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Abstract: Background/Objectives: This study aims to identify the most accurate regression model for
predicting total corneal astigmatism (TCA) from anterior corneal astigmatism (ACA) and to fine-tune
the best model’s architecture to further optimize predictive accuracy. Methods: A retrospective
review of 19,468 eyes screened for refractive surgery was conducted using electronic medical records.
Corneal topography data were acquired using the Pentacam HR. Various types (7) and subtypes (21)
of regression learners were tested, with a deep neural network (DNN) emerging as the most suitable.
The DNN was further refined, experimenting with 23 different architectures. Model performance
was evaluated using root mean squared error (RMSE), R2, average residual error, and circular
error. The final model only used age, ACA magnitude, and ACA axis to predict TCA magnitude
and axis. Results were compared to predictions from one of the leading TCA prediction formulas.
Results: Our model achieved higher performance for TCA magnitude prediction (R2 = 0.9740,
RMSE = 0.0963 D, and average residual error = 0.0733 D) compared to the leading formula (R2 = 0.8590,
RMSE = 0.2257 D, and average residual error = 0.1928 D). Axis prediction error also improved by
an average of 8.1◦ (average axis prediction error = 4.74◦ versus 12.8◦). The deep learning approach
consistently demonstrated smaller errors and tighter clustering around actual values compared to the
traditional formula. Conclusion: Deep learning techniques significantly outperformed traditional
methods for TCA prediction accuracy using the Pentacam HR. This approach may lead to more
precise TCA calculations and better IOL selection, potentially enhancing surgical outcomes.

Keywords: deep learning; machine learning; artificial intelligence; total corneal astigmatism; intraocular
lens; refractive surgery

1. Introduction

Accurate measurement or prediction of total corneal astigmatism (TCA) is crucial for
selecting the appropriate power and orientation (axis) of toric intraocular lenses (IOLs)
or toric implantable collamer lenses (ICLs) [1]. Emphasis has been placed on measuring
anterior corneal astigmatism (ACA) from the easily accessible anterior surface for surgical
planning. However, posterior corneal astigmatism (PCA) also contributes significantly to
TCA, impacting optimal IOL selection.

Since PCA resides on the less accessible posterior corneal surface, current measurement
devices introduce greater variability leading to lower accuracy of PCA readings [2–4].
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Consequently, population averages and TCA prediction models have become valuable
alternatives [5,6]. Classical linear regression formulas are the basis for predicting TCA
from ACA. Research also suggests the benefit of using predicted TCA over measured TCA,
which is thought to be due to the inherent inaccuracies associated with measuring PCA or
TCA directly [7,8]. Only two studies have advocated for measured TCA over predicted
TCA, while more studies support the use of predicted TCA [9,10].

Accurate IOL power prediction ensures successful surgical outcomes by minimizing
over- or under-corrections, reducing residual refractive errors that cause visual distortions,
and ultimately enhancing patient satisfaction. Linear-regression-based formulas like the
Abulafia–Koch formula (A–K model) (developed with data from 78 eyes) exist for TCA
prediction [7]. However, only one model, the Kane formula (validated with 823 eyes), incor-
porates machine learning, specifically using an extreme gradient boosting algorithm [11].
The Barrett Universal II (TCA prediction method is undisclosed, reported as “a black box”)
and Kane formulas both use keratometry, axial length, and anterior chamber depth as
core inputs [12,13]. The Kane formula additionally incorporates lens thickness and central
corneal thickness as standard parameters in its calculations [13]. Neither the A–K nor
Barrett Universal II and Kane formulas use patient age in their standard formulas [12,13].
Age is a factor that significantly influences the magnitude and orientation of all corneal
astigmatism components [14,15]. Although subtle, there are complex age-related changes
that can potentially impact the accuracy of toric IOL calculations [15].

In this study, we leverage machine learning techniques to predict more accurate
TCA values by utilizing ACA measurements obtained from the Pentacam HR in nearly
20,000 eyes. Machine learning algorithms excel at training on massive datasets, enabling
them to make robust predictions on unseen data. Our large and diverse dataset provided
the ideal platform for this endeavor.

2. Patients and Methods

A retrospective, cross-sectional electronic medical record database review of consec-
utive patients seeking corneal and intraocular refractive procedures at a single refractive
surgery center yielded 19,468 eyes from patients who were candidates for refractive surgery
at a single site. In this study, all patients were included regardless of whether they under-
went surgery, unless they were deemed non-candidates by trained eyecare professionals,
who would then flag the EMR chart with that designation. The criteria were those be-
ing used by a group of 20 surgeons in a large multi-center practice. Naturally occurring
corneal irregularities (irregular astigmatism on topography) were not exclusion criteria.
If one eye had a corneal or ocular disease that disqualified the patient from refractive
surgery, both eyes were excluded. Those with a history of previous ocular and/or corneal
surgery noted in the EMR chart were excluded. The inclusion/exclusion was managed
through automated screening filters in our large EMR database. Eyes with extreme ACA
values exceeding 5 D were manually reviewed for diseased corneas or artifactual Pentacam
HR measurements and excluded as necessary. The study adhered to the tenets of the
Declaration of Helsinki and was approved by the Ethics Review Board of the Canadian
Ophthalmic Research Centre (CORC-RS2020-005) in February 2020. All patients provided
consent for the use of anonymized data for research.

2.1. Data Acquisition

Preoperative corneal topography data were acquired in all patients using the Pentacam
HR (OCULUS, Wetzlar, Germany). The dataset included age, gender, central corneal thick-
ness, K1 (min keratometry) and K2 (max keratometry) at a 3 mm diameter, eye (OD/OS),
index of surface variance (ISV), index of vertical asymmetry (IVA), keratoconus index (KI),
center keratoconus index (CKI), index of height asymmetry (IHA), ACA magnitude, ACA
axis, TCA magnitude, and TCA axis.
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2.2. Model Development and Tested Regression Learners

Our international research team has vast experience with machine learning, predic-
tion, and optimization applied to refractive surgery data [16–21]. Our analysis process
began with data collection from the Pentacam HR, followed by the selection of variables
for testing. Initial model testing was conducted using MATLAB R2024a software (The
MathWorks). Various regression models were trained and evaluated to determine the
best-performing model for the given data. These included linear regression models (linear
regression, stepwise linear regression, and robust linear regression), tree-based models
(regression trees and ensemble of regression trees including boosting, bagging, and random
forest), support vector machines (SVM with linear, quadratic, cubic, and Gaussian kernels),
Gaussian process regression (GPR with rational quadratic, squared exponential, Matern
5/2, and exponential kernels), neural networks (shallow and deep), generalized additive
models (GAM), and ensemble methods (bagged trees, boosted trees, and random forest).
The deep neural network (DNN) model emerged as the most suitable. Further refinement
of the predictions was achieved by experimenting with 23 different DNN architectures
using the PyTorch library in Python. To identify the most accurate regression models and
optimize architecture tuning to predict TCA from ACA measurements, we prioritized a
model that maximized R2 and Test Accuracy while minimizing Test Loss and RMSE. To do
so, a global metric of performance was calculated as R2 + Test Accuracy − Test Loss − RMSE.
Our experiments included both deep and shallow neural network architectures. Although
initial testing in MATLAB indicated that deep neural networks performed best, our subse-
quent experiments with both shallow and deep neural network architectures in PyTorch
revealed that increasing the depth of the network did not significantly improve the model’s
prediction performance for TCA prediction. During the model development process, it
was found that corneal thickness, gender, eye (OD/OS), K1, K2, ISV, IVA, KI, CKI, and IHA
did not significantly improve prediction accuracy and only added complexity to the model.
Therefore, these variables were excluded from the final model to maintain simplicity and
ease of use for surgeons.

2.3. Data and Statistical Analysis

Regression analysis was employed to evaluate the model’s performance, with metrics
such as root mean squared error (RMSE), R2, and average residual error used to assess the
accuracy of the model’s TCA magnitude predictions. Circular error, which quantifies the
average angular deviation between the predicted and actual TCA axis values, was used
to evaluate the accuracy of the TCA axis predictions. This study utilized three distinct
approaches to predict TCA magnitude and axis. The first method involved direct training
using the Pentacam HR data. The second and third methods both began by splitting the
Pentacam HR data into components but differed in their approach. The second method
predicted TCA magnitude using Cartesian components x = M cos(θ) and y = M sin(θ), while
the third method employed power vector components J0 = M cos(2θ) and J45 = M sin(2θ).
In both latter methods, the TCA magnitude was subsequently reconstructed from the pre-
dicted components. This multi-faceted approach allowed for a comprehensive evaluation
of different predictive techniques for TCA. For each approach, the models’ predictions were
compared to the A–K formula. This is a leading regression-based method used to estimate
TCA from anterior corneal measurements. It was developed to account for the contribution
of PCA in toric intraocular lens calculations. The A–K formula employs separate linear
regression equations for the x and y vector components of corneal astigmatism. For the
x-component, the regression is x’-component = 0.508 + 0.926x-compoent, while, for the
y-component, it is y’-component = 0.009 + 0.932y-component [7]. These equations are
applied to the measured ACA components to estimate TCA.
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3. Results
3.1. Corneal Astigmatism Components

The mean magnitude and axis mode of corneal astigmatism were 1.06 ± 0.74 D at
90.04◦ for ACA (range: 0–6.6 D; axis 0 to 180◦), 0.33 ± 0.16 D at 88.82◦ for PCA (range:
0–1.2 D; axis 0 to 180◦), and 0.81 ± 0.60 D at 89.64◦ for TCA (range 0 to 6.5 D; axis 0
to 180◦). ACA was with-the-rule (WTR) in 77.6%, against-the-rule (ATR) in 10.6%, and
oblique in 11.84% of eyes. PCA was WTR in 1.74%, ATR in 94.2%, and oblique in 4.06%
of eyes. TCA was WTR in 67.4%, ATR in 16.81%, and oblique in 15.8% of eyes. Most eyes
(79.2%) exhibited WTR ACA and TCA with ATR PCA. The mean age of participants was
36.32 ± 12.82 years (range: 18–87 years).

3.2. Determining the Best Predictors and Machine Learning Architectures for TCA Prediction

ACA magnitude, ACA axis, and age were used as predictors for TCA magnitude
and TCA axis, using a distinct model for magnitude and axis. The inclusion of additional
variables such as gender, corneal thickness, K1 (3 mm), K2 (3 mm), eye (OD/OS), index of
surface variance (ISV), index of vertical asymmetry (IVA), keratoconus index (KI), center
keratoconus index (CKI), and index of height asymmetry (IHA) did not improve the
prediction accuracy of our machine learning models and were therefore discarded. We
investigated the performance of various machine learning methods, including random
forests, bagging, principal component analysis, polynomial regressions, artificial neural
networks, and deep learning. Initial results confirmed that deep learning outperformed
the other methods. Subsequently, we explored 23 different neural network architectures
(Table 1), varying in network size (number of layers), activation function type, hidden layer
dimension (number of neurons), number of batch normalization layers, and inclusion of L2
regularization with weight decay. Of our dataset, 80% (15,574 eyes) was used for training
and 20% for testing (3,894 eyes). Consistently accurate predictions of TCA were achieved
across all architectures (Table 1).

Table 1. Experimentation with different neural network architectures.

Model
Number Model Details R2 Test

Accuracy
Test
Loss

RMSE
(D)

Global
Metric

1 4fc, 3 ReLU, hd 16, 2 bn, wd 0.9671 0.9687 0.0115 0.10722 1.81708
12 3fc, 2 ReLU, hd 32, 1 bn, wd 0.9672 0.9680 0.0114 0.1069 1.81690

5 4fc, 3 ReLU, hd 32, 2 bn 0.9668 0.9686 0.0116 0.10763 1.81617

3 4fc, 3 ReLU, hd 32, 2 bn, wd 0.9662 0.9687 0.0118 0.10867 1.81443

16 2fc, 1 ReLU, hd 16, 1 bn 0.9665 0.9675 0.0117 0.10811 1.81419

10 3fc, 2 ReLU, hd 32, 2 bn 0.9659 0.9676 0.0119 0.10903 1.81257

22 4fc, 3 ELU, hd 32, 2 bn, wd 0.9668 0.9648 0.0116 0.10761 1.81239

11 3fc, 2 ReLU, hd 16, 2 bn, wd 0.9658 0.9674 0.0119 0.1092 1.81210

13 3fc, 2 ReLU, hd 32, 2 bn, wd 0.9660 0.9645 0.0119 0.1090 1.80960

18 2fc, 1 ReLU, hd 32, 1 bn, wd 0.9648 0.9642 0.0125 0.11185 1.80465

17 2fc, 1 ReLU, hd 16, 1 bn, wd 0.9632 0.9648 0.0128 0.11334 1.80186

23 4fc, 3 Tanh, hd 16, 2 bn, wd 0.9666 0.9509 0.0116 0.10789 1.79801

2 4fc, 3 ReLU, hd 16, wd 0.9586 0.9586 0.0144 0.12019 1.78261

4 4fc, 3 ReLU, hd 32, wd 0.9586 0.9585 0.0145 0.12026 1.78234

7 3fc, 2 ReLU, hd 32 0.9570 0.9570 0.0150 0.12246 1.77654

6 4fc, 3 ReLU, hd 32 0.9567 0.9566 0.0151 0.12298 1.77522

20 4fc, 3 Sigmoid, hd 32, 2 bn, wd 0.9572 0.9531 0.0149 0.1222 1.77320

15 2fc, 1 ReLU, hd 16, wd 0.9556 0.9556 0.0155 0.12441 1.77129
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Table 1. Cont.

Model
Number Model Details R2 Test

Accuracy
Test
Loss

RMSE
(D)

Global
Metric

9 3fc, 2 ReLU, hd 32, wd 0.9537 0.9537 0.0161 0.12704 1.76426

21 4fc, 3 LeakyReLU, hd 32, 2 bn,
wd 0.9660 0.9124 0.0119 0.10899 1.75751

19 2fc, 1 ReLU, hd 32 0.9518 0.9517 0.0168 0.12974 1.75696

8 3fc, 2 ReLU, hd 16, wd 0.9517 0.9517 0.0169 0.12981 1.75669

14 2fc, 1 ReLU, hd 16 0.9458 0.9458 0.0189 0.13749 1.73521
Note Table 1: The model details column is structured with the number of fully connected layers (fc), the type of
activation function used and how many layers used, the number of neurons in the hidden dimension (hd), the
number of batch normalization layers used (bn), and if weight decay (wd) was used.

From the evaluated neural network architectures, we prioritized a model that maxi-
mized R2 and Test Accuracy while minimizing Test Loss and RMSE using a global metric
of performance. Our global metric was the highest for model #1, making it the optimal
choice for our TCA prediction application (see Table 1 for details on models’ architecture).

3.3. Comparison of Conventional A–K Formula to Our Deep Learning Model

As shown on the actual versus predicted TCA magnitude scattergram, the A–K for-
mula achieved a Pentacam HR TCA prediction with a root mean square error (RMSE)
of 0.2257 D and an R2 of 0.8590 (Figure 1A,B). Our deep learning approach had an RMSE
of 0.0969 D and an R2 of 0.9738 (Figure 1A,B). The average absolute residual error was of
0.1928± 0.1173 D for A–K formula and 0.0734± 0.0958 D for the deep learning model (p < 0.0001;
Figure 1B). Residual error plots showed that 68.80% of the A–K formula’s predictions and 98.84%
of the deep learning model’s predictions were within an error of 0.25 D (p < 0.0001; Figure 1B),
with 99.08% and 99.92% within an error of 0.50 D (p < 0.0001), respectively.
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Figure 1. (A) Actual vs. predicted total corneal astigmatism magnitude using deep learning without
J0/J45 astigmatism decomposition (orange dots) and the A–K formula (blue dots). (B) Residual error
plots for the A–K formula and the deep learning model. Residual error plots visually assess the
quality of the fitted regression model, depicting how closely the model’s predicted values align with
the actual data points. The residual error for each data point is calculated as the difference between its
predicted value and the corresponding actual value. Abbreviations: TCA = total corneal astigmatism,
RMSE = root mean square error.
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On the actual versus predicted TCA axis scattergram, the A–K predictions were
sigmoidal in nature, showing underprediction (predictions below the y = x line) between
0 and 89 degrees and overprediction (predictions above the y = x line) between 91 and
180 degrees (Figure 2A). In contrast, deep learning predictions were more linear (Figure 2A).
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Figure 2. (A) Actual vs. predicted total corneal astigmatism axis using deep learning without
J0/J45 astigmatism decomposition (orange dots) and the A–K formula (blue dots). (B) Total corneal
astigmatism axis prediction errors using deep learning without J0/J45 astigmatism decomposition
and the A–K formula. Abbreviations: TCA = total corneal astigmatism.

The average absolute circular axis error was 12.78 ± 16.04 degrees for the A–K formula
and 7.43 ± 11.75 degrees for the deep learning model (p < 0.0001; Figure 2B). The distribu-
tion of error bins, each representing 3 degrees, indicated that the A–K formula resulted in
a higher frequency of large TCA axis prediction errors, whereas the deep learning model
predominantly produced small errors. Specifically, there were 60.1% more eyes with an
error of 0 to 3 degrees using the deep learning model compared to the A–K formula.

3.4. The Best Model: Deep Learning with J0 and J45 Astigmatism Component Split

In the above demonstrations (Figures 1 and 2), we achieved TCA predictions on
ACA astigmatism data without first splitting ACA into its primary J0 and J45 components.
Utilizing the J0 and J45 method for splitting the ACA before training significantly improved
our TCA predictions. We developed two separate models to predict the TCA J0 and TCA
J45 components, using age and their corresponding ACA J0 and ACA J45 components as
predictors, respectively. Using the predicted J0 and J45 TCA predictions, the Pythagorean
trigonometric formula and arctangent formula were used to reconstruct the TCA magnitude
and TCA axis, respectively. Our deep learning models predicted the J0 and J45 TCA
components, resulting in a predicted J0 TCA component prediction RMSE of 0.1004 D and
R2 of 0.9829 (Figure 3A) and a J45 component prediction RMSE of 0.0895 D and R2 of 0.9597
(Figure 3B).

Reconstructing the TCA from the J0 and J45 TCA components yielded an overall RMSE
of 0.0963 D, R2 of 0.9740, and an average residual error of 0.0733 D (Figure 4A). Residual
error plots showed that the deep learning prediction errors had 98.7% of the prediction
errors within 0.25 D compared to 68.8% for A–K formula (p < 0.0001; Figure 4B). For deep
learning prediction errors, 99.9% were within 0.50 D versus 99.1% for the A–K formula
(p < 0.0001). The average absolute residual error for the reconstructed deep learning
J0/J45 components was 0.0733 ± 0.0625 D versus 0.1928 ± 0.1173 D for the A–K formula
(p < 0.0001; Figure 4B).
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The J0/J45 split method yielded axis predictions with an even more linear trend than
our deep learning predictions without splitting the astigmatism into J0 and J45 components
(Figure 5A). The average absolute circular axis error was 12.78 ± 16.04 degrees for the A–K
formula and 4.738 ± 8.069 degrees for the J0/J45 split deep learning model (p < 0.0001;
Figure 5B). Specifically, there were 115.5% more eyes with an error of 0 to 3 degrees using
this deep learning model compared to the A–K formula. This method had a 36.3% reduction
in average prediction circular error from the standard deep learning axis prediction method.

Deep learning with J0 and J45 astigmatism component split was therefore the best
methodology and yielded predictions that were vastly superior to the A–K formula when
applied to the same test dataset of 3894 eyes. Table 2 provides a summary of our final results
for TCA magnitude and axis predictions, comparing the performance of the Abulafia–
Koch formula, our deep learning model without J0 and J45 component splitting, and
our optimized deep learning model with J0 and J45 component splitting, demonstrating
progressive improvements in prediction accuracy across all metrics.



J. Clin. Med. 2024, 13, 5617 8 of 14

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 7 of 14 
 

 

prediction errors within 0.25 D compared to 68.8% for A–K formula (p < 0.0001; Figure 
4B). For deep learning prediction errors, 99.9% were within 0.50 D versus 99.1% for the 
A–K formula (p < 0.0001). The average absolute residual error for the reconstructed deep 
learning J0/J45 components was 0.0733 ± 0.0625 D versus 0.1928 ± 0.1173 D for the A–K 
formula (p < 0.0001; Figure 4B). 

 
Figure 4. (A) Actual vs. predicted total corneal astigmatism magnitude using deep learning with 
J0/J45 astigmatism reconstruction (orange dots) and the A–K formula (blue dots). (B) Residual pre-
diction errors using deep learning with J0/J45 astigmatism reconstruction and the A–K formula. 
Abbreviations: TCA = total corneal astigmatism, RMSE = root mean square error. 

The J0/J45 split method yielded axis predictions with an even more linear trend than 
our deep learning predictions without splitting the astigmatism into J0 and J45 compo-
nents (Figure 5A). The average absolute circular axis error was 12.78 ± 16.04 degrees for 
the A–K formula and 4.738 ± 8.069 degrees for the J0/J45 split deep learning model (p < 
0.0001; Figure 5B). Specifically, there were 115.5% more eyes with an error of 0 to 3 degrees 
using this deep learning model compared to the A–K formula. This method had a 36.3% 
reduction in average prediction circular error from the standard deep learning axis pre-
diction method. 

 
Figure 5. (A) Actual vs. predicted total corneal astigmatism axis using deep learning with J0/J45 
astigmatism decomposition (orange dots) and the A–K formula (blue dots). (B) Total corneal astig-
matism axis prediction errors using deep learning with J0/J45 astigmatism decomposition and the 
A–K formula. Abbreviations: TCA = total corneal astigmatism. 

Figure 5. (A) Actual vs. predicted total corneal astigmatism axis using deep learning with J0/J45
astigmatism decomposition (orange dots) and the A–K formula (blue dots). (B) Total corneal astigma-
tism axis prediction errors using deep learning with J0/J45 astigmatism decomposition and the A–K
formula. Abbreviations: TCA = total corneal astigmatism.

Table 2. Performance comparison of TCA prediction models: magnitude and axis metrics.

Magnitude Metrics Axis Metrics

Model RMSE (D) R2 Average
Error (D)

Average Circular
Error (Degrees)

Axis Standard
Deviation (Degrees)

Abulafia-Koch 0.2257 0.8590 0.1928 12.78 16.03

Deep Learning
without J0/J45 split 0.0969 0.9738 0.0734 7.43 11.75

Deep Learning
with J0/J45 split 0.0963 0.9740 0.0733 4.74 8.07

4. Discussion
4.1. Importance of Accurate TCA Prediction

Accurate TCA prediction is critical for successful IOL selection and optimal visual
outcomes post-surgery. TCA encompasses both ACA from the accessible anterior corneal
surface and PCA from the less accessible posterior surface. Toric IOL calculators rely on
TCA values to determine the ideal power and orientation of the lens for correcting astig-
matism. Highly accurate TCA predictions minimize residual refractive errors, enhancing
patient satisfaction and surgical success. Measuring PCA through the corneal stroma may
introduce “measurement noise”, resulting in less accurate TCA values for IOL selection. It
is worth noting that the lower accuracy in PCA measurements from devices is exacerbated
in low-income areas where access to advanced topographers is limited. This further empha-
sizes the importance of developing accurate prediction models that can work with more
widely available ACA data. The current deep learning approach for predicting TCA offers
several significant differences compared to the A–K formula: it utilizes Pentacam HR data
and a much larger and more diverse dataset of 19,468 eyes (versus 78 eyes), allowing for
more robust and generalizable Pentacam HR TCA predictions. The deep learning model
also uniquely incorporates age as a potential predictor. The combination of deep learning,
the incorporation of age, and using J0 and J45 astigmatism component splitting enhanced
prediction accuracy, with lower RMSE and average absolute residual error and higher
R2 values for both TCA magnitude and axis predictions. The axis prediction was also
significantly improved when evaluating the average absolute circular error of both models.
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4.2. Difference between an IOL Calculator and a TCA Prediction Formula

IOL calculators like Barrett Universal II, Kane, Holladay, Haigis, EVO, Hoffer QST,
SRK/T, and Hill-RBF are comprehensive tools designed to predict the optimal intraocular
lens power for cataract surgery, aiming to achieve the desired refractive outcome. These
calculators use various biometric measurements and formulas to estimate the effective lens
position and required IOL power. While some advanced calculators like Barrett Universal
II have built-in methods to account for TCA, others may not fully address PCA. On the
other hand, TCA predictors like the A–K model specifically focus on estimating the TCA
by accounting for both anterior and posterior corneal surfaces. These TCA predictors can
be used to enhance the accuracy of IOL calculators that do not inherently account for PCA,
thereby improving the prediction of residual corneal astigmatism after IOL implantation. By
incorporating TCA predictors, surgeons can potentially achieve more precise astigmatism
correction during cataract surgery, especially when using toric IOLs. The incorporation of
the A–K formula, significantly improved residual corneal astigmatism prediction for Alcon
and Holladay toric IOL calculators, bringing their performance in line with the Barrett
Universal II formula which has its own built-in TCA prediction. PhysIOL has integrated
this advancement by offering the option to include the A–K formula in their toric IOL
calculator. In our study, we chose the A–K model as a comparison benchmark because it
is one of the leading publicly disclosed formulas for TCA prediction. It is worth noting
that, while many IOL calculators use TCA prediction, they typically do not disclose their
specific TCA prediction algorithms or formulas publicly.

4.3. Challenges and Limitations with Existing Solutions

Two popular approaches for estimating TCA are the Barrett Universal II and the
A–K formulas. The A–K formula relies on a published mathematical model that includes
regression analysis. In contrast, the Barrett Universal II uses an unpublished “black box”
algorithm, the details and quantified accuracy of which are not publicly known nor have
they been published. Neither the A–K formula nor the Barrett Universal II formula in-
corporates age as a variable in their TCA predictions. This is evident from the known
details of the A–K formula and confirmed by the absence of an age input in the Barrett
Universal II calculator. The Kane formula uses AI but its detailed methodology remains
unpublished, including whether age was used in training. Smaller or less diverse datasets
can be vulnerable to prediction errors, especially when machine learning methods are
employed. However, Darcy et al. mentions that the Kane formula was developed using
approximately 30,000 cases from selected refractive cataract practices, but data or details
about these cases were never disclosed nor peer-reviewed [13]. Our deep learning model,
trained on a diverse dataset of 19,468 eyes, currently represents the largest datasets and
peer-reviewed paper for TCA magnitude and axis prediction.

Age is a potential factor often overlooked in existing solutions regarding its influence
on astigmatism. Studies indicate a trend towards elevated TCA magnitude with ATR
astigmatism axis as age increases [6,14,22–24]. A more recent study also reported that TCA
starts high from age 18 to 23, then decreases steadily until age 54 to 59, before rising quickly
by 32% in only the next decade from 60 to 70+ years old [15]. Our deep learning model
incorporates a wide age range during training, enhancing prediction accuracy. While the
inclusion of age only marginally improved the accuracy of our model, there are compelling
reasons to retain it as a variable. Firstly, the residual plots show a qualitative improvement
with age included, demonstrating a tighter clustering around the ideal prediction line and
a slight reduction in prediction errors for higher astigmatism values. Secondly, age has
well-established clinical relevance in corneal astigmatism, as evidenced by our previous
research showing age-dependent relationships between ACA and PCA. More specifically,
we have shown that, in WTR ACA eyes, the correlation between ACA and PCA decreases
from R = 0.78 at 18 yo to R ≤ 0.48 in eyes ≥ 65 yo. Oblique ACA eyes showed lower
correlations, peaking at R = 0.51 at 24 yo and decreasing to R = 0.02 after 72 yo. ATR ACA
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eyes showed a mild positive correlation in midlife (R = 0.15; 41 yo), switching to a moderate
inverse correlation in older age (R = −0.3461; ≥ 72 yo) [15].

As an ad hoc demonstration, we investigated the relationships between ACA, TCA,
and age (Supplementary Figures S1 and S2). Both figures present three plots representing
against-the-rule (ATR), with-the-rule (WTR), and oblique astigmatism, with ACA on the
x-axis and age on the y-axis. The color scale represents the difference between TCA and
ACA (TCA–ACA). Supplementary Figure S1 uses a simplified red and blue color scheme
so that the general trends in the relationship between ACA, TCA, and age may be observed.
For ATR astigmatism, most data points appear red, indicating that TCA is generally
larger than ACA, except at very high ACA values. In contrast, the WTR plot shows bluer
overall, suggesting that TCA is often smaller than ACA for WTR astigmatism. However,
Supplementary Figure S2 uses a more complex color scale, showing more nuanced details
in the magnitude of the difference between ACA and TCA. This visualization reveals that,
while TCA may be larger than ACA in many cases, especially for ATR astigmatism, the
difference is often relatively small. The more detailed color scale shows that TCA, when
larger than ACA, is rarely much higher than ACA. The complex color scale allows for
the appreciation of subtle variations in the TCA–ACA relationship across astigmatism
magnitudes and orientations. For instance, in the ATR plot, we can see a gradual transition
from blue (positive TCA–ACA) to green and yellow (smaller negative TCA–ACA) as ACA
increases, rather than a stark contrast between the red and blue plot. The A–K model,
which uses only 78 eyes, undeniably has large 95% confidence intervals for the slope and
intercept, impacting its reliability. In addition, its dataset likely only consisted of older
eyes, as these were all patients undergoing cataract extraction. The A–K model was also
not specifically trained to predict Pentacam HR data, as in the current paper, which further
explains the superior accuracy here. The A–K formula, however, remains an excellent
time-tested approach and could potentially improve its predictions by considering age and,
more importantly, by applying machine learning techniques on a larger dataset.

To our knowledge, only one previous study used a very large corneal dataset, using
the IOLMaster 700 with total keratometry module, to predict total J0 and J45 corneal
astigmatism from anterior corneal data [5]. In comparison to this earlier work, our study
utilized the Pentacam HR, which has been shown to yield the highest repeatability in
corneal astigmatism measurements, with highly repeatable total corneal measurements
compared to five devices, including the former IOLMaster 500, which, at the time of the
study, had the lowest repeatability among the five devices [25]. The calculation principle of
corneal curvature of the IOLMaster 700 is similar to the IOLMaster 500. The IOLMaster
700 projects 18 spots on three areas of the cornea and those areas are distributed within
6 spots [25]. In contrast, the Pentacam HR used 125,000 corneal datapoints, a major upgrade
from the former regular Pentacam, which only used 25,000 datapoints.

In contrast to this prior work, our study included a diverse array of seven machine
learning methods and 21 subcategories to identify the most effective model, including
linear regression models, tree-based models, support vector machines, Gaussian process
regression, generalized additive models, and ensemble methods. Through this comprehen-
sive evaluation, we found that the deep neural network consistently outperformed other
methods. Subsequently, we then further optimized our model by testing 23 different deep
learning architectures to achieve the best possible performance. To our knowledge, this
is the first time that such a methodological approach using advanced automatic machine
learning using multiple learners and sub-architectures has been applied in ophthalmology.
The previous study also used data from multiple centers, potentially increasing variability.

Our approach achieved the same mean and standard deviation predictions as the
previous method. However, using Pentacam HR data (considered more accurate), our
prediction error, though similar, likely leads to higher overall accuracy due to the improved
precision of the TCA data used for training. Furthermore, our model accomplished this
same level of accuracy with only three variables (age, ACA magnitude, and axis), whereas
the IOLMaster-700-based model used 10 variables (K, AL, CCT, ACD, LT, W2W, R1, R2,
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TR1, and TR2). Additionally, they did not report axis prediction or axis prediction error,
making it difficult to fully assess their model’s performance in this critical aspect. The
previous study also did not include actual vs. predicted scattergrams, further limiting
the assessment of the model’s accuracy. The previous study only predicted J0 and J45,
making it less practical for surgeons unfamiliar with these vectors to easily determine the
required toricity.

Our inclusion of clinically relevant metrics, such as the percentage of predictions
within 0.25 D and 0.50 D and visual validation with scattergrams and R2 values, pro-
vides a more comprehensive evaluation of our model’s performance. While both studies
achieved similar mean prediction errors, our method demonstrates equivalent accuracy
with significantly less complexity and a direct comparison to the well-known A–K formula,
underscoring the robustness and practicality of our deep-learning-based TCA predic-
tion method.

4.4. Deep Learning as a Solution

The extensive and diverse large dataset that we used offered a unique opportunity
to harness deep learning for accurate TCA prediction. Deep learning algorithms excel at
identifying complex patterns within large datasets, enabling the model to learn variable
relationships and predict TCA with superior accuracy on unseen data. The accuracy that
we achieved was unprecedented. This underscores the importance of large and diverse
datasets in training robust deep learning models.

4.5. Astigmatism Data Splitting versus No Splitting

We initially trained the neural network on raw data (i.e., without using J0 and J45
components) and compared its performance to the A–K formula. The model already
showed improved results. To further refine predictions, we explored data preprocessing
techniques, testing the X, Y Cartesian split and the J0/J45 methods for splitting astigmatism
into components. While the X, Y Cartesian split method did not improve performance, the
J0/J45 method achieved comparable TCA magnitude predictions and magnitude error to
the raw dataset model but very significantly improved TCA axis prediction accuracy.

4.6. Relationships between Corneal Variables

Regression plots of our TCA magnitude predictions revealed a tighter distribution,
indicating significantly lower error compared to existing methods. The A–K formula
displayed a sigmoidal curve for axis prediction, suggesting a tendency to under- or overes-
timate the astigmatism axis. While our non-preprocessed predictions (without J0/J45 split)
achieved greater linearity, they still exhibited slight under- and overestimation. The refined
model using J0 and J45 split yielded the most linear TCA axis predictions, further mini-
mizing potential errors. Furthermore, in the above-reported axis prediction scattergrams
(Figure 2A), points that appear as massive outliers are not outliers, as 180 degrees and
0 degrees represent the same axis for astigmatism. Ad hoc analyses revealed that the vast
majority of axis predictions deviating from the ideal y = x line corresponded to cases where
the ACA was less than 0.50 D (Supplementary Figure S3). While axis prediction was slightly
less reliable for cases where ACA magnitude was less than 0.50 D, predictions with deep
learning remained more accurate than predictions using the A–K formula. It is important
to note that, while some surgeons opt for low-powered toric IOLs in patients with mild
astigmatism, many choose to manage these cases by converting to a spherical equivalent
correction. These findings highlight that the bulk of our axis prediction errors were associ-
ated with low astigmatism cases, which are often managed differently depending on the
surgeon’s preference. To better assess the accuracy of TCA axis prediction, we therefore
used a circular TCA axis error histogram (Figure 2B). These specialized histograms are
ideal for visualizing the distribution of errors in predicted astigmatism axis.
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4.7. mEYEstro TCA Predictor Software

Based on the prediction reported in the current paper we developed a user-friendly
web application that integrates the current deep-learning-based calculator, providing sur-
geons with more accurate TCA and PCA values to facilitate optimal IOL toricity planning
for their patients. Surgeons can try it free at www.refractivesurgery.ca/software.

5. Limitations and Future Directions

To further enhance the model’s performance, we plan to investigate the inclusion of
separate datasets for WTR, ATR, and oblique astigmatism, potentially refining the model’s
ability to handle the specific characteristics of each astigmatism type. While numerous
variables were evaluated and subsequently excluded due to their lack of significant impact,
further investigation could incorporate additional measurements such as corneal diameter,
white-to-white distance, and pachymetric progression index. These parameters may offer
valuable insights to complement our current findings. However, it is important to note that
these variables were not available in our existing dataset, presenting an opportunity for
future studies to expand upon this research. It is necessary to acknowledge that measuring
PCA magnitude and axis is less reliable than ACA, particularly for smaller PCA magnitudes.
Ideally, repeated measurements would enhance reliability. However, the large sample size
required for a machine learning study makes this approach impractical for future research,
thus presenting a limitation. Fortunately, our study’s substantial sample size helps mitigate
this issue by effectively averaging out measurement noise in cases with low ACA, thereby
enhancing the overall reliability of our findings. Future work may explore the adaptability
of our deep learning model to other biometry devices that measure total keratometry, such
as the IOL Master 700, Eyestar 900, Galilei G6, CSO Sirius+, CSO MS-39, Tomey TMS-5, and
Anterion. This expansion would require appropriate training, recalibration, and testing
for each device. Additionally, we are developing theoretical back-calculations to assess
whether our TCA prediction could enhance IOL calculation predictions of postoperative
cylinder. To validate the model’s clinical applicability across different devices, we plan to
conduct studies evaluating actual post-refractive outcomes. These efforts aim to broaden
the model’s utility and improve its accuracy in diverse clinical settings.

6. Conclusions

This study demonstrates the impact of deep learning on a large dataset to accurately
predict TCA from ACA and age. Using the Pentacam HR, our deep learning model
predicted TCA with greater accuracy compared to existing formulas. This approach has
the potential to improve current IOL calculators and thereby minimize residual refractive
errors and improve post-surgical visual outcomes, ultimately leading to greater patient and
surgeon satisfaction.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcm13185617/s1: Figure S1: Relationship between ACA, age and “TCA
minus ACA”. The plots show ATR, WTR, and oblique astigmatism. The x-axis represents ACA in
diopters, the y-axis shows age, and the color scale indicates the difference between TCA and ACA
(TCA minus ACA), with red representing positive values and blue representing negative values.
Figure S2: Detailed Analysis of the relationship between ACA, age and “TCA minus ACA”. The
plots display ATR, WTR, and oblique astigmatism. The x-axis shows ACA in diopters, the y-axis
represents age, and the color scale indicates the magnitude of the difference between TCA and ACA
(TCA-ACA), with a more nuanced color gradient to highlight subtle variations. Figure S3. Impact of
low ACA on TCA axis prediction. Gray dots represent all data, including cases with ACA less than
0.5D. Blue dots show only cases where ACA is 0.5D or greater.
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