Rehabilitation to Improve Outcomes after Cervical Spine Surgery: Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Historical Review of Rehabilitation for Cervical Diseases
3.2. Different Types of Rehabilitation
4. Patients-Reported Outcome (PRO) Measures
4.1. Neck Disability Index (NDI)
4.2. Japanese Orthopedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ)
4.3. Spinal Cord Injury–Quality of Life (SCI-QOL)
4.4. Disabilities of Arm Shoulder and Hand (DASH)
4.5. Swallowing-Related Quality of Life (SWAL-QOL)
5. Physical Performance Tests
5.1. Ten-Second Grip and Release Test (10s-G&R) (Figure 1)
5.2. Capabilities of Upper Extremity Test (CUE-T)
5.3. Foot Tapping Test (FTT) (Figure 2)
5.4. The Brief BESTest (Table 4)
I. Biomechanical Constraints | II. Stability Limits | III. Anticipatory Postural Adjustments | IV. Postural Responses | V. Sensory Orientation | VI. Stability in Gait |
---|---|---|---|---|---|
1. Hip/trunk lateral strength | 2. Functional reach forward | 3. Stand on one leg (left and right) | 4. Compensatory stepping correction, lateral (left and right) | 5. Stance on foam, Eyes closed | 6. Timed “Get Up & Go” Test |
5.5. Walking Index for Spinal Cord Injury (WISCI II)
5.6. Trunk Control Test (TCT)
6. Active of Daily Living (ADL) Outcome Measures
6.1. Spinal Cord Independence Measure (SCIM)
6.2. Barthel Index (BI)
6.3. Functional Independence Measure (FIM)
7. Cervical Cord Injury Height Level and Severity Assessment Index
7.1. International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) and American Spinal Injury Association Impairment Scale (AIS) for Neurological Evaluation of SCI Patients
7.2. International SCI Datasets
8. Postoperative Physical Therapy for Cervical Surgery
8.1. Neck and Shoulder Muscle Strengthening
8.2. Hand Dexterity Movement Exercises
8.3. Neural Mobilizations (NM)
8.4. Balance Ability Exercise
9. Virtual Reality Technology for the Rehabilitation
10. Rehabilitation for Postoperative Complications of Cervical Spine Surgery
10.1. Postoperative C5 Palsy
10.2. Physical Therapy after C5 Palsy
10.3. Postoperative Dysphagia and Dyspnea
10.4. Physiotherapy for Dysphagia after Anterior Fixation
11. Physical Therapy for Cervical Cord Injury (CCI)
11.1. Acute Phase of CCI
11.1.1. Pneumonia
11.1.2. Pressure Sore
11.1.3. Low Blood Pressure
11.2. Recovery Phase of CCI
11.2.1. Goal of SCI Rehabilitation
11.2.2. Sitting Training
11.2.3. Wheelchair Training
11.2.4. Standing Training
11.2.5. Gait Training
12. Postoperative Rehabilitation of Cervical Tumors
13. Limitation
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Singh, A.; Tetreault, L.; Casey, A.; Laing, R.; Statham, P.; Fehlings, M.G. A Summary of Assessment Tools for Patients Suffering from Cervical Spondylotic Myelopathy: A Systematic Review on Validity, Reliability and Responsiveness. Eur. Spine J. 2015, 24 (Suppl. S2), 209–228. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.C.; Riew, K.D.; Anderson, P.A.; Hilibrand, A.S.; Vaccaro, A.F. Cervical Myelopathy. Current Diagnostic and Treatment Strategies. Spine J. 2003, 3, 68–81. [Google Scholar] [CrossRef]
- Klineberg, E. Cervical Spondylotic Myelopathy: A Review of the Evidence. Orthop. Clin. N. Am. 2010, 41, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Crandall, P.H.; Batzdorf, U. Cervical Spondylotic Myelopathy. J. Neurosurg. 1966, 25, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Echols, D.H. The Hoffmann Sign. J. Nerv. Ment. Dis. 1936, 84, 427. [Google Scholar] [CrossRef]
- Denno, J.J.; Meadows, G.R. Early Diagnosis of Cervical Spondylotic Myelopathy. A Useful Clinical Sign. Spine 1991, 16, 1353–1355. [Google Scholar] [CrossRef]
- GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, Regional, and National Burden of Traumatic Brain Injury and Spinal Cord Injury, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18, 56–87. [Google Scholar] [CrossRef]
- Anjum, A.; Yazid, M.D.; Fauzi Daud, M.; Idris, J.; Ng, A.M.H.; Selvi Naicker, A.; Ismail, O.H.R.; Athi Kumar, R.K.; Lokanathan, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int. J. Mol. Sci. 2020, 21, 7533. [Google Scholar] [CrossRef]
- Xiang, X.; Zong, H.; He, H. Research Progress of Lower Limb Exoskeleton Rehabilitation Robot in Improving the Walking Ability of Patients with Spinal Cord Injury. Chin. J. Rehabil. Med. 2020, 35, 119–122. [Google Scholar]
- Palacio, A.; Calmels, P.; Genty, M.; Le-Quang, B.; Beuret-Blanquart, F. Oncology and Physical Medicine and Rehabilitation. Ann. Phys. Rehabil. Med. 2009, 52, 568–578. [Google Scholar] [CrossRef]
- Guo, Y.; Young, B.; Palmer, J.L.; Mun, Y.; Bruera, E. Prognostic Factors for Survival in Metastatic Spinal Cord Compression: A Retrospective Study in a Rehabilitation Setting. Am. J. Phys. Med. Rehabil. 2003, 82, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Abrahm, J.L.; Banffy, M.B.; Harris, M.B. Spinal Cord Compression in Patients with Advanced Metastatic Cancer: “All I Care about Is Walking and Living My Life”. JAMA 2008, 299, 937–946. [Google Scholar] [CrossRef]
- Ling, J.; Thirumavalavan, J.; Shin, C.; Lee, T.M.; Marco, R.A.W.; Hirase, T. Postoperative Rehabilitation to Improve Outcomes After Cervical Spine Fusion for Degenerative Cervical Spondylosis: A Systematic Review. Cureus 2023, 15, e39081. [Google Scholar] [CrossRef]
- Lantz, J.M.; Abedi, A.; Tran, F.; Cahill, R.; Kulig, K.; Michener, L.A.; Hah, R.J.; Wang, J.C.; Buser, Z. The Impact of Physical Therapy Following Cervical Spine Surgery for Degenerative Spine Disorders: A Systematic Review. Clin. Spine Surg. 2021, 34, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Dweik, A.; Van den Brande, E.; Kossmann, T.; Maas, A.I.R. History of Cervical Spine Surgery: From Nihilism to Advanced Reconstructive Surgery. Spinal Cord 2013, 51, 809–814. [Google Scholar] [CrossRef]
- Lanska, D.J. The Influence of the Two World Wars on the Development of Rehabilitation for Spinal Cord Injuries in the United States and Great Britain. In Frontiers of Neurology and Neuroscience; Tatu, L., Bogousslavsky, J., Eds.; S. Karger AG: Basel, Switzerland, 2016; Volume 38, pp. 56–67. ISBN 978-3-318-05605-1. [Google Scholar]
- Ditunno, J.F. Linking Spinal Cord Injury Rehabilitation between the World Wars: The R. Tait McKenzie Legacy. J. Spinal Cord Med. 2017, 40, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Gensini, G.F.; Conti, A.A. Rehabilitation in the elderly: Differentiated strategies and objectives? Ital. Heart J. 2003, 4 (Suppl. S8), 73S–75S. [Google Scholar]
- World Health Organization. WHO Expert Committee on Medical Rehabilitation [Meeting Held in Geneva from 12 to 18 November 1968]: Second Report; World Health Organization: Geneva, Switzerland, 1969; ISBN 978-92-4-120419-4. [Google Scholar]
- Engel, G.L. The Need for a New Medical Model: A Challenge for Biomedicine. Science 1977, 196, 129–136. [Google Scholar] [CrossRef]
- Kottke, T.E.; Caspersen, C.J.; Hill, C.S. Exercise in the Management and Rehabilitation of Selected Chronic Diseases. Prev. Med. 1984, 13, 47–65. [Google Scholar] [CrossRef]
- Côté, P.; Wong, J.J.; Sutton, D.; Shearer, H.M.; Mior, S.; Randhawa, K.; Ameis, A.; Carroll, L.J.; Nordin, M.; Yu, H.; et al. Management of Neck Pain and Associated Disorders: A Clinical Practice Guideline from the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. Eur. Spine J. 2016, 25, 2000–2022. [Google Scholar] [CrossRef]
- Borsook, D.; Youssef, A.M.; Simons, L.; Elman, I.; Eccleston, C. When Pain Gets Stuck: The Evolution of Pain Chronification and Treatment Resistance. Pain 2018, 159, 2421–2436. [Google Scholar] [CrossRef] [PubMed]
- Fredin, K.; Lorås, H. Manual Therapy, Exercise Therapy or Combined Treatment in the Management of Adult Neck Pain—A Systematic Review and Meta-Analysis. Musculoskelet. Sci. Pract. 2017, 31, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Tederko, P.; Krasuski, M.; Tarnacka, B. Effectiveness of Rehabilitation after Cervical Disk Surgery: A Systematic Review of Controlled Studies. Clin. Rehabil. 2019, 33, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Coronado, R.A.; Devin, C.J.; Pennings, J.S.; Vanston, S.W.; Fenster, D.E.; Hills, J.M.; Aaronson, O.S.; Schwarz, J.P.; Stephens, B.F.; Archer, K.R. Early Self-Directed Home Exercise Program After Anterior Cervical Discectomy and Fusion: A Pilot Study. Spine 2020, 45, 217–225. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Chien, A.; Hsu, W.-L.; Lai, D.-M.; Wang, S.-F.; Wang, J.-L. Identification of Head Control Deficits Following Anterior Cervical Discectomy and Fusion in Patients with Cervical Spondylotic Myelopathy. Eur. Spine J. 2016, 25, 1855–1860. [Google Scholar] [CrossRef]
- Javdaneh, N.; Saeterbakken, A.H.; Shams, A.; Barati, A.H. Pain Neuroscience Education Combined with Therapeutic Exercises Provides Added Benefit in the Treatment of Chronic Neck Pain. Int. J. Environ. Res. Public Health 2021, 18, 8848. [Google Scholar] [CrossRef]
- Gélis, A.; Stéfan, A.; Colin, D.; Albert, T.; Gault, D.; Goossens, D.; Perrouin-Verbe, B.; Fattal, C.; Pelissier, J.; Coudeyre, E. Therapeutic Education in Persons with Spinal Cord Injury: A Review of the Literature. Ann. Phys. Rehabil. Med. 2011, 54, 189–210. [Google Scholar] [CrossRef]
- Uehara, T.; Tsushima, E.; Yamada, S.; Kimura, S.; Satsukawa, Y.; Yoshihara, A.; Inada, A.; Hayakawa, T. A Randomized Controlled Trial for the Intervention Effect of Early Exercise Therapy on Axial Pain after Cervical Laminoplasty. Spine Surg. Relat. Res. 2022, 6, 123–132. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, N.; Xu, Y. Effects of Respiratory Muscle Training on Pulmonary Function in Individuals with Spinal Cord Injury: An Updated Meta-Analysis. BioMed Res. Int. 2020, 2020, 7530498. [Google Scholar] [CrossRef]
- Khan, Z.K.; Ahmed, S.I.; Baig, A.A.M.; Farooqui, W.A. Effect of Post-Isometric Relaxation versus Myofascial Release Therapy on Pain, Functional Disability, Rom and Qol in the Management of Non-Specific Neck Pain: A Randomized Controlled Trial. BMC Musculoskelet. Disord. 2022, 23, 567. [Google Scholar] [CrossRef]
- Kuligowski, T.; Skrzek, A.; Cieślik, B. Manual Therapy in Cervical and Lumbar Radiculopathy: A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2021, 18, 6176. [Google Scholar] [CrossRef] [PubMed]
- Deetz, D.; Petrie, B.K. Massage Therapy as a Complementary Treatment for Stiffness and Numbness Post Cervical Spinal Cord Injury: A Case Study. Int. J. Ther. Massage Bodyw. 2022, 15, 3–8. [Google Scholar] [CrossRef]
- Miao, Q.; Qiang, J.-H.; Jin, Y.-L. Effectiveness of Percutaneous Neuromuscular Electrical Stimulation for Neck Pain Relief in Patients with Cervical Spondylosis. Medicine 2018, 97, e11080. [Google Scholar] [CrossRef]
- Balbinot, G.; Li, G.; Gauthier, C.; Musselman, K.E.; Kalsi-Ryan, S.; Zariffa, J. Functional Electrical Stimulation Therapy for Upper Extremity Rehabilitation Following Spinal Cord Injury: A Pilot Study. Spinal Cord Ser. Cases 2023, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.-A.; Chen, S.-C.; Chiu, J.-F.; Shih, Y.-C.; Liou, T.-H.; Escorpizo, R.; Chen, H.-C. Body Weight-Supported Gait Training for Patients with Spinal Cord Injury: A Network Meta-Analysis of Randomised Controlled Trials. Sci. Rep. 2022, 12, 19262. [Google Scholar] [CrossRef]
- Weldring, T.; Smith, S.M.S. Patient-Reported Outcomes (PROs) and Patient-Reported Outcome Measures (PROMs). Health Serv. Insights 2013, 6, 61–68. [Google Scholar] [CrossRef]
- Bech, P.; Austin, S.F.; Lau, M.E. Patient Reported Outcome Measures (PROMs): Examination of the Psychometric Properties of Two Measures for Burden of Symptoms and Quality of Life in Patients with Depression or Anxiety. Nord. J. Psychiatry 2018, 72, 251–258. [Google Scholar] [CrossRef]
- Turner, G.M.; Slade, A.; Retzer, A.; McMullan, C.; Kyte, D.; Belli, A.; Calvert, M. An Introduction to Patient-Reported Outcome Measures (PROMs) in Trauma. J. Trauma Acute Care Surg. 2019, 86, 314–320. [Google Scholar] [CrossRef]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of Health Status. Ascertaining the Minimal Clinically Important Difference. Control. Clin. Trials 1989, 10, 407–415. [Google Scholar] [CrossRef]
- Issa, T.Z.; Lee, Y.; Henry, T.W.; Trenchfield, D.; Schroeder, G.D.; Vaccaro, A.R.; Kepler, C.K. Values Derived from Patient Reported Outcomes in Spine Surgery: A Systematic Review of the Minimal Clinically Important Difference, Substantial Clinical Benefit, and Patient Acceptable Symptom State. Eur. Spine J. 2023, 32, 3333–3351. [Google Scholar] [CrossRef]
- Badhiwala, J.H.; Witiw, C.D.; Nassiri, F.; Akbar, M.A.; Jaja, B.; Wilson, J.R.; Fehlings, M.G. Minimum Clinically Important Difference in SF-36 Scores for Use in Degenerative Cervical Myelopathy. Spine 2018, 43, E1260–E1266. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Oshima, Y.; Matsubayashi, Y.; Taniguchi, Y.; Tanaka, S.; Takeshita, K. Minimum Clinically Important Difference in Outcome Scores among Patients Undergoing Cervical Laminoplasty. Eur. Spine J. 2019, 28, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Nagata, K.; Nakamoto, H.; Sakamoto, R.; Takeshita, Y.; Ohtomo, N.; Kawamura, N.; Iizuka, M.; Ono, T.; Nakajima, K.; et al. Validity of the Japanese Core Outcome Measures Index (COMI)-Neck for Cervical Spine Surgery: A Prospective Cohort Study. Eur. Spine J. 2021, 30, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Carreon, L.Y.; Glassman, S.D.; Campbell, M.J.; Anderson, P.A. Neck Disability Index, Short Form-36 Physical Component Summary, and Pain Scales for Neck and Arm Pain: The Minimum Clinically Important Difference and Substantial Clinical Benefit after Cervical Spine Fusion. Spine J. 2010, 10, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Javeed, S.; Greenberg, J.K.; Plog, B.; Zhang, J.K.; Yahanda, A.T.; Dibble, C.F.; Khalifeh, J.M.; Ruiz-Cardozo, M.; Lavadi, R.S.; Molina, C.A.; et al. Clinically Meaningful Improvement in Disabilities of Arm, Shoulder, and Hand (DASH) Following Cervical Spine Surgery. Spine J. 2023, 23, 832–840. [Google Scholar] [CrossRef]
- Okano, I.; Ortiz Miller, C.; Salzmann, S.N.; Hoshino, Y.; Shue, J.; Sama, A.A.; Cammisa, F.P.; Girardi, F.P.; Hughes, A.P. Minimum Clinically Important Differences of the Hospital for Special Surgery Dysphagia and Dysphonia Inventory and Other Dysphagia Measurements in Patients Undergoing ACDF. Clin. Orthop. Relat. Res. 2020, 478, 2309–2320. [Google Scholar] [CrossRef]
- Vernon, H.; Mior, S. The Neck Disability Index: A Study of Reliability and Validity. J. Manip. Physiol. Ther. 1991, 14, 409–415. [Google Scholar]
- Ueda, H.; Cutler, H.S.; Guzman, J.Z.; Cho, S.K. Current Trends in the Use of Patient-Reported Outcome Instruments in Degenerative Cervical Spine Surgery. Glob. Spine J. 2016, 6, 242–247. [Google Scholar] [CrossRef]
- Takeshita, K.; Hosono, N.; Kawaguchi, Y.; Hasegawa, K.; Isomura, T.; Oshima, Y.; Ono, T.; Oshina, M.; Oda, T.; Kato, S.; et al. Validity, Reliability and Responsiveness of the Japanese Version of the Neck Disability Index. J. Orthop. Sci. 2013, 18, 14–21. [Google Scholar] [CrossRef]
- Fukui, M.; Chiba, K.; Kawakami, M.; Kikuchi, S.-I.; Konno, S.-I.; Miyamoto, M.; Seichi, A.; Shimamura, T.; Shirado, O.; Taguchi, T.; et al. An Outcome Measure for Patients with Cervical Myelopathy: Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ): Part 1. J. Orthop. Sci. 2007, 12, 227–240. [Google Scholar] [CrossRef]
- Chien, A.; Lai, D.-M.; Cheng, C.-H.; Wang, S.-F.; Hsu, W.-L.; Wang, J.-L. Translation, Cross-Cultural Adaptation, and Validation of a Chinese Version of the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire. Spine 2014, 39, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Valencia, M.; Haddad, S.; Pons Carreto, A.; García de Frutos, A.; Nuñez-Pereira, S.; PelliséUrquiza, F. Translation, Adaptation, and Validation of a Spanish Version of the Japanese Orthopaedic Association Cervical Myelopathy Questionnaire. Spine 2024, 49, E50–E57. [Google Scholar] [CrossRef] [PubMed]
- Tulsky, D.S.; Kisala, P.A.; Victorson, D.; Choi, S.W.; Gershon, R.; Heinemann, A.W.; Cella, D. Methodology for the Development and Calibration of the SCI-QOL Item Banks. J. Spinal Cord Med. 2015, 38, 270–287. [Google Scholar] [CrossRef]
- Tulsky, D.S.; Kisala, P.A.; Victorson, D.; Tate, D.G.; Heinemann, A.W.; Charlifue, S.; Kirshblum, S.C.; Fyffe, D.; Gershon, R.; Spungen, A.M.; et al. Overview of the Spinal Cord Injury—Quality of Life (SCI-QOL) Measurement System. J. Spinal Cord Med. 2015, 38, 257–269. [Google Scholar] [CrossRef]
- Kisala, P.A.; Tulsky, D.S.; Kalpakjian, C.Z.; Heinemann, A.W.; Pohlig, R.T.; Carle, A.; Choi, S.W. Measuring Anxiety after Spinal Cord Injury: Development and Psychometric Characteristics of the SCI-QOL Anxiety Item Bank and Linkage with GAD-7. J. Spinal Cord Med. 2015, 38, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Tulsky, D.S.; Kisala, P.A.; Kalpakjian, C.Z.; Bombardier, C.H.; Pohlig, R.T.; Heinemann, A.W.; Carle, A.; Choi, S.W. Measuring Depression after Spinal Cord Injury: Development and Psychometric Characteristics of the SCI-QOL Depression Item Bank and Linkage with PHQ-9. J. Spinal Cord Med. 2015, 38, 335–346. [Google Scholar] [CrossRef]
- Kisala, P.A.; Tulsky, D.S.; Choi, S.W.; Kirshblum, S.C. Development and Psychometric Characteristics of the SCI-QOL Pressure Ulcers Scale and Short Form. J. Spinal Cord Med. 2015, 38, 303–314. [Google Scholar] [CrossRef]
- Kuzu, D.; Kallen, M.A.; Kratz, A.L. Psychometric Properties of the Spinal Cord Injury-Quality of Life (SCI-QOL) Resilience Short Form in a Sample with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2024, 105, 59–66. [Google Scholar] [CrossRef]
- Hudak, P.L.; Amadio, P.C.; Bombardier, C. Development of an Upper Extremity Outcome Measure: The DASH (Disabilities of the Arm, Shoulder and Hand) [Corrected]. The Upper Extremity Collaborative Group (UECG). Am. J. Ind. Med. 1996, 29, 602–608. [Google Scholar] [CrossRef]
- Davies, B.; Mowforth, O.; Sadler, I.; Aarabi, B.; Kwon, B.; Kurpad, S.; Harrop, J.S.; Wilson, J.R.; Grossman, R.; Fehlings, M.G.; et al. Recovery Priorities in Degenerative Cervical Myelopathy: A Cross-Sectional Survey of an International, Online Community of Patients. BMJ Open 2019, 9, e031486. [Google Scholar] [CrossRef]
- Huisstede, B.M.A.; Feleus, A.; Bierma-Zeinstra, S.M.; Verhaar, J.A.; Koes, B.W. Is the Disability of Arm, Shoulder, and Hand Questionnaire (DASH) Also Valid and Responsive in Patients with Neck Complaints. Spine 2009, 34, E130–E138. [Google Scholar] [CrossRef] [PubMed]
- Melloh, M.; Gabel, C.P.; Cuesta-Vargas, A.I. Factor Analysis Findings for the QuickDASH. Re: Mehta, S.; MacDermid, J.C.; Carlesso, L.C.; et al. Concurrent Validation of the DASH and the QuickDASH in Comparison to Neck-Specific Scales in Patients with Neck Pain. Spine 2010, 35, 2150–2156. Spine 2011, 36, 1260, author reply 1260-1. [Google Scholar] [CrossRef] [PubMed]
- Beaton, D.E.; Wright, J.G.; Katz, J.N.; Upper Extremity Collaborative Group. Development of the QuickDASH: Comparison of Three Item-Reduction Approaches. J. Bone Jt. Surg. 2005, 87, 1038–1046. [Google Scholar] [CrossRef]
- Mehta, S.; Macdermid, J.C.; Carlesso, L.C.; McPhee, C. Concurrent Validation of the DASH and the QuickDASH in Comparison to Neck-Specific Scales in Patients with Neck Pain. Spine 2010, 35, 2150–2156. [Google Scholar] [CrossRef]
- Alreni, A.S.E.; Harrop, D.; Lowe, A.; Potia, T.; Kilner, K.; McLean, S.M. Measures of Upper Limb Function for People with Neck Pain. A Systematic Review of Measurement and Practical Properties. Musculoskelet Sci. Pract. 2017, 29, 155–163. [Google Scholar] [CrossRef]
- Ge, P.; Cheng, J.; Li, K.; Zhang, Z.; Tao, E.; Zhang, B.; Shen, C. The Early Effects of Longus Colli Muscle and Anterior Longitudinal Ligament Reconstructions on Swallowing Function after Anterior Cervical Surgery: A Six-Month Follow-Up Study. Discov. Med. 2023, 35, 823–830. [Google Scholar] [CrossRef]
- Cha, E.D.K.; Lynch, C.P.; Ahn, J.; Patel, M.R.; Jacob, K.C.; Geoghegan, C.E.; Prabhu, M.C.; Vanjani, N.N.; Pawlowski, H.; Singh, K. Dysphagia May Attenuate Improvements in Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion. Int. J. Spine Surg. 2022, 16, 983–990. [Google Scholar] [CrossRef]
- Rivelsrud, M.C.; Kirmess, M.; Hartelius, L. Cultural Adaptation and Validation of the Norwegian Version of the Swallowing Quality of Life Questionnaire (SWAL-QOL). Health Qual. Life Outcomes 2019, 17, 179. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Zhu, H.; Du, H.; Wang, J.; Bo, L.; Huo, X. Reliability and Validity of the Chinese Mandarin Version of the Swallowing Quality of Life Questionnaire. Dysphagia 2021, 36, 670–679. [Google Scholar] [CrossRef]
- Kalb, S.; Reis, M.T.; Cowperthwaite, M.C.; Fox, D.J.; Lefevre, R.; Theodore, N.; Papadopoulos, S.M.; Sonntag, V.K.H. Dysphagia after Anterior Cervical Spine Surgery: Incidence and Risk Factors. World Neurosurg. 2012, 77, 183–187. [Google Scholar] [CrossRef]
- Bazaz, R.; Lee, M.J.; Yoo, J.U. Incidence of Dysphagia after Anterior Cervical Spine Surgery: A Prospective Study. Spine 2002, 27, 2453–2458. [Google Scholar] [CrossRef] [PubMed]
- Mayo, B.C.; Massel, D.H.; Bohl, D.D.; Patel, D.V.; Khechen, B.; Haws, B.E.; Narain, A.S.; Hijji, F.Y.; Singh, K. Dysphagia Following Anterior Cervical Spine Surgery: Assessment Using an Abridged SWAL-QOL. Int. J. Spine Surg. 2019, 13, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Mitsuhara, T.; Abiko, M.; Takeda, M.; Kurisu, K. Epidemiology and Overview of the Clinical Spectrum of Degenerative Cervical Myelopathy. Neurosurg. Clin. N. Am. 2018, 29, 1–12. [Google Scholar] [CrossRef]
- Nagata, K.; Yoshimura, N.; Hashizume, H.; Yamada, H.; Ishimoto, Y.; Muraki, S.; Nakagawa, Y.; Minamide, A.; Oka, H.; Kawaguchi, H.; et al. Physical Performance Decreases in the Early Stage of Cervical Myelopathy before the Myelopathic Signs Appear: The Wakayama Spine Study. Eur. Spine J. 2019, 28, 1217–1224. [Google Scholar] [CrossRef]
- Machino, M.; Ando, K.; Kobayashi, K.; Nakashima, H.; Kanbara, S.; Ito, S.; Inoue, T.; Koshimizu, H.; Ito, K.; Kato, F.; et al. Prediction of Outcome Following Laminoplasty of Cervical Spondylotic Myelopathy: Focus on the Minimum Clinically Important Difference. J. Clin. Neurosci. 2020, 81, 321–327. [Google Scholar] [CrossRef]
- Hachiya, K.; Kawabata, S.; Michikawa, T.; Nagai, S.; Takeda, H.; Ikeda, D.; Kaneko, S.; Fujita, N. Severity of Locomotive Syndrome in Surgical Cervical Spondylotic Myelopathy Patients: A Cross-Sectional Study. Fujita Med. J. 2023, 9, 246–252. [Google Scholar] [CrossRef]
- Kimura, A.; Takeshita, K.; Inoue, H.; Seichi, A.; Kawasaki, Y.; Yoshii, T.; Inose, H.; Furuya, T.; Takeuchi, K.; Matsunaga, S.; et al. The 25-Question Geriatric Locomotive Function Scale Predicts the Risk of Recurrent Falls in Postoperative Patients with Cervical Myelopathy. J. Orthop. Sci. 2018, 23, 185–189. [Google Scholar] [CrossRef]
- McKinley, W.; Hills, A.; Sima, A. Posterior Cord Syndrome: Demographics and Rehabilitation Outcomes. J. Spinal Cord Med. 2021, 44, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Ebara, S.; Fuji, T.; Yonenobu, K.; Fujiwara, K.; Yamashita, K. Myelopathy Hand. New Clinical Signs of Cervical Cord Damage. J. Bone Jt. Surg. 1987, 69, 215–219. [Google Scholar] [CrossRef]
- Machino, M.; Ando, K.; Kobayashi, K.; Morozumi, M.; Tanaka, S.; Ito, K.; Kato, F.; Ishiguro, N.; Imagama, S. Cut off Value in Each Gender and Decade of 10-s Grip and Release and 10-s Step Test: A Comparative Study between 454 Patients with Cervical Spondylotic Myelopathy and 818 Healthy Subjects. Clin. Neurol. Neurosurg. 2019, 184, 105414. [Google Scholar] [CrossRef]
- Liang, G.; Ye, Y.; Zheng, S.; Liao, T.; Wu, W.; Chen, C.; Chen, J.; Chang, Y. Classifying Hand Dexterity Impairment in Degenerative Cervical Myelopathy with 10-Second Grip and Release Test. Spine 2024, 49, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.J.; Patrick, M.; Albright, W.; Leiby, B.E.; Mulcahey, M.; Schmidt-Read, M.; Kern, S.B. Development of an Objective Test of Upper-Limb Function in Tetraplegia: The Capabilities of Upper Extremity Test. Am. J. Phys. Med. Rehabil. 2012, 91, 478–486. [Google Scholar] [CrossRef]
- Marino, R.J.; Kern, S.B.; Leiby, B.; Schmidt-Read, M.; Mulcahey, M.J. Reliability and Validity of the Capabilities of Upper Extremity Test (CUE-T) in Subjects with Chronic Spinal Cord Injury. J. Spinal Cord Med. 2015, 38, 498–504. [Google Scholar] [CrossRef]
- Capabilities of Upper Extremity Test (CUE-T). Available online: https://www.jefferson.edu/academics/colleges-schools-institutes/rehabilitation-sciences/departments/outcomes-measurement/measures-assessments/upper-extremity-test-cue-t.html (accessed on 8 August 2024).
- Numasawa, T.; Ono, A.; Wada, K.; Yamasaki, Y.; Yokoyama, T.; Aburakawa, S.; Takeuchi, K.; Kumagai, G.; Kudo, H.; Umeda, T.; et al. Simple Foot Tapping Test as a Quantitative Objective Assessment of Cervical Myelopathy. Spine 2012, 37, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Enoki, H.; Tani, T.; Ishida, K. Foot Tapping Test as Part of Routine Neurologic Examination in Degenerative Compression Myelopathies: A Significant Correlation between 10-Sec Foot-Tapping Speed and 30-m Walking Speed. Spine Surg. Relat. Res. 2019, 3, 207–213. [Google Scholar] [CrossRef]
- Horak, F.B.; Wrisley, D.M.; Frank, J. The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits. Phys. Ther. 2009, 89, 484–498. [Google Scholar] [CrossRef]
- Padgett, P.K.; Jacobs, J.V.; Kasser, S.L. Is the BESTest at Its Best? A Suggested Brief Version Based on Interrater Reliability, Validity, Internal Consistency, and Theoretical Construct. Phys. Ther. 2012, 92, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Chiu, A.Y.Y.; Pang, M.Y.C. Assessment of Psychometric Properties of Various Balance Assessment Tools in Persons with Cervical Spondylotic Myelopathy. J. Orthop. Sports Phys. Ther. 2017, 47, 673–682. [Google Scholar] [CrossRef]
- Dittuno, P.L.; Ditunno, J.F. Walking Index for Spinal Cord Injury (WISCI II): Scale Revision. Spinal Cord 2001, 39, 654–656. [Google Scholar] [CrossRef]
- Esclarín-Ruz, A.; Alcobendas-Maestro, M.; Casado-Lopez, R.; Perez-Mateos, G.; Florido-Sanchez, M.A.; Gonzalez-Valdizan, E.; Martin, J.L.R. A Comparison of Robotic Walking Therapy and Conventional Walking Therapy in Individuals with Upper versus Lower Motor Neuron Lesions: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2014, 95, 1023–1031. [Google Scholar] [CrossRef]
- Wirz, M.; Mach, O.; Maier, D.; Benito-Penalva, J.; Taylor, J.; Esclarin, A.; Dietz, V. Effectiveness of Automated Locomotor Training in Patients with Acute Incomplete Spinal Cord Injury: A Randomized, Controlled, Multicenter Trial. J. Neurotrauma 2017, 34, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- Ditunno, J.F.; Ditunno, P.L.; Scivoletto, G.; Patrick, M.; Dijkers, M.; Barbeau, H.; Burns, A.S.; Marino, R.J.; Schmidt-Read, M. The Walking Index for Spinal Cord Injury (WISCI/WISCI II): Nature, Metric Properties, Use and Misuse. Spinal Cord 2013, 51, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Ditunno, J.F.; Barbeau, H.; Dobkin, B.H.; Elashoff, R.; Harkema, S.; Marino, R.J.; Hauck, W.W.; Apple, D.; Basso, D.M.; Behrman, A.; et al. Validity of the Walking Scale for Spinal Cord Injury and Other Domains of Function in a Multicenter Clinical Trial. Neurorehabilit. Neural Repair 2007, 21, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.D. Targeting Recovery: Priorities of the Spinal Cord-Injured Population. J. Neurotrauma 2004, 21, 1371–1383. [Google Scholar] [CrossRef]
- Quinzaños, J.; Villa, A.R.; Flores, A.A.; Pérez, R. Proposal and Validation of a Clinical Trunk Control Test in Individuals with Spinal Cord Injury. Spinal Cord 2014, 52, 449–454. [Google Scholar] [CrossRef]
- Quinzaños-Fresnedo, J.; Fratini-Escobar, P.C.; Almaguer-Benavides, K.M.; Aguirre-Güemez, A.V.; Barrera-Ortíz, A.; Pérez-Zavala, R.; Villa-Romero, A.R. Prognostic Validity of a Clinical Trunk Control Test for Independence and Walking in Individuals with Spinal Cord Injury. J. Spinal Cord Med. 2020, 43, 331–338. [Google Scholar] [CrossRef]
- Abou, L.; de Freitas, G.R.; Palandi, J.; Ilha, J. Clinical Instruments for Measuring Unsupported Sitting Balance in Subjects with Spinal Cord Injury: A Systematic Review. Top. Spinal Cord Inj. Rehabil. 2018, 24, 177–193. [Google Scholar] [CrossRef]
- Catz, A.; Itzkovich, M.; Rozenblum, R.; Elkayam, K.; Kfir, A.; Tesio, L.; Chhabra, H.S.; Michaeli, D.; Zeilig, G.; Engel-Haber, E.; et al. A Multi-Center International Study on the Spinal Cord Independence Measure, Version IV: Rasch Psychometric Validation. J. Spinal Cord Med. 2023, 47, 681–691. [Google Scholar] [CrossRef]
- Catz, A.; Itzkovich, M.; Elkayam, K.; Michaeli, D.; Gelernter, I.; Benjamini, Y.; Chhabra, H.S.; Tesio, L.; Engel-Haber, E.; Bizzarini, E.; et al. Reliability Validity and Responsiveness of the Spinal Cord Independence Measure 4th Version in a Multicultural Setup. Arch. Phys. Med. Rehabil. 2022, 103, 430–440.e1. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Furlan, J.C.; Noonan, V.; Singh, A.; Fehlings, M.G. Assessment of Disability in Patients with Acute Traumatic Spinal Cord Injury: A Systematic Review of the Literature. J. Neurotrauma 2011, 28, 1413–1430. [Google Scholar] [CrossRef] [PubMed]
- Sainsbury, A.; Seebass, G.; Bansal, A.; Young, J.B. Reliability of the Barthel Index When Used with Older People. Age Ageing 2005, 34, 228–232. [Google Scholar] [CrossRef]
- Zhang, J.L.; Chen, J.; Wu, M.; Wang, C.; Fan, W.X.; Mu, J.S.; Wang, L.; Ni, C.M. Several Time Indicators and Barthel Index Relationships at Different Spinal Cord Injury Levels. Spinal Cord 2015, 53, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The Reliability of the Functional Independence Measure: A Quantitative Review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Suzuki, T.; Tsuji, O.; Ichikawa, M.; Ishii, R.; Nagoshi, N.; Kawakami, M.; Watanabe, K.; Matsumoto, M.; Tsuji, T.; Fujiwara, T.; et al. Early Phase Functional Recovery after Spinal Intramedullary Tumor Resection Could Predict Ambulatory Capacity at 1 Year after Surgery. Asian Spine J. 2023, 17, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Formica, V.; Del Monte, G.; Giacchetti, I.; Grenga, I.; Giaquinto, S.; Fini, M.; Roselli, M. Rehabilitation in Neuro-Oncology: A Meta-Analysis of Published Data and a Mono-Institutional Experience. Integr. Cancer Ther. 2011, 10, 119–126. [Google Scholar] [CrossRef]
- Whitten, T.A.; Loyola Sanchez, A.; Gyawali, B.; Papathanassoglou, E.D.E.; Bakal, J.A.; Krysa, J.A. Predicting Inpatient Rehabilitation Length of Stay for Adults with Traumatic Spinal Cord Injury. J. Spinal Cord Med. 2024, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Snider, B.A.; Eren, F.; Reeves, R.K.; Rupp, R.; Kirshblum, S.C. The International Standards for Neurological Classification of Spinal Cord Injury: Classification Accuracy and Challenges. Top. Spinal Cord Inj. Rehabil. 2023, 29, 1–15. [Google Scholar] [CrossRef]
- Kirshblum, S.; Snider, B.; Rupp, R.; Read, M.S. International Standards Committee of ASIA and ISCoS Updates of the International Standards for Neurologic Classification of Spinal Cord Injury: 2015 and 2019. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 319–330. [Google Scholar] [CrossRef]
- Scivoletto, G.; Tamburella, F.; Laurenza, L.; Molinari, M. Distribution-Based Estimates of Clinically Significant Changes in the International Standards for Neurological Classification of Spinal Cord Injury Motor and Sensory Scores. Eur. J. Phys. Rehabil. Med. 2013, 49, 373–384. [Google Scholar]
- Welcome|NINDS Common Data Elements. Available online: https://commondataelements.ninds.nih.gov/ (accessed on 8 August 2024).
- Biering-Sørensen, F.; Alexander, M.S.; Burns, S.; Charlifue, S.; DeVivo, M.; Dietz, V.; Krassioukov, A.; Marino, R.; Noonan, V.; Post, M.W.M.; et al. Recommendations for Translation and Reliability Testing of International Spinal Cord Injury Data Sets. Spinal Cord 2011, 49, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Badran, A.; Davies, B.M.; Bailey, H.-M.; Kalsi-Ryan, S.; Kotter, M.R. Is There a Role for Postoperative Physiotherapy in Degenerative Cervical Myelopathy? A Systematic Review. Clin. Rehabil. 2018, 32, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Peolsson, A.; Peolsson, M.; Jull, G.; Löfstedt, T.; Trygg, J.; O’Leary, S. Preliminary Evaluation of Dorsal Muscle Activity during Resisted Cervical Extension in Patients with Longstanding Pain and Disability Following Anterior Cervical Decompression and Fusion Surgery. Physiotherapy 2015, 101, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wibault, J.; Öberg, B.; Dedering, Å.; Löfgren, H.; Zsigmond, P.; Peolsson, A. Structured Postoperative Physiotherapy in Patients with Cervical Radiculopathy: 6-Month Outcomes of a Randomized Clinical Trial. J. Neurosurg. Spine 2018, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, A.M.K.; Cleland, J.A.; Kammerlind, A.-S.C.; Peolsson, A.L.C. Evaluation of Physical Function in Individuals 11 to 14 Years after Anterior Cervical Decompression and Fusion Surgery—A Comparison between Patients and Healthy Reference Samples and between 2 Surgical Techniques. J. Manip. Physiol. Ther. 2014, 37, 87–96. [Google Scholar] [CrossRef]
- Oshima, Y.; Matsubayashi, Y.; Taniguchi, Y.; Hayakawa, K.; Fukushima, M.; Oichi, T.; Oka, H.; Riew, K.D.; Tanaka, S. Mental State Can Influence the Degree of Postoperative Axial Neck Pain Following Cervical Laminoplasty. Global Spine J. 2019, 9, 292–297. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Gao, K.; Yu, Z.; Lv, D.; Ma, H.; Zhai, G. Factors Associated with Postoperative Axial Symptom after Expansive Open-Door Laminoplasty: Retrospective Study Using Multivariable Analysis. Eur. Spine J. 2020, 29, 2838–2844. [Google Scholar] [CrossRef]
- Ito, S.; Sakai, Y.; Ando, K.; Nakashima, H.; Machino, M.; Segi, N.; Tomita, H.; Koshimizu, H.; Hida, T.; Ito, K.; et al. Neck Pain after Cervical Laminoplasty Is Associated with Postoperative Atrophy of the Trapezius Muscle. Nagoya J. Med. Sci. 2023, 85, 103–112. [Google Scholar] [CrossRef]
- Fujibayashi, S.; Neo, M.; Yoshida, M.; Miyata, M.; Takemoto, M.; Nakamura, T. Neck Muscle Strength before and after Cervical Laminoplasty: Relation to Axial Symptoms. J. Spinal Disord. Tech. 2010, 23, 197–202. [Google Scholar] [CrossRef]
- Nie, C.; Chen, K.; Zhu, Y.U.; Song, H.; Lyu, F.; Jiang, J.; Xia, X.; Zheng, C. Comparison of Time-Dependent Resistance Isometric Exercise and Active Range of Motion Exercise in Alleviating the Sensitization of Postoperative Axial Pain after Cervical Laminoplasty. Musculoskelet. Sci. Pract. 2022, 62, 102669. [Google Scholar] [CrossRef]
- Kalsi-Ryan, S.; Riehm, L.E.; Tetreault, L.; Martin, A.R.; Teoderascu, F.; Massicotte, E.; Curt, A.; Verrier, M.C.; Velstra, I.-M.; Fehlings, M.G. Characteristics of Upper Limb Impairment Related to Degenerative Cervical Myelopathy: Development of a Sensitive Hand Assessment (Graded Redefined Assessment of Strength, Sensibility, and Prehension Version Myelopathy). Neurosurgery 2020, 86, E292–E299. [Google Scholar] [CrossRef] [PubMed]
- Higo, N. Effects of Rehabilitative Training on Recovery of Hand Motor Function: A Review of Animal Studies. Neurosci. Res. 2014, 78, 9–15. [Google Scholar] [CrossRef]
- Moritz, C.; Field-Fote, E.C.; Tefertiller, C.; van Nes, I.; Trumbower, R.; Kalsi-Ryan, S.; Purcell, M.; Janssen, T.W.J.; Krassioukov, A.; Morse, L.R.; et al. Non-Invasive Spinal Cord Electrical Stimulation for Arm and Hand Function in Chronic Tetraplegia: A Safety and Efficacy Trial. Nat. Med. 2024, 30, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.C.; Edgerton, V.R.; Modaber, M.; AuYong, N.; Morikawa, E.; Zdunowski, S.; Sarino, M.E.; Sarrafzadeh, M.; Nuwer, M.R.; Roy, R.R.; et al. Engaging Cervical Spinal Cord Networks to Reenable Volitional Control of Hand Function in Tetraplegic Patients. Neurorehabilit. Neural Repair 2016, 30, 951–962. [Google Scholar] [CrossRef]
- Allison, G.T.; Nagy, B.M.; Hall, T. A Randomized Clinical Trial of Manual Therapy for Cervico-Brachial Pain Syndrome—A Pilot Study. Man. Ther. 2002, 7, 95–102. [Google Scholar] [CrossRef]
- Nee, R.J.; Vicenzino, B.; Jull, G.A.; Cleland, J.A.; Coppieters, M.W. Neural Tissue Management Provides Immediate Clinically Relevant Benefits without Harmful Effects for Patients with Nerve-Related Neck and Arm Pain: A Randomised Trial. J. Physiother. 2012, 58, 23–31. [Google Scholar] [CrossRef]
- Rafiq, S.; Zafar, H.; Gillani, S.A.; Waqas, M.S.; Liaqat, S.; Zia, A.; Rafiq, Y. Effects of Neurodynamic Mobilization on Health-Related Quality of Life and Cervical Deep Flexors Endurance in Patients of Cervical Radiculopathy: A Randomized Trial. BioMed Res. Int. 2022, 2022, 9385459. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Zafar, H.; Gillani, S.A.; Razzaq, A. Effectiveness of Neuro Mobilisation On Pain, Range Of Motion, Muscle Endurance And Disability In Cervical Radiculopathy: A Systematic Review. J. Pak. Med. Assoc. 2023, 73, 1857–1861. [Google Scholar] [CrossRef] [PubMed]
- Coppieters, M.W.; Alshami, A.M. Longitudinal Excursion and Strain in the Median Nerve during Novel Nerve Gliding Exercises for Carpal Tunnel Syndrome. J. Orthop. Res. 2007, 25, 972–980. [Google Scholar] [CrossRef]
- Bolton, J.E.; Wilkinson, R.C. Responsiveness of Pain Scales: A Comparison of Three Pain Intensity Measures in Chiropractic Patients. J. Manip. Physiol. Ther. 1998, 21, 1–7. [Google Scholar]
- Bialosky, J.E.; Bishop, M.D.; Price, D.D.; Robinson, M.E.; Vincent, K.R.; George, S.Z. A Randomized Sham-Controlled Trial of a Neurodynamic Technique in the Treatment of Carpal Tunnel Syndrome. J. Orthop. Sports Phys. Ther. 2009, 39, 709–723. [Google Scholar] [CrossRef]
- Horowitz, J.A.; Puvanesarajah, V.; Jain, A.; Raad, M.; Gjolaj, J.P.; Shen, F.H.; Hassanzadeh, H. Fragility Fracture Risk in Elderly Patients with Cervical Myelopathy. Spine 2019, 44, 96–102. [Google Scholar] [CrossRef]
- Radcliff, K.E.; Curry, E.P.; Trimba, R.; Walker, J.B.; Purtill, J.J.; Austin, M.S.; Parvizi, J.; Vaccaro, A.R.; Hilibrand, A.S.; Albert, T.J. High Incidence of Undiagnosed Cervical Myelopathy in Patients with Hip Fracture Compared with Controls. J. Orthop. Trauma 2016, 30, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Seichi, A.; Takeshita, K.; Inoue, H.; Kato, T.; Yoshii, T.; Furuya, T.; Koda, M.; Takeuchi, K.; Matsunaga, S.; et al. Fall-Related Deterioration of Subjective Symptoms in Patients with Cervical Myelopathy. Spine 2017, 42, E398–E403. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Takeshita, K.; Shiraishi, Y.; Inose, H.; Yoshii, T.; Maekawa, A.; Endo, K.; Miyamoto, T.; Furuya, T.; Nakamura, A.; et al. Effectiveness of Surgical Treatment for Degenerative Cervical Myelopathy in Preventing Falls and Fall-Related Neurological Deterioration: A Prospective Multi-Institutional Study. Spine 2020, 45, E631–E638. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Nakano, M.; Yasuda, T.; Seki, S.; Hori, T.; Suzuki, K.; Makino, H.; Kanamori, M.; Kimura, T. More Than 20 Years Follow-up After En Bloc Cervical Laminoplasty. Spine 2016, 41, 1570–1579. [Google Scholar] [CrossRef]
- Boerger, T.F.; McGinn, L.; Wang, M.C.; Schmit, B.D.; Hyngstrom, A.S. Degenerative Cervical Myelopathy Delays Responses to Lateral Balance Perturbations Regardless of Predictability. J. Neurophysiol. 2022, 127, 673–688. [Google Scholar] [CrossRef]
- Boerger, T.F.; McGinn, L.; Bellman, M.; Wang, M.C.; Schmit, B.D.; Hyngstrom, A.S. People with Degenerative Cervical Myelopathy Have Impaired Reactive Balance during Walking. Gait Posture 2024, 109, 303–310. [Google Scholar] [CrossRef]
- Nardone, A.; Galante, M.; Grasso, M.; Schieppati, M. Stance Ataxia and Delayed Leg Muscle Responses to Postural Perturbations in Cervical Spondylotic Myelopathy. J. Rehabil. Med. 2008, 40, 539–547. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z.; Ge, Z.; Zhang, D.; Xu, J.; Zhang, R.; Liu, X.; Zhao, Q.; Sun, H. The Efficacy of Virtual Reality Technology for the Postoperative Rehabilitation of Patients with Cervical Spondylotic Myelopathy (CSM): A Study Protocol for a Randomized Controlled Trial. Trials 2024, 25, 133. [Google Scholar] [CrossRef]
- You, S.H.; Jang, S.H.; Kim, Y.-H.; Hallett, M.; Ahn, S.H.; Kwon, Y.-H.; Kim, J.H.; Lee, M.Y. Virtual Reality-Induced Cortical Reorganization and Associated Locomotor Recovery in Chronic Stroke: An Experimenter-Blind Randomized Study. Stroke 2005, 36, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Holly, L.T. Management of Cervical Spondylotic Myelopathy with Insights from Metabolic Imaging of the Spinal Cord and Brain. Curr. Opin. Neurol. 2009, 22, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Villiger, M.; Grabher, P.; Hepp-Reymond, M.-C.; Kiper, D.; Curt, A.; Bolliger, M.; Hotz-Boendermaker, S.; Kollias, S.; Eng, K.; Freund, P. Relationship between Structural Brainstem and Brain Plasticity and Lower-Limb Training in Spinal Cord Injury: A Longitudinal Pilot Study. Front. Hum. Neurosci. 2015, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Wang, Z.; Li, Z.; Wang, Y.; Wang, N.; Liang, Z.; Wang, J.; Chen, X. Research on Rehabilitation Training Strategies Using Multimodal Virtual Scene Stimulation. Front. Aging Neurosci. 2022, 14, 892178. [Google Scholar] [CrossRef]
- Dimbwadyo-Terrer, I.; Gil-Agudo, A.; Segura-Fragoso, A.; de los Reyes-Guzmán, A.; Trincado-Alonso, F.; Piazza, S.; Polonio-López, B. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial. BioMed Res. Int. 2016, 2016, 6397828. [Google Scholar] [CrossRef]
- Yeo, E.; Chau, B.; Chi, B.; Ruckle, D.E.; Ta, P. Virtual Reality Neurorehabilitation for Mobility in Spinal Cord Injury: A Structured Review. Innov. Clin. Neurosci. 2019, 16, 13–20. [Google Scholar]
- De Miguel-Rubio, A.; Rubio, M.D.; Alba-Rueda, A.; Salazar, A.; Moral-Munoz, J.A.; Lucena-Anton, D. Virtual Reality Systems for Upper Limb Motor Function Recovery in Patients with Spinal Cord Injury: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth 2020, 8, e22537. [Google Scholar] [CrossRef]
- Barak, U.; Sheinis, D.; Sidon, E.; Shemesh, S.; Amitai, A.; Ohana, N. C5 Palsy Following Cervical Spine Decompression. Isr. Med. Assoc. J. 2021, 23, 521–525. [Google Scholar]
- Nassr, A.; Eck, J.C.; Ponnappan, R.K.; Zanoun, R.R.; Donaldson, W.F.; Kang, J.D. The Incidence of C5 Palsy after Multilevel Cervical Decompression Procedures: A Review of 750 Consecutive Cases. Spine 2012, 37, 174–178. [Google Scholar] [CrossRef]
- Bydon, M.; Macki, M.; Kaloostian, P.; Sciubba, D.M.; Wolinsky, J.-P.; Gokaslan, Z.L.; Belzberg, A.J.; Bydon, A.; Witham, T.F. Incidence and Prognostic Factors of C5 Palsy: A Clinical Study of 1001 Cases and Review of the Literature. Neurosurgery 2014, 74, 595–604, discussion 604–605. [Google Scholar] [CrossRef]
- Miller, J.A.; Lubelski, D.; Alvin, M.D.; Benzel, E.C.; Mroz, T.E. C5 Palsy after Posterior Cervical Decompression and Fusion: Cost and Quality-of-Life Implications. Spine J. 2014, 14, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Lafitte, M.N.; Kadone, H.; Kubota, S.; Shimizu, Y.; Tan, C.K.; Koda, M.; Hada, Y.; Sankai, Y.; Suzuki, K.; Yamazaki, M. Alteration of Muscle Activity during Voluntary Rehabilitation Training with Single-Joint Hybrid Assistive Limb (HAL) in Patients with Shoulder Elevation Dysfunction from Cervical Origin. Front. Neurosci. 2022, 16, 817659. [Google Scholar] [CrossRef] [PubMed]
- Kubota, S.; Kadone, H.; Shimizu, Y.; Watanabe, H.; Koda, M.; Sankai, Y.; Yamazaki, M. Feasibility and Efficacy of the Newly Developed Robotic Hybrid Assistive Limb Shoulder Exercises in Patients with C5 Palsy during the Acute Postoperative Phase. Medicina 2023, 59, 1496. [Google Scholar] [CrossRef] [PubMed]
- Wewel, J.T.; Brahimaj, B.C.; Kasliwal, M.K.; Traynelis, V.C. Perioperative Complications with Multilevel Anterior and Posterior Cervical Decompression and Fusion. J. Neurosurg. Spine 2019, 32, 9–14. [Google Scholar] [CrossRef]
- Singh, A.; von Vogelsang, A.-C.; Tatter, C.; El-Hajj, V.G.; Fletcher-Sandersjöö, A.; Cewe, P.; Nilsson, G.; Blixt, S.; Gerdhem, P.; Edström, E.; et al. Dysphagia, Health-Related Quality of Life, and Return to Work after Occipitocervical Fixation. Acta Neurochir. 2024, 166, 90. [Google Scholar] [CrossRef]
- Charalampidis, A.; Hejrati, N.; Ramakonar, H.; Kalsi, P.S.; Massicotte, E.M.; Fehlings, M.G. Clinical Outcomes and Revision Rates Following Four-Level Anterior Cervical Discectomy and Fusion. Sci. Rep. 2022, 12, 5339. [Google Scholar] [CrossRef]
- Yu, C.; Chunmei, L.; Caiping, S. Symptoms and Coping of Patients with Dysphagia after Anterior Cervical Spine Surgery: A Qualitative Study. BMC Musculoskelet. Disord. 2023, 24, 498. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Yu, B.; Pan, F.; Li, X.; Wang, S.; Shaikh, I.I.; Wu, D. Manual Preoperative Tracheal Retraction Exercise Decreases the Occurrence of Postoperative Oropharyngeal Dysphagia after Anterior Cervical Discectomy and Fusion. J. Orthop. Surg. 2017, 25, 2309499017731446. [Google Scholar] [CrossRef]
- Kılınç, H.E.; Arslan, S.S.; Demir, N.; Karaduman, A. The Effects of Different Exercise Trainings on Suprahyoid Muscle Activation, Tongue Pressure Force and Dysphagia Limit in Healthy Subjects. Dysphagia 2020, 35, 717–724. [Google Scholar] [CrossRef]
- Smaoui, S.; Langridge, A.; Steele, C.M. The Effect of Lingual Resistance Training Interventions on Adult Swallow Function: A Systematic Review. Dysphagia 2020, 35, 745–761. [Google Scholar] [CrossRef]
- Nas, K.; Yazmalar, L.; Şah, V.; Aydın, A.; Öneş, K. Rehabilitation of Spinal Cord Injuries. World J. Orthop. 2015, 6, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Physical Therapy Guidelines, 2nd ed.; Japanese Sciety of Physical Therapy: Tokyo, Japan, 2021. (In Japanese)
- Hachem, L.D.; Ahuja, C.S.; Fehlings, M.G. Assessment and Management of Acute Spinal Cord Injury: From Point of Injury to Rehabilitation. J. Spinal Cord Med. 2017, 40, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Tollefsen, E.; Fondenes, O. Respiratory Complications Associated with Spinal Cord Injury. Tidsskr. Nor. Laegeforening 2012, 132, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Galeiras Vázquez, R.; Rascado Sedes, P.; Mourelo Fariña, M.; Montoto Marqués, A.; Ferreiro Velasco, M.E. Respiratory Management in the Patient with Spinal Cord Injury. BioMed Res. Int. 2013, 2013, 168757. [Google Scholar] [CrossRef]
- Sheel, A.W.; Reid, W.D.; Townson, A.F.; Ayas, N.T.; Konnyu, K.J.; Spinal Cord Rehabilitation Evidence Research Team. Effects of Exercise Training and Inspiratory Muscle Training in Spinal Cord Injury: A Systematic Review. J. Spinal Cord Med. 2008, 31, 500–508. [Google Scholar] [CrossRef]
- Marin, J.; Nixon, J.; Gorecki, C. A Systematic Review of Risk Factors for the Development and Recurrence of Pressure Ulcers in People with Spinal Cord Injuries. Spinal Cord. 2013, 51, 522–527. [Google Scholar] [CrossRef]
- Groah, S.L.; Schladen, M.; Pineda, C.G.; Hsieh, C.-H.J. Prevention of Pressure Ulcers Among People with Spinal Cord Injury: A Systematic Review. PM R 2015, 7, 613–636. [Google Scholar] [CrossRef]
- Flett, H.M.; Delparte, J.J.; Scovil, C.Y.; Higgins, J.; Laramée, M.-T.; Burns, A.S. Determining Pressure Injury Risk on Admission to Inpatient Spinal Cord Injury Rehabilitation: A Comparison of the FIM, Spinal Cord Injury Pressure Ulcer Scale, and Braden Scale. Arch. Phys. Med. Rehabil. 2019, 100, 1881–1887. [Google Scholar] [CrossRef]
- Consortium for Spinal Cord Medicine Clinical Practice Guidelines. Pressure Ulcer Prevention and Treatment Following Spinal Cord Injury: A Clinical Practice Guideline for Health-Care Professionals. J. Spinal Cord Med. 2001, 24 (Suppl. S1), S40–S101. [CrossRef]
- Claydon, V.E.; Steeves, J.D.; Krassioukov, A. Orthostatic Hypotension Following Spinal Cord Injury: Understanding Clinical Pathophysiology. Spinal Cord 2006, 44, 341–351. [Google Scholar] [CrossRef]
- Huang, C.T.; Kuhlemeier, K.V.; Ratanaubol, U.; McEachran, A.B.; DeVivo, M.J.; Fine, P.R. Cardiopulmonary Response in Spinal Cord Injury Patients: Effect of Pneumatic Compressive Devices. Arch. Phys. Med. Rehabil. 1983, 64, 101–106. [Google Scholar] [PubMed]
- Sampson, E.E.; Burnham, R.S.; Andrews, B.J. Functional Electrical Stimulation Effect on Orthostatic Hypotension after Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2000, 81, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.; Figoni, S.F.; Perkash, I. Upper Limb Exercise Effect on Tilt Tolerance during Orthostatic Training of Patients with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 1984, 65, 251–253. [Google Scholar] [PubMed]
- Ince, L.P. Biofeedback as a Treatment for Postural Hypotension. Psychosom. Med. 1985, 47, 182–188. [Google Scholar] [CrossRef]
- Harvey, L.A. Physiotherapy Rehabilitation for People with Spinal Cord Injuries. J. Physiother. 2016, 62, 4–11. [Google Scholar] [CrossRef]
- ASIA and ISCoS International Standards Committee. The 2019 Revision of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI)-What’s New? Spinal Cord 2019, 57, 815–817. [Google Scholar] [CrossRef]
- Scivoletto, G.; Tamburella, F.; Laurenza, L.; Torre, M.; Molinari, M. Who Is Going to Walk? A Review of the Factors Influencing Walking Recovery after Spinal Cord Injury. Front. Hum. Neurosci. 2014, 8, 141. [Google Scholar] [CrossRef]
- Oleson, C.V.; Burns, A.S.; Ditunno, J.F.; Geisler, F.H.; Coleman, W.P. Prognostic Value of Pinprick Preservation in Motor Complete, Sensory Incomplete Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2005, 86, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.P.; Golding, D.G.; Rolle, W.A.; Graziani, V.; Ditunno, J.F. Recovery of Ambulation in Motor-Incomplete Tetraplegia. Arch. Phys. Med. Rehabil. 1997, 78, 1169–1172. [Google Scholar] [CrossRef]
- van Middendorp, J.J.; Hosman, A.J.F.; Donders, A.R.T.; Pouw, M.H.; Ditunno, J.F.; Curt, A.; Geurts, A.C.H.; Van de Meent, H.; EM-SCI Study Group. A Clinical Prediction Rule for Ambulation Outcomes after Traumatic Spinal Cord Injury: A Longitudinal Cohort Study. Lancet 2011, 377, 1004–1010. [Google Scholar] [CrossRef]
- Sprigle, S.; Wootten, M.; Sawacha, Z.; Thielman, G. Relationships among Cushion Type, Backrest Height, Seated Posture, and Reach of Wheelchair Users with Spinal Cord Injury. J. Spinal Cord Med. 2003, 26, 236–243. [Google Scholar] [CrossRef] [PubMed]
- van Middendorp, J.J.; Hosman, A.J.F.; Doi, S.A.R. The Effects of the Timing of Spinal Surgery after Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. J. Neurotrauma 2013, 30, 1781–1794. [Google Scholar] [CrossRef] [PubMed]
- Seong Choe, H.; Min, D.-K.; Ahn, J. Effects of Anterior Weight-Shifting Methods on Sitting Balance in Wheelchair-Dependent Patients with Spinal Cord Injury. J. Phys. Ther. Sci. 2018, 30, 393–397. [Google Scholar] [CrossRef]
- Aissaoui, R.; Boucher, C.; Bourbonnais, D.; Lacoste, M.; Dansereau, J. Effect of Seat Cushion on Dynamic Stability in Sitting during a Reaching Task in Wheelchair Users with Paraplegia. Arch. Phys. Med. Rehabil. 2001, 82, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Lee, S.-M. The Effect of Virtual Reality Exercise Program on Sitting Balance Ability of Spinal Cord Injury Patients. Healthcare 2021, 9, 183. [Google Scholar] [CrossRef]
- Haisma, J.A.; Post, M.W.; van der Woude, L.H.; Stam, H.J.; Bergen, M.P.; Sluis, T.A.; van den Berg-Emons, H.J.; Bussmann, J.B. Functional Independence and Health-Related Functional Status Following Spinal Cord Injury: A Prospective Study of the Association with Physical Capacity. J. Rehabil. Med. 2008, 40, 812–818. [Google Scholar] [CrossRef]
- Worobey, L.A.; Heinemann, A.W.; Anderson, K.D.; Fyffe, D.; Dyson-Hudson, T.A.; Berner, T.; Boninger, M.L. Factors Influencing Incidence of Wheelchair Repairs and Consequences Among Individuals with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2022, 103, 779–789. [Google Scholar] [CrossRef]
- Gagnon, D.; Nadeau, S.; Noreau, L.; Eng, J.J.; Gravel, D. Trunk and Upper Extremity Kinematics during Sitting Pivot Transfers Performed by Individuals with Spinal Cord Injury. Clin. Biomech. 2008, 23, 279–290. [Google Scholar] [CrossRef]
- Gagnon, D.H.; Roy, A.; Gabison, S.; Duclos, C.; Verrier, M.C.; Nadeau, S. Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study. Rehabil. Res. Pract. 2016, 2016, 6842324. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Oyster, M.L.; Kirby, R.L.; Harrington, A.L.; Boninger, M.L. Manual Wheelchair Skills Capacity Predicts Quality of Life and Community Integration in Persons with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2012, 93, 2237–2243. [Google Scholar] [CrossRef]
- Dalhousie University. Wheelchair Skills Program Manual Version 5.4.2. 2023. Published Electronically in Halifax, NS, Canada. Available online: https://wheelchairskillsprogram.ca/en/skills-manual-forms/ (accessed on 8 August 2024).
- Nam, S.-M.; Koo, D.-K.; Kwon, J.-W. Efficacy of Wheelchair Skills Training Program in Enhancing Sitting Balance and Pulmonary Function in Chronic Tetraplegic Patients: A Randomized Controlled Study. Medicina 2023, 59, 1610. [Google Scholar] [CrossRef] [PubMed]
- Worobey, L.A.; Kirby, R.L.; Heinemann, A.W.; Krobot, E.A.; Dyson-Hudson, T.A.; Cowan, R.E.; Pedersen, J.P.; Shea, M.; Boninger, M.L. Effectiveness of Group Wheelchair Skills Training for People with Spinal Cord Injury: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2016, 97, 1777–1784.e3. [Google Scholar] [CrossRef] [PubMed]
- Lemay, J.-F.; Gagnon, D.; Duclos, C.; Grangeon, M.; Gauthier, C.; Nadeau, S. Influence of Visual Inputs on Quasi-Static Standing Postural Steadiness in Individuals with Spinal Cord Injury. Gait Posture 2013, 38, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.S. Factors Associated with Risk for Subsequent Injuries after Traumatic Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2004, 85, 1503–1508. [Google Scholar] [CrossRef]
- Fletcher, P.C.; Hirdes, J.P. Restriction in Activity Associated with Fear of Falling among Community-Based Seniors Using Home Care Services. Age Ageing 2004, 33, 273–279. [Google Scholar] [CrossRef]
- Tamburella, F.; Scivoletto, G.; Molinari, M. Balance Training Improves Static Stability and Gait in Chronic Incomplete Spinal Cord Injury Subjects: A Pilot Study. Eur. J. Phys. Rehabil. Med. 2013, 49, 353–364. [Google Scholar] [PubMed]
- Houston, D.J.; Lee, J.W.; Unger, J.; Masani, K.; Musselman, K.E. Functional Electrical Stimulation Plus Visual Feedback Balance Training for Standing Balance Performance Among Individuals with Incomplete Spinal Cord Injury: A Case Series. Front. Neurol. 2020, 11, 680. [Google Scholar] [CrossRef]
- Dietz, V.; Wirz, M.; Curt, A.; Colombo, G. Locomotor Pattern in Paraplegic Patients: Training Effects and Recovery of Spinal Cord Function. Spinal Cord 1998, 36, 380–390. [Google Scholar] [CrossRef]
- Tefertiller, C.; Pharo, B.; Evans, N.; Winchester, P. Efficacy of Rehabilitation Robotics for Walking Training in Neurological Disorders: A Review. J. Rehabil. Res. Dev. 2011, 48, 387–416. [Google Scholar] [CrossRef]
- Schwartz, I.; Meiner, Z. Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Ann. Biomed. Eng. 2015, 43, 1260–1269. [Google Scholar] [CrossRef]
- Walia, S.; Kumar, P.; Kataria, C. Interventions to Improve Standing Balance in Individuals with Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis. Top. Spinal Cord Inj. Rehabil. 2023, 29, 56–83. [Google Scholar] [CrossRef] [PubMed]
- Alajam, R.; Alqahtani, A.S.; Liu, W. Effect of Body Weight-Supported Treadmill Training on Cardiovascular and Pulmonary Function in People with Spinal Cord Injury: A Systematic Review. Top. Spinal Cord Inj. Rehabil. 2019, 25, 355–369. [Google Scholar] [CrossRef]
- Alexeeva, N.; Sames, C.; Jacobs, P.L.; Hobday, L.; Distasio, M.M.; Mitchell, S.A.; Calancie, B. Comparison of Training Methods to Improve Walking in Persons with Chronic Spinal Cord Injury: A Randomized Clinical Trial. J. Spinal Cord Med. 2011, 34, 362–379. [Google Scholar] [CrossRef] [PubMed]
- Alashram, A.R.; Annino, G.; Padua, E. Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Systematic Review for the Clinical Effectiveness of Lokomat. J. Clin. Neurosci. 2021, 91, 260–269. [Google Scholar] [CrossRef]
- Gil-Agudo, Á.; Megía-García, Á.; Pons, J.L.; Sinovas-Alonso, I.; Comino-Suárez, N.; Lozano-Berrio, V.; Del-Ama, A.J. Exoskeleton-Based Training Improves Walking Independence in Incomplete Spinal Cord Injury Patients: Results from a Randomized Controlled Trial. J. Neuroeng. Rehabil. 2023, 20, 36. [Google Scholar] [CrossRef]
- Fang, C.-Y.; Tsai, J.-L.; Li, G.-S.; Lien, A.S.-Y.; Chang, Y.-J. Effects of Robot-Assisted Gait Training in Individuals with Spinal Cord Injury: A Meta-Analysis. BioMed Res. Int. 2020, 2020, 2102785. [Google Scholar] [CrossRef] [PubMed]
- Kiwerski, J.E. Surgery and Subsequent Rehabilitation for Cervical Spine Tumours Compressing Neural Structures. Ortop. Traumatol. Rehabil. 2008, 10, 620–625. [Google Scholar]
- Xiao, R.; Miller, J.A.; Abdullah, K.G.; Lubelski, D.; Mroz, T.E.; Benzel, E.C. Quality of Life Outcomes Following Resection of Adult Intramedullary Spinal Cord Tumors. Neurosurgery 2016, 78, 821–828. [Google Scholar] [CrossRef]
- McKinley, W.O.; Conti-Wyneken, A.R.; Vokac, C.W.; Cifu, D.X. Rehabilitative Functional Outcome of Patients with Neoplastic Spinal Cord Compressions. Arch. Phys. Med. Rehabil. 1996, 77, 892–895. [Google Scholar] [CrossRef]
- Ruppert, L.M. Malignant Spinal Cord Compression: Adapting Conventional Rehabilitation Approaches. Phys. Med. Rehabil. Clin. N. Am. 2017, 28, 101–114. [Google Scholar] [CrossRef]
- Tokuhashi, Y.; Matsuzaki, H.; Oda, H.; Oshima, M.; Ryu, J. A Revised Scoring System for Preoperative Evaluation of Metastatic Spine Tumor Prognosis. Spine 2005, 30, 2186–2191. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Bünger, C.E.; Li, H.; Wu, C.; Høy, K.; Niedermann, B.; Helmig, P.; Wang, Y.; Jensen, A.B.; Schättiger, K.; et al. Predictive Value of Tokuhashi Scoring Systems in Spinal Metastases, Focusing on Various Primary Tumor Groups: Evaluation of 448 Patients in the Aarhus Spinal Metastases Database. Spine 2012, 37, 573–582. [Google Scholar] [CrossRef] [PubMed]
- New, P.W.; Eriks-Hoogland, I.; Scivoletto, G.; Reeves, R.K.; Townson, A.; Marshall, R.; Rathore, F.A. Important Clinical Rehabilitation Principles Unique to People with Non-Traumatic Spinal Cord Dysfunction. Top. Spinal Cord Inj. Rehabil. 2017, 23, 299–312. [Google Scholar] [CrossRef]
- Lafeuillee, G.; Desai, M.; Magni, F.; Knight, S. Challenge or Opportunity: Rehabilitation Outcomes in Patients with Metastatic Spinal Cord Compression—A UK Single Center Experience. J. Spinal Cord Med. 2024, 47, 432–439. [Google Scholar] [CrossRef]
- Fortin, C.D.; Voth, J.; Jaglal, S.B.; Craven, B.C. Inpatient Rehabilitation Outcomes in Patients with Malignant Spinal Cord Compression Compared to Other Non-Traumatic Spinal Cord Injury: A Population Based Study. J. Spinal Cord Med. 2015, 38, 754–764. [Google Scholar] [CrossRef]
- Soma, Y.; Kubota, S.; Kadone, H.; Shimizu, Y.; Hada, Y.; Koda, M.; Sankai, Y.; Yamazaki, M. Postoperative Acute-Phase Gait Training Using Hybrid Assistive Limb Improves Gait Ataxia in a Patient with Intradural Spinal Cord Compression Due to Spinal Tumors. Medicina 2022, 58, 1825. [Google Scholar] [CrossRef] [PubMed]
- Ruff, R.L.; Adamson, V.W.; Ruff, S.S.; Wang, X. Directed Rehabilitation Reduces Pain and Depression While Increasing Independence and Satisfaction with Life for Patients with Paraplegia Due to Epidural Metastatic Spinal Cord Compression. J. Rehabil. Res. Dev. 2007, 44, 1–10. [Google Scholar] [CrossRef]
- McKinley, W.O.; Seel, R.T.; Hardman, J.T. Nontraumatic Spinal Cord Injury: Incidence, Epidemiology, and Functional Outcome. Arch. Phys. Med. Rehabil. 1999, 80, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Raj, V.S.; Lofton, L. Rehabilitation and Treatment of Spinal Cord Tumors. J. Spinal Cord Med. 2013, 36, 4–11. [Google Scholar] [CrossRef]
- Fattal, C.; Fabbro, M.; Gelis, A.; Bauchet, L. Metastatic Paraplegia and Vital Prognosis: Perspectives and Limitations for Rehabilitation Care. Part 1. Arch. Phys. Med. Rehabil. 2011, 92, 125–133. [Google Scholar] [CrossRef]
Year | Event |
---|---|
1914–1924 | Blossoming of rehabilitation (mainly for occupational rehabilitation because of World War I) [16] |
1935–1955 | Spinal cord injury rehabilitation developed [17] |
1944 | The word “Rehabilitation” was defined by the British Council for Rehabilitation [18] |
1968 | Rehabilitation for ADL improvement by the World Health Organization (WHO) [19] |
1977 | Rehabilitation framework as a biopsychosocial model of illness [20] |
1980s | Rehabilitation for QOL improvement, especially for elderly patients [21] |
2016 | Ontario protocol for traffic injury management [22] |
2018 | Combined treatments of physical and psychological treatments [23] New concept of psychological factors [24] |
Intervention | Definition | Example |
---|---|---|
Patient education and self-management [28,29] | Educate patients about their neck pain and how to reduce pain and suffering.Reduce mortality and morbidity after CCI and improve quality of life. |
|
Early Exercise [30,31] | Preventing axial pain by strengthening cervical muscles and ROM exercises early after surgery. Strengthen respiratory muscles and prevent pneumonia after CCI. |
|
Manual therapies [32,33,34] | Manual therapies can relieve neck pain and radicular pain in the upper limbs.Massage Therapy Relieve stiffness and numbness after CCI. |
|
Electrical stimulation therapy [35,36] | Electrical stimulation therapy can improve pain, muscle activation, and coordination. |
|
Body weight-supported gait training [37] | Body weight-supported gait training improves neural plasticity—the tendency of synapses and neural circuits to change in response to activity—by providing intensive locomotor gait training. |
|
Study | PRO | Recommended MCID | Procedure | Diagnosis |
---|---|---|---|---|
Badhiwala [43] | PCS-36 | 4 | Cervical decompression | Cervical myelopathy |
MCS-36 | 4 | |||
Kato [44] | JOACMEQ Cervical spine function | 2.5 | Laminoplasty | Cervical myelopathy |
JOACMEQ Upper extremity function | 13 | |||
JOACMEQ Lower extremity function | 9.35 | |||
JOACMEQ Bladder function | 7.7 | |||
JOACMEQ QOL | 9.5 | |||
Oshima [45] | COMI sum score | 2.1 | Not specified | Cervical degenerative disease |
Carreon [46] | NDI | 7.5 | Cervical fusion | Cervical degenerative disease |
NRS neck | 2.5 | |||
NRS arm | 2.5 | |||
Javeed [47] | DASH | −8 | ||
Okano [48] | SWAL-QOL | −8 | Anterior cervical discectomy and fusion | Cervical degenerative disease |
MMT Grade | Physiotherapy |
---|---|
0 | Range of motion exercises Electric Muscle Stimulation, Robot |
1 | Range of motion exercises, Functional Electrical Stimulation |
2 | Range of motion exercises, Active assisted exercise |
3 | Active exercise |
4 | Resistance exercise |
Residual Height | Main Muscle | Motor Function | Activity of Daily Living | Self-Help Devices and Orthotics |
---|---|---|---|---|
C2–C3 | Sternocleidomastoid muscle | Head forward bending and rotation | Total support | Ventilator Electric wheelchair |
C4 | Transverse diaphragm Trapezius muscle | Head and neck movement Scapular elevation | Total support | Environment controller Lifter, mouse stick |
C5 | Deltoid muscle Biceps brachii muscle | Shoulder joint exercises Flexion–extension and rotation of the elbow joint | BFO and eating movements with orthotics and self-help devices | Wheelchair on flat ground Electric typewriter |
C6 | Pectoralis major muscle Extensor carpi radialis muscle | Shoulder joint adduction Extension of the wrist joint | Transferring (back and forth) possible, wheelchair-driven, turning over in bed, changing jackets | Tenodesis-synth print |
C7 | Triceps brachii muscle Flexor carpi radialis muscle | Elbow joint extension Palmar flexion of the wrist joint | Independent movement on the floor and transferring Independence in dressing Able to ride a bicycle | |
C8–T1 | Intrinsic muscles of the hand | Finger flexion | Independent of ADL in the wheelchair |
Author | Intervention | Result |
---|---|---|
Walia [207] | BWSTT | Improve Standing Balance |
Alajam [208] | BWSTT | Improve cardiovascular and pulmonary health |
Alexeeva [209] | BWSTT | Improvement in maximal walking speed, muscle strength, and psychological well-being |
Alashram [210] | RAGT | Improve gait speed, walking distance, strength, range of motion, and mobility |
Gil-Agudo [211] | RAGT | Improved their walking independence as measured by the WISCI-II |
Fang [212] | RAGT | Improve spasticity and walking ability |
Prognosis Parameter | Score |
---|---|
Patient condition | |
Poor (performance status: 10–40%) | 0 |
Moderate (performance status: 50–70%) | 1 |
Good (performance status: 80–100%) | 2 |
No. of bone metastases outside spine | |
Poor (performance status: 10–40% | 0 |
Moderate (performance status: 50–70%) | 1 |
Good (performance status: 80–100%) | 2 |
No. of bone metastases outside spine | |
>2 | 0 |
1–2 | 1 |
0 | 2 |
Metastasis to major organs | |
Nonremovable | 0 |
Removable | 1 |
None | 2 |
Primary site | |
Lung; osteosarcoma; stomach; bladder; esophagus; pancreas | 0 |
Liver; gallbladder; unidentified | 1 |
Other | 2 |
Kidney; uterus | 3 |
Rectum | 4 |
Thyroid; breast; prostate; carcinoid tumor | 5 |
Palsy | |
Complete (Frankel A; B) | 0 |
Incomplete (Frankel C; D) | 1 |
None (Frankel E) | 2 |
Intervention | Definition |
---|---|
Neurological Evaluation of Spinal Cord Injury | Assess neurological status and severity of spinal cord injury. As the severity of spinal cord injury increases, changes in improvement in neurologic function are scant. |
Life expectancy | The prognosis varies greatly depending on the type of tumor, and evaluation is necessary to construct rehabilitation goals. |
Symptoms of Primary Tumors | In the case of metastatic tumors, rehabilitation should be performed, considering the symptoms of the primary tumor. |
Support for pain caused by osteolysis | Secondary health conditions can affect a patient’s ability to participate in rehabilitation and must be optimally managed. First, a comprehensive assessment and management of pain must be performed. |
Social support at hospital discharge | The patient’s social support significantly impacts his or her plans for home after discharge and should be discussed from the beginning of rehabilitation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakaguchi, T.; Heyder, A.; Tanaka, M.; Uotani, K.; Omori, T.; Kodama, Y.; Takamatsu, K.; Yasuda, Y.; Sugyo, A.; Takeda, M.; et al. Rehabilitation to Improve Outcomes after Cervical Spine Surgery: Narrative Review. J. Clin. Med. 2024, 13, 5363. https://doi.org/10.3390/jcm13185363
Sakaguchi T, Heyder A, Tanaka M, Uotani K, Omori T, Kodama Y, Takamatsu K, Yasuda Y, Sugyo A, Takeda M, et al. Rehabilitation to Improve Outcomes after Cervical Spine Surgery: Narrative Review. Journal of Clinical Medicine. 2024; 13(18):5363. https://doi.org/10.3390/jcm13185363
Chicago/Turabian StyleSakaguchi, Tomoyoshi, Ahmed Heyder, Masato Tanaka, Koji Uotani, Toshinori Omori, Yuya Kodama, Kazuhiko Takamatsu, Yosuke Yasuda, Atsushi Sugyo, Masanori Takeda, and et al. 2024. "Rehabilitation to Improve Outcomes after Cervical Spine Surgery: Narrative Review" Journal of Clinical Medicine 13, no. 18: 5363. https://doi.org/10.3390/jcm13185363
APA StyleSakaguchi, T., Heyder, A., Tanaka, M., Uotani, K., Omori, T., Kodama, Y., Takamatsu, K., Yasuda, Y., Sugyo, A., Takeda, M., & Nakagawa, M. (2024). Rehabilitation to Improve Outcomes after Cervical Spine Surgery: Narrative Review. Journal of Clinical Medicine, 13(18), 5363. https://doi.org/10.3390/jcm13185363