liao, T.; Rao, Z.; Gong, W.; Ou, L.; Chen, Y.; Zhang, C. Comparison of the Relative Diagnostic Performance of [68Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT for the Detection of Bone Metastasis in Patients with Different Cancers. Front. Oncol. 2021, 11, 737827. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.; Roesch, F.; Satapathy, S.; Sung Moon, E.; Martin, M.; Wakade, N.; Sheokand, P.; Tripathi, M.; Chandekar, K.R.; et al. Head-to-head comparison of [68Ga]Ga-DOTA.SA.FAPi with [18F]F-FDG PET/CT in radioiodine-resistant follicular-cell derived thyroid cancers. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 233–244. [Google Scholar] [CrossRef]
- Nourbakhsh, S.; Salehi, Y.; Farzanehfar, S.; Ghaletaki, R.; Bakhshi Kashi, M.; Abbasi, M. FAPI PET/CT provides higher uptake and better target to back ground in recurrent and metastatic tumors of patients with Iodine refractory papillary thyroid cancer compared with FDG PET CT. Nuklearmedizin 2024. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zheng, S.; Zhang, J.; Yao, S.; Miao, W. 68Ga-DOTA-FAPI-04 PET/CT imaging in radioiodine-refractory differentiated thyroid cancer (RR-DTC) patients. Ann. Nucl. Med. 2022, 36, 610–622. [Google Scholar] [CrossRef] [PubMed]
Study | Risk of Bias | Applicability Concerns | |||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Gabriel, M. et al., 2003 [23] | ? | ☺ | ? | ? | ☹ | ☺ | ☺ |
Gao, R. et al. [24] | ☺ | ☺ | ? | ? | ☺ | ☺ | ☺ |
Grünwald, F. et al. [25] | ? | ? | ? | ? | ☺ | ☺ | ☺ |
Helal, B.O. et al. [26] | ☺ | ☺ | ☹ | ☹ | ☺ | ☺ | ☺ |
Palmedo, H. et al. [27] | ? | ☺ | ? | ? | ☺ | ☺ | ☺ |
Mirallié, E. et al. [28] | ? | ☺ | ? | ? | ☺ | ☺ | ☺ |
Esteva, D. et al. [29] | ? | ☺ | ? | ? | ☺ | ☺ | ☺ |
Giovanella, L. et al. [30] | ☺ | ? | ? | ? | ☺ | ☺ | ☺ |
Bannas, P. et al. [31] | ☺ | ☺ | ? | ? | ☺ | ☺ | ☺ |
Kunawudhi, A. et al. [32] | ☺ | ☺ | ? | ☹ | ☺ | ☺ | ☺ |
Vural, G.U. et al. [33] | ? | ? | ? | ☺ | ☺ | ☺ | ☺ |
van Dijk, D. et al. [34] | ? | ☺ | ? | ? | ☺ | ☺ | ☺ |
Ozkan, E. et al. [35] | ? | ☺ | ? | ☺ | ☺ | ☺ | ☺ |
Kundu, P. et al. [36] | ☺ | ☺ | ? | ? | ☺ | ☺ | ☺ |
Binse, I. et al. [37] | ☺ | ☺ | ☹ | ☹ | ☺ | ☺ | ☺ |
Hempel, J.M. et al. [38] | ☺ | ☺ | ☺ | ? | ☺ | ☺ | ☺ |
Stangierski, A. et al. [39] | ? | ? | ? | ? | ☺ | ☺ | ☹ |
Kaewput, C. et al. [40] | ? | ☹ | ? | ? | ☺ | ☺ | ☺ |
Kendi, A. et al. [41] | ☺ | ? | ? | ? | ☺ | ☺ | ☹ |
Parihar, A.S. et al. [42] | ☺ | ☺ | ? | ? | ☺ | ☺ | ☺ |
Ora, M. et al. [43] | ? | ☹ | ? | ? | ☺ | ☺ | ☺ |
Boktor, R.R. et al. [44] | ☺ | ☺ | ? | ? | ☺ | ☺ | ☺ |
Study Characteristics | Included Studies (n = 22) | |
---|---|---|
Patients | n < 50 | 12 |
n ≥ 50 | 10 | |
Study design | Retrospective | 11 |
Prospective | 9 | |
N/A | 2 | |
Thyroid cancer histotype | Papillary | 1 |
Mixed | 20 | |
WBS | Post-treatment | 11 |
Diagnostic | 7 | |
Mixed | 3 | |
N/A | 1 | |
Imaging modality | PET/CT | 20 |
Scintigraphy | 2 | |
Diagnostic accuracy analysis | Per-patient | 17 |
Per-patient and per-lesion | 5 |
Study | Year | Design | No. Patients | TC Subtype | Imaging Modality | RPh | WBS Type | WBS-Imaging Timing (Weeks) | Reference Standard | Image Analysis |
---|---|---|---|---|---|---|---|---|---|---|
Gabriel, M. et al. [23] | 2003 | P | 54 | PTC, FTC, OC | Scintigraphy SPECT/CT | [99mTc]Tc-EDDA/HYNIC-TOC | T | 12 | histopathological results, other imaging methods (US, CT, MRI) | Qualitative |
36/54 | PET/CT | [18F]FDG | Qualitative | |||||||
Gao, R. et al. [24] | 2018 | P | 37 | PTC, FTC | SPECT/CT | [99mTc]Tc-3PRGD2 | D | 1 | histopathological results, serial radiological or clinical follow-up | Qualitative and semiquantitative |
Grünwald, F. et al. [25] | 1999 | R | 166 | PTC, FTC, HCC | PET/CT | [18F]FDG | T | 4 | histopathological results, other imaging methods (US, CT), thyroglobulin level, clinical follow-up | Qualitative |
Helal, B.O. et al. [26] | 2001 | P | 37 | PTC, FTC, HCC | PET/CT | [18F]FDG | T | 12 | histopathological results, other imaging methods (US, CT, MRI), clinical follow-up | Qualitative |
Palmedo, H. et al. [27] | 2005 | P | 40 | PTC, FTC, HCC | PET/CT | [18F]FDG | T, D | 1 | histopathological results or clinical follow-up | Qualitative |
Mirallié, E. et al. [28] | 2007 | P | 45 | PTC, FTC, HCC | PET/CT | [18F]FDG | T | 12 | histopathological results, other imaging methods (US, CT), postoperative Tg levels | Qualitative |
Esteva, D. et al. [29] | 2009 | R | 50 | PTC, FTC, HCC | PET/CT | [18F]FDG | D | 1 | histopathological results, other imaging methods (US, CT, MRI), 12-month clinical follow-up | Qualitative |
Giovanella, L. et al. [30] | 2011 | N/A | 42 | PTC, FTC | PET/CT | [18F]FDG | T | 18 | histopathological results, other imaging methods (US, CT, MRI), clinical follow-up | Qualitative |
Bannas, P. et al. [31] | 2012 | R | 30 | PTC, FTC | PET/CT | [18F]FDG | D | 0.5 | Initial Tg levels, histopathological results, other imaging methods (US, CT, MRI), clinical follow-up | Qualitative |
Kunawudhi, A. et al. [32], | 2012 | P | 30 | PTC, FTC | PET/CT | [18F]FDG | T | 24 | histopathological results, imaging follow-up (US, CT, [99mTc]Tc-MIBI SPECT/CT, or follow-up FDG PET/CT), Tg levels | Qualitative and quantitative |
Vural, G.U. et al. [33] | 2012 | P | 105 | DTC (histotypes NA) | PET/CT | [18F]FDG | T | 1 | histopathological results or clinical follow-up | Qualitative |
van Dijk, D. et al. [34] | 2013 | R | 52 | PTC, FTC, HCC | PET/CT | [18F]FDG | T | 12 | Tg levels, histopathological results, imaging follow-up (CT, MRI, US), follow-up 131I-WBS | Qualitative |
Ozkan, E. et al. [35] | 2013 | N/A | 59 | PTC | PET/CT | [18F]FDG | D | 12 | histopathological results | Qualitative and quantitative |
Kundu, P. et al. [36] | 2014 | P | 62 | PTC, FTC | PET/CT | [68Ga]Ga-DOTANOC | T, D | 2 | histopathological results, serial follow-up with serum Tg, clinical examination, response to redifferentiating drugs, and conventional imaging (CT/MRI) | Qualitative and quantitative |
PET/CT | [18F]FDG | Qualitative and quantitative | ||||||||
Binse, I. et al. [37] | 2016 | R | 15 | PTC, FTC, OTC, poorly differentiated carcinoma | PET/CT | [68Ga]Ga-DOTATOC | D | 15 | histopathological results or clinical follow-up, including different imaging modalities | Qualitative and quantitative |
Hempel, J.M. et al. [38] | 2016 | R | 46 | PTC, FTC, poorly differentiated carcinoma, anaplastic carcinoma | PET/CT | [18F]FDG | T | 0.5 | histopathological results, long-term follow-up (minimum 3 years) | Qualitative |
MRI | Qualitative | |||||||||
Stangierski, A. et al. [39] | 2016 | R | 69 | DTC (histotypes N/A) | PET/CT | [18F]FDG | T | 2 | histopathological results or clinical follow-up | Qualitative |
Kaewput, C. et al. [40] | 2017 | R | 38 | PTC, FTC | PET/CT | [18F]FDG | T, D | 24 | histopathological results, other imaging methods (US, CT, MRI), follow-up 131I-WBS, subsequent Tg and TgAb levels | Qualitative and quantitative |
Kendi, A. et al. [41] | 2017 | R | 74 | DTC (histotypes N/A) | PET/CT | [18F]FDG | D | 0 (same session) | unclear (histopathology, 131I-WBS, Tg and TgAb levels, US) | Qualitative |
Parihar, A.S. et al. [42] | 2019 | P | 44 | PTC, FTC | PET/CT | [18F]FDG | T | 1 | histopathological results, other imaging methods (US, CT, MRI), clinical examination, TSH levels, Tg levels, TgAb levels, response to treatment with redifferentiation agents/tyrosine kinase inhibitors, local radiation therapy | Qualitative and quantitative |
PETCT | [68Ga]Ga-DOTA-RGD2 | Qualitative and quantitative | ||||||||
Ora, M. et al. [43] | 2020 | R | 137 | PTC, FTC | PET/CT | [18F]FDG | D | 1 | histopathological results, CT imaging, persistently raised Tg or TgAb levels in follow-up | Qualitative |
Boktor, R.R. et al. [44] | 2021 | R | 67 | PTC, FTC, HCC, insular carcinoma, poorly differentiated carcinoma | PET/CT | [18F]FDG | N/A | 2 | histopathological results, imaging follow-up, clinical follow-up, Tg levels | Qualitative |
Study | Imaging Modality | Radiopharmaceutical | Type of Analysis | Sensitivity (%) | Specificity (%) | Accuracy (%) |
---|---|---|---|---|---|---|
Gabriel, M. et al. [23] | Scintigraphy SPECT/CT | [99mTc]Tc-EDDA/HYNIC-TOC | Per patient | 66 | 100 | 68.5 |
PET/CT | [18F]FDG | 87.5 | 50 | 83.3 | ||
Gao, R. et al. [24] | SPECT/CT | [99mTc]Tc-3PRGD2 | Per patient | 96.6 | 75 | NA |
Grünwald, F. et al. [25] | PET/CT | [18F]FDG | Per patient | 85 | 90 | 89 |
Helal, B.O. et al. [26] | PET/CT | [18F]FDG | Per patient | N/A | N/A | N/A |
Palmedo, H. et al. [27] | PET/CT | [18F]FDG | Per patient and per lesion | 95 | 91 | 93 |
Mirallié, E. et al. [28] | PET/CT | [18F]FDG | Per patient | 63 | N/A | 53 |
Esteva, D. et al. [29] | PET/CT | [18F]FDG | Per patient | 82 | 64 | N/A |
Giovanella, L. et al. [30] | PET/CT | [18F]FDG | Per patient | 93 | 84 | 90 |
Bannas, P. et al. [31] | PET/CT | [18F]FDG | Per patient | 68 | 60 | 66.7 |
Kunawudhi, A. et al. [32] | PET/CT | [18F]FDG | Per patient and per lesion | 100 | 78 | 93 |
Vural, G.U. et al. [33] | PET/CT | [18F]FDG | Per patient | 87 | 77 | 75 |
van Dijk, D. et al. [34] | PET/CT | [18F]FDG | Per patient | 69 | 92 | N/A |
Ozkan, E. et al. [35] | PET/CT | [18F]FDG | Per patient and per lesion | 82 | 30 | 71 |
Kundu, P. et al. [36] | PET/CT | [68Ga]Ga-DOTANOC | Per patient and per lesion | 78.4 | 100 | 82.3 |
PET/CT | [18F]FDG | 86.3 | 90.9 | 87 | ||
Binse, I. et al. [37] | PET/CT | [68Ga]Ga-DOTATOC | Per patient | N/A | N/A | N/A |
Hempel, J.M. et al. [38] | PET/CT | [18F]FDG | Per patient | 91 | 87 | 89 |
MRI | 54 | 67 | 61 | |||
Stangierski, A. et al. [39] | PET/CT | [18F]FDG | Per patient | N/A | N/A | N/A |
Kaewput, C. et al. [40] | PET/CT | [18F]FDG | Per patient | 96.9 | 80 | 94.7 |
Kendi, A. et al. [41] | PET/CT | [18F]FDG | Per patient | N/A | N/A | N/A |
Parihar, A.S. et al. [42] | PET/CT | [18F]FDG | Per patient and per lesion | 82 | 50 | 75 |
PET/CT | [68Ga]Ga-DOTA-RGD2 | 82.3 | 100 | 86.4 | ||
Ora, M. et al. [43] | PET/CT | [18F]FDG | Per patient | N/A | N/A | N/A |
Boktor, R.R. et al. [44] | PET/CT | [18F]FDG | Per patient | 96.5 | 94.5 | 95.5 |
Tracer | Main Result | Future Perspectives * |
---|---|---|
Choline | <[18F]FDG | ± |
Methionine | <[18F]FDG | - |
Prostate specific membrane antigen | >[18F]FDG | + (++ in RLT selection) |
Integrin ανβ3 | ∽[18F]FDG | ± |
Fibroblast Activation Protein | >[18F]FDG | + (++ in RLT selection) |
Somatostatin analogues | <[18F]FDG | ± (++ in PRRT selection) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelardi, F.; Lazar, A.; Ninatti, G.; Pini, C.; Chiti, A.; Luster, M.; Eilsberger, F.; Sollini, M. Match Point: Nuclear Medicine Imaging for Recurrent Thyroid Cancer in TENIS Syndrome—Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 5362. https://doi.org/10.3390/jcm13185362
Gelardi F, Lazar A, Ninatti G, Pini C, Chiti A, Luster M, Eilsberger F, Sollini M. Match Point: Nuclear Medicine Imaging for Recurrent Thyroid Cancer in TENIS Syndrome—Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(18):5362. https://doi.org/10.3390/jcm13185362
Chicago/Turabian StyleGelardi, Fabrizia, Alexandra Lazar, Gaia Ninatti, Cristiano Pini, Arturo Chiti, Markus Luster, Friederike Eilsberger, and Martina Sollini. 2024. "Match Point: Nuclear Medicine Imaging for Recurrent Thyroid Cancer in TENIS Syndrome—Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 18: 5362. https://doi.org/10.3390/jcm13185362
APA StyleGelardi, F., Lazar, A., Ninatti, G., Pini, C., Chiti, A., Luster, M., Eilsberger, F., & Sollini, M. (2024). Match Point: Nuclear Medicine Imaging for Recurrent Thyroid Cancer in TENIS Syndrome—Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(18), 5362. https://doi.org/10.3390/jcm13185362