Target Heart Rate Formulas for Exercise Stress Testing: What Is the Evidence?
Abstract
:1. Introduction
- Understanding the calculation of APMHR and evaluating the major formulas currently utilized;
- Understanding the importance of APMHR during EST;
- Understanding different factors affecting APMHR;
- Assessing the evidence of using 85% of APMHR as an endpoint for stress testing;
- Understanding APMHR applications in sports medicine;
- Assessing other possible endpoints for EST, such as heart rate reserve and maximum rate pressure product;
- Understanding the metabolic equivalent of tasks (METs) and 85% of APMHR use in CAD risk assessment during EST.
2. Analysis of Maximum Heart Rate and Influencing Factors
2.1. Indications for Stress Testing
2.2. Maximal Heart Rate (HRmax) Definition and Importance
2.3. HRmax as Part of EST
2.4. Overview of the History of Maximum HR Prediction
2.5. Factors Influencing HRmax
3. The Use of 85% of the Age-Adjusted HR as a Cutoff for Stress Tests
3.1. Historical Context and Current Practice
3.2. HR and Sports Medicine
3.3. Debate Surrounding Using 85% of HRmax as an Endpoint for EST
4. Other Endpoints That Are Based on HRmax
5. HRmax, Stress Echocardiogram, and Nuclear Imaging Studies
6. HRmax and METs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parsonage, W.A.; Cullen, L.; Younger, J.F. The Approach to patients with possible cardiac chest pain. Med. J. Aust. 2013, 199, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Mahler, S.A.; Riley, R.F.; Russell, G.B.; Hiestand, B.C.; Hoekstra, J.W.; Lefebvre, C.W.; Nicks, B.A.; Cline, D.M.; Askew, K.L.; Bringolf, J.; et al. Adherence to an accelerated diagnostic protocol for chest pain: Secondary analysis of the HEART pathway randomized trial. Acad. Emerg. Med. 2016, 23, 70–77. [Google Scholar] [CrossRef] [PubMed]
- CDC. Heart Disease Facts. Heart Disease. 20 May 2024. Available online: https://www.cdc.gov/heart-disease/data-research/facts-stats/index.html (accessed on 8 July 2024).
- Kharabsheh, S.M.; Al-Sugair, A.; Al-Buraiki, J.; Farhan, J. Overview of exercise stress testing. Ann. Saudi Med. 2006, 26, 1–6. [Google Scholar] [CrossRef]
- Sharif, S.; Alway, S.E. The diagnostic value of exercise stress testing for cardiovascular disease Is more than just st segment changes: A Review. J. Integr. Cardiol. 2016, 2, 41–55. [Google Scholar] [CrossRef]
- Pinkstaff, S.; Peberdy, M.A.; Kontos, M.C.; Finucane, S.; Arena, R. Quantifying exertion level during exercise stress testing using percentage of age-predicted maximal heart rate, rate pressure product, and perceived exertion. Mayo Clin. Proc. 2010, 85, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.J.; Balady, G.J.; Beasley, J.W.; Bricker, J.T.; Duvernoy, W.F.; Froelicher, V.F.; Mark, D.B.; Marwick, T.H.; McCallister, B.D.; Thompson, P.D.; et al. ACC/AHA guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on Exercise Testing). J. Am. Coll. Cardiol. 1997, 30, 260–311. [Google Scholar] [CrossRef]
- Lepeschkin, E. Exercise tests in the diagnosis of coronary heart disease. Circulation 1960, 22, 986–1001. [Google Scholar] [CrossRef]
- Bruce, R.A.; Blackmon, J.R.; Jones, J.W.; Strait, G. Exercising testing in adult normal subjects and cardiac patients. Pediatrics 1963, 32, 742–756. [Google Scholar] [CrossRef]
- Mark Daniel, B.; Linda, S.; Harrell Frank, E.; Hlatky Mark, A.; Lee Kerry, L.; Bengtson James, R.; McCants Charles, B.; Califf Robert, M.; Pryor David, B. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N. Engl. J. Med. 1991, 325, 849–853. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Whyte, G.P.; George, K.; Shave, R.; Middleton, N.; Nevill, A.M. Training induced changes in maximum heart rate. Int. J. Sports Med. 2008, 29, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.S.; Pashkow, F.J.; Larson, M.G.; Levy, D. Association of cigarette smoking with chronotropic incompetence and prognosis in the Framingham heart study. Circulation 1997, 96, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Wonisch, M.; Hofmann, P.; Fruhwald, F.M.; Kraxner, W.; Hödl, R.; Pokan, R.; Klein, W. Influence of beta-blocker use on percentage of target heart rate exercise prescription. Eur. J. Cardiovasc. Prev. Rehabil. 2003, 10, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.M.; Telino, C.J.; Sousa, A.C.; Melo, E.V.; Teixeira, C.C.; Teixeira, C.K.; Santana, J.S.; Mota, I.L.; Matos, C.J.; Oliveira, J.L. Low Prevalance of Major Events Adverse to Exercise Stress Echocardiography. Arq. Bras. Cardiol. 2016, 107, 116–123. [Google Scholar] [CrossRef]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA guideline for the management of patients with chronic coronary disease: A report of the American Heart Association/American College of Cardiology joint committee on clinical practice guidelines. Circulation 2023, 148, e9–e119. [Google Scholar] [CrossRef]
- Taylor, A.; Yang, E. Comparing American and European Guidelines for the Initial Diagnosis of Stable Ischaemic Heart Disease. Eur. Heart J. 2020, 41, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Hryvniak, D.; Wilder, R.P.; Jenkins, J.; Statuta, S.M. Therapeutic exercise. In Braddom’s Physical Medicine and Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 291–315.e4. ISBN 978-0-323-62539-5. [Google Scholar]
- Pereira-Rodríguez, J.; Boada-Morales, L.; Jaimes-Martin, T.; Melo-Ascanio, J.; Niño-Serrato, D.; Rincón-González, G.; Pereira-Rodríguez, J.; Boada-Morales, L.; Jaimes-Martin, T.; Melo-Ascanio, J.; et al. Predictive equations for maximum heart rate. Myth or reality. Rev. Mex. Cardiol. 2016, 27, 156–165. [Google Scholar]
- Borg, G.; Hassmén, P.; Lagerström, M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur. J. Appl. Physiol. 1987, 56, 679–685. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Rankinen, T.; Earnest, C.P.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Bouchard, C. Measured maximal heart rates compared to commonly used age-based prediction equations in the Heritage Family Study. Am. J. Hum. Biol. 2013, 25, 695–701. [Google Scholar] [CrossRef]
- Bickelmann, A.G.; Lippschutz, E.J.; Weinstein, L. The response of the normal and abnormal heart to exercise: A functional evaluation. Circulation 1963, 28, 238–250. [Google Scholar] [CrossRef]
- Nes, B.M.; Janszky, I.; Wisløff, U.; Støylen, A.; Karlsen, T. Age-predicted maximal heart rate in healthy subjects: The HUNT fitness study. Scand. J. Med. Sci. Sports 2013, 23, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Gurven, M.; Blackwell, A.D.; Rodriguez, D.E.; Stieglitz, J.; Kaplan, H. Does blood pressure inevitably rise with age? Longitudinal evidence among forager-horticulturalists. Hypertension 2012, 60, 25–33. [Google Scholar] [CrossRef]
- Niekamp, K.; Zavorsky, G.S.; Fontana, L.; McDaniel, J.L.; Villareal, D.T.; Weiss, E.P. Systemic acid load from the diet affects maximal-exercise RER. Med. Sci. Sports Exerc. 2012, 44, 709–715. [Google Scholar] [CrossRef]
- dos Santos, A.L.; Silva, S.C.; Farinatti, P.d.T.V.; Monteiro, W.D. Peak heart rate responses in maximum laboratory and field tests. Rev. Bras. Med. Esporte 2005, 11, 177–180. [Google Scholar] [CrossRef]
- Robergs, R.; Landwehr, R. The surprising history of the “HRmax=220-age” equation. J. Exerc. Physiol. 2002, 5, 1–10. [Google Scholar]
- Jain, M.; Nkonde, C.; Lin, B.A.; Walker, A.; Wackers, F.J.T. 85% of maximal age-predicted heart rate is not a valid endpoint for exercise treadmill testing. J. Nucl. Cardiol. 2011, 18, 1026–1035. [Google Scholar] [CrossRef]
- Fox, S.M.; Naughton, J.P.; Haskell, W.L. Physical activity and the prevention of coronary heart disease. Ann. Clin. Res. 1971, 3, 404–432. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S. Experimental studies of physical fitness in relation to age. Arbeitsphysiologie 1938, 10, 251–323. [Google Scholar] [CrossRef]
- Gulati, M.; Shaw, L.J.; Thisted, R.A.; Black, H.R.; Bairey Merz, C.N.; Arnsdorf, M.F. Heart rate response to exercise stress testing in asymptomatic women: The St. James Women Take Heart Project. Circulation 2010, 122, 130–137. [Google Scholar] [CrossRef]
- Gellish, R.L.; Goslin, B.R.; Olson, R.E.; McDonald, A.; Russi, G.D.; Moudgil, V.K. Longitudinal modeling of the relationship between age and maximal heart rate. Med. Sci. Sports Exerc. 2007, 39, 822–829. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Al-Mallah, M.H.; Keteyian, S.J.; Brawner, C.A.; Ehrman, J.K.; Zhao, D.I.; Guallar, E.; Blaha, M.J.; Michos, E.D. Sex-specific maximum predicted heart rate and its prognosis for mortality and myocardial infarction. Med. Sci. Sports Exerc. 2017, 49, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; McCrory, J. Validation of maximal heart rate prediction equations based on sex and physical activity status. Int. J. Exerc. Sci. 2015, 8, 318–330. [Google Scholar] [PubMed]
- Fairbarn, M.S.; Blackie, S.P.; McElvaney, N.G.; Wiggs, B.R.; Paré, P.D.; Pardy, R.L. Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults. Chest 1994, 105, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Lach, J.; Wiecha, S.; Śliż, D.; Price, S.; Zaborski, M.; Cieśliński, I.; Postuła, M.; Knechtle, B.; Mamcarz, A. HR max prediction based on age, body composition, fitness level, testing modality and sex in physically active population. Front. Physiol. 2021, 12, 695950. [Google Scholar] [CrossRef]
- Londeree, B.R.; Moeschberger, M.L. Effect of age and other factors on maximal heart rate. Res. Q. Exerc. Sport 1982, 53, 297–304. [Google Scholar] [CrossRef]
- Zhu, N.; Suarez-Lopez, J.R.; Sidney, S.; Sternfeld, B.; Schreiner, P.J.; Carnethon, M.R.; Lewis, C.E.; Crow, R.S.; Bouchard, C.; Haskell, W.L.; et al. Longitudinal examination of age-predicted symptom-limited exercise maximum HR. Med. Sci. Sports Exerc. 2010, 42, 1519. [Google Scholar] [CrossRef]
- da Silva, V.A.P.; Bottaro, M.; Justino, M.A.; Ribeiro, M.M.; Lima, R.M.; de Oliveira, R.J. Maximum heart rate in Brazilian elderly women: Comparing measured and predicted values. Arq. Bras. Cardiol. 2007, 88, 314–320. [Google Scholar]
- Jose, A.D.; Collison, D. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 1970, 4, 160–167. [Google Scholar] [CrossRef]
- Kostis, J.B.; Moreyra, A.E.; Amendo, M.T.; Di Pietro, J.; Cosgrove, N.; Kuo, P.T. The effect of age on heart rate in subjects free of heart disease. Studies by ambulatory electrocardiography and maximal exercise stress test. Circulation 1982, 65, 141–145. [Google Scholar] [CrossRef]
- Sydó, N.; Abdelmoneim, S.S.; Mulvagh, S.L.; Merkely, B.; Gulati, M.; Allison, T.G. Relationship between exercise heart rate and age in men vs women. Mayo Clin. Proc. 2014, 89, 1664–1672. [Google Scholar] [CrossRef]
- Lach, J.; Śliż, D.; Wiecha, S.; Price, S.; Brzozowski, A.; Mamcarz, A. How to calculate a maximum heart rate correctly? Folia Cardiol. 2022, 17, 289–292. [Google Scholar] [CrossRef]
- Koracevic, G.; Micic, S.; Stojanovic, M. By discontinuing beta-blockers before an exercise test, we may precipitate a rebound phenomenon. Curr. Vasc. Pharmacol. 2021, 19, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Tjelta, L.I.; Enoksen, E. Training characteristics of male junior cross country and track runners on European top level. Int. J. Sports Sci. Coach. 2010, 5, 193–203. [Google Scholar] [CrossRef]
- Swain, D.P.; Abernathy, K.S.; Smith, C.S.; Lee, S.J.; Bunn, S.A. Target heart rates for the development of cardiorespiratory fitness. Med. Sci. Sports Exerc. 1994, 26, 112–116. [Google Scholar] [CrossRef]
- Available online: https://www.acsm.org/docs/default-source/files-for-resource-library/exercise-intensity-infographic.pdf?sfvrsn=f467c793_2 (accessed on 8 July 2024).
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Sirico, F.; Fernando, F.; Di Paolo, F.; Adami, P.E.; Signorello, M.G.; Sannino, G.; Bianco, A.; Cerrone, A.; Baioccato, V.; Filippi, N.; et al. Exercise stress test in apparently healthy individuals − Where to place the finish line? The Ferrari Corporate Wellness Programme experience. Eur. J. Prev. Cardiol. 2019, 26, 731–738. [Google Scholar] [CrossRef]
- Ellestad, M.H.; Wan, M.K. Predictive implications of stress testing: Follow-up of 2700 subjects after maximum treadmill stress testing. Circulation 1975, 51, 363–369. [Google Scholar] [CrossRef]
- Lauer, M.S.; Okin, P.M.; Larson, M.G.; Evans, J.C.; Levy, D. Impaired heart rate response to graded exercise: Prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation 1996, 93, 1520–1526. [Google Scholar] [CrossRef]
- Lauer, M.S.; Francis, G.S.; Okin, P.M.; Pashkow, F.J.; Snader, C.E.; Marwick, T.H. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA 1999, 281, 524–529. [Google Scholar] [CrossRef]
- Elhendy, A.; Mahoney, D.W.; Khandheria, B.K.; Burger, K.; Pellikka, P.A. Prognostic significance of impairment of heart rate response to exercise: Impact of left ventricular function and myocardial ischemia. J. Am. Coll. Cardiol. 2003, 42, 823–830. [Google Scholar] [CrossRef]
- Adabag, A.S.; Grandits, G.A.; Prineas, R.J.; Crow, R.S.; Bloomfield, H.E.; Neaton, J.D. Relation of heart rate parameters during exercise test to sudden death and all-cause mortality in asymptomatic men. Am. J. Cardiol. 2008, 101, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Whitman, M.; Sabapathy, S.; Jenkins, C.; Adams, L. Is downstream cardiac testing required in patients with reduced functional capacity and otherwise negative exercise stress test? A single center observational study. Cardiol. J. 2019, 26, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Pellikka, P.A.; Arruda-Olson, A.; Chaudhry, F.A.; Chen, M.H.; Marshall, J.E.; Porter, T.R.; Sawada, S.G. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: From the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2020, 33, 1–41.e8. [Google Scholar] [CrossRef] [PubMed]
- Homans, D.C.; Laxson, D.D.; Sublett, E.; Pavek, T.; Crampton, M. Effect of exercise intensity and duration on regional function during and after exercise-induced ischemia. Circulation 1991, 83, 2029–2037. [Google Scholar] [CrossRef]
- Badruddin, S.M.; Ahmad, A.; Mickelson, J.; Abukhalil, J.; Winters, W.L.; Nagueh, S.F.; Zoghbi, W.A. Supine bicycle versus post-treadmill exercise echocardiography in the detection of myocardial ischemia: A randomized single-blind crossover trial. J. Am. Coll. Cardiol. 1999, 33, 1485–1490. [Google Scholar] [CrossRef]
- Shaw, L.J.; Peterson, E.D.; Shaw, L.K.; Kesler, K.L.; DeLong, E.R.; Harrell, F.E., Jr.; Muhlbaier, L.H.; Mark, D.B. Use of a prognostic treadmill score in identifying diagnostic coronary disease subgroups. Circulation 1998, 98, 1622–1630. [Google Scholar] [CrossRef]
- Azarbal, B.; Hayes, S.W.; Lewin, H.C.; Hachamovitch, R.; Cohen, I.; Berman, D.S. The incremental prognostic value of percentage of heart rate reserve achieved over myocardial perfusion single-photon emission computed tomography in the prediction of cardiac death and all-cause mortality: Superiority over 85% of maximal age-predicted heart rate. J. Am. Coll. Cardiol. 2004, 44, 423–430. [Google Scholar] [CrossRef]
- Whitman, M.; Jenkins, C. Rate pressure product, age predicted maximum heart rate or heart rate reserve: Which one better predicts cardiovascular events following exercise stress echocardiography? Am. J. Cardiovasc. Dis. 2021, 11, 450–457. [Google Scholar]
- Berman, J.L.; Wynne, J.; Cohn, P.F. A multivariate approach for interpreting treadmill exercise tests in coronary artery disease. Circulation 1978, 58, 505–512. [Google Scholar] [CrossRef]
- Sharma, A.; Okada, D.R.; Yacoub, H.; Chrispin, J.; Bokhari, S. Diagnosis of cardiac sarcoidosis: An era of paradigm shift. Ann. Nucl. Med. 2020, 34, 87–93. [Google Scholar] [CrossRef]
- Shadman, R.; Criqui, M.H.; Bundens, W.P.; Fronek, A.; Denenberg, J.O.; Gamst, A.C.; McDermott, M.M. Subclavian artery stenosis: Prevalence, risk factors, and association with cardiovascular diseases. J. Am. Coll. Cardiol. 2004, 44, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Herner, M.; Agasthi, P. Cardiac Stress Imaging. [Updated 24 July 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563161/ (accessed on 8 July 2024).
- Varga, A.; Garcia, M.A.; Picano, E.; International Stress Echo Complication Registry. Safety of stress echocardiography (from the International Stress Echo Complication Registry). Am. J. Cardiol. 2006, 98, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Picano, E.; Pierard, L.; Peteiro, J.; Djordjevic-Dikic, A.; Sade, L.E.; Cortigiani, L.; Van De Heyning, C.M.; Celutkiene, J.; Gaibazzi, N.; Ciampi, Q.; et al. The clinical use of stress echocardiography in chronic coronary syndromes and beyond coronary artery disease: A clinical consensus statement from the European Association of Cardiovascular Imaging of the ESC. Eur. Heart J. Cardiovasc. Imaging 2024, 25, e65–e90. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Williams, M.C.; Stewart, C.; Weir, N.W.; Newby, D.E. Using radiation safely in cardiology: What imagers need to know. Heart (Br. Card. Soc.) 2019, 105, 798–806. [Google Scholar] [CrossRef]
- Heller, G.V.; Ahmed, I.; Tilkemeier, P.L.; Barbour, M.M.; Garber, C.E. Influence of exercise intensity on the presence, distribution, and size of Thallium-201 defects. Am. Heart J. 1992, 123, 909–916. [Google Scholar] [CrossRef]
- Iskandrian, A.S.; Heo, J.; Kong, B.; Lyons, E. Effect of exercise level on the ability of Thallium-201 tomographic imaging in detecting coronary artery disease: Analysis of 461 patients. J. Am. Coll. Cardiol. 1989, 14, 1477–1486. [Google Scholar] [CrossRef]
- Picano, E.; Vano, E. Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice. J. Clin. Med. 2024, 13, 2066. [Google Scholar] [CrossRef] [PubMed]
- Medical Advisory Secretariat. Stress echocardiography with contrast for the diagnosis of coronary artery disease: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2010, 10, 1–59. [Google Scholar]
- Martha, G.; Black Henry, R.; Shaw Leslee, J.; Arnsdorf Morton, F.; Noel Bairey, M.C.; Lauer Michael, S.; Marwick Thomas, H.; Pandey Dilip, K.; Wicklund Roxanne, H.; Thisted Ronald, A. The prognostic value of a nomogram for exercise capacity in women. N. Engl. J. Med. 2005, 353, 468–475. [Google Scholar] [CrossRef]
- Bourque, J.M.; Holland, B.H.; Watson, D.D.; Beller, G.A. Achieving an exercise workload of ≥10 METS predicts a very low risk of inducible ischemia: Does myocardial perfusion imaging have a role? J. Am. Coll. Cardiol. 2009, 54, 538–545. [Google Scholar] [CrossRef] [PubMed]
Author | HRmax Equation | Comment |
---|---|---|
Fox’s formula [29] | 220-age | Was obtained from a cohort of men with an average age of 55 years |
Londeree and Moeschberger [34] | 206 − 0.7 × age | Aligns with the Tanaka formula |
Fairbarn [35] | 208 − 0.8 × age | For males |
Robergs and Landwehr [11,27] | 208.754 − 0.734 × age | Aligns with the Tanaka formula |
Nes’s formula [23] | 211 − 0.64 × age | Was examined in healthy men and women |
Lach et al. complex multivariate model [36] | 229 − 0.64 × age − 0.23 × body mass + 0.02 × BMI − 0.38 × VO2max + 0.33 × body fat + 0.02 × fitness level + 8.74 × sex + 0.97 × testing modality | Includes additional variables such as body weight, VO2max, sex, and test type and has demonstrated the lowest error rate when estimating HRmax |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaadawy, O.; Uretsky, B.F.; Krittanawong, C.; Birnbaum, Y. Target Heart Rate Formulas for Exercise Stress Testing: What Is the Evidence? J. Clin. Med. 2024, 13, 5562. https://doi.org/10.3390/jcm13185562
Almaadawy O, Uretsky BF, Krittanawong C, Birnbaum Y. Target Heart Rate Formulas for Exercise Stress Testing: What Is the Evidence? Journal of Clinical Medicine. 2024; 13(18):5562. https://doi.org/10.3390/jcm13185562
Chicago/Turabian StyleAlmaadawy, Omar, Barry F. Uretsky, Chayakrit Krittanawong, and Yochai Birnbaum. 2024. "Target Heart Rate Formulas for Exercise Stress Testing: What Is the Evidence?" Journal of Clinical Medicine 13, no. 18: 5562. https://doi.org/10.3390/jcm13185562
APA StyleAlmaadawy, O., Uretsky, B. F., Krittanawong, C., & Birnbaum, Y. (2024). Target Heart Rate Formulas for Exercise Stress Testing: What Is the Evidence? Journal of Clinical Medicine, 13(18), 5562. https://doi.org/10.3390/jcm13185562