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Abstract: The detailed sonographic assessment of the fetal neuroanatomy plays a crucial role in
prenatal diagnosis, providing valuable insights into timely, well-coordinated fetal brain development
and detecting even subtle anomalies that may impact neurodevelopmental outcomes. With recent
advancements in artificial intelligence (AI) in general and medical imaging in particular, there has
been growing interest in leveraging AI techniques to enhance the accuracy, efficiency, and clinical
utility of fetal neurosonography. The paramount objective of this focusing review is to discuss the
latest developments in AI applications in this field, focusing on image analysis, the automation of
measurements, prediction models of neurodevelopmental outcomes, visualization techniques, and
their integration into clinical routine.

Keywords: fetal; ultrasound; prenatal; artificial intelligence; neurosonography; machine learning;
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1. Introduction

The assessment of the anatomic integrity of the fetal central nervous system (CNS) is
one of the most challenging tasks during a prenatal sonographic work-up, as the brain’s
development and maturation constitute complex and well-orchestrated processes occur-
ring at various embryonic and fetal stages. To preclude diagnostic errors, national and
international guidelines explicitly pay attention to the fact that the appearance of the
brain undergoes profound changes throughout gestation. Although brain anomalies are
among of the most common fetal malformations, with an estimated prevalence of 9.8–14 per
10,000 live births [1,2], their in utero perception fundamentally requires a familiarity with
sonographic brain anatomy and artifacts and a designated vigilance for the necessity of a
subsequent targeted multiplanar assessment of the entire fetal CNS (neurosonography) [3,4].
In general, the efficacy of ultrasound (US) screenings largely hinges on the operator’s skill
in navigating to and reproducing standard imaging planes and this, in turn, strongly relates
to the gestational age (GA) at examination. In this context, it could be noted that, in the
recent past, the majority of severe congenital brain anomalies have been readily identified
prenatally by applying a systematic, protocol-based US survey [5,6]. Nevertheless, the
detection rates of fetal brain lesions in an unselected population remain somewhat unsatis-
factory and more subtle changes might escape an early diagnosis. In part, this might be
explained by the fact that even though advanced technologies such as three-dimensional
US (3DUS) undoubtedly have the potential to contribute to an improved detailed CNS
evaluation, there is still little consensus as to the ideal method for volume acquisition, the
settings, and the analysis of the volume and an overall lack in the standardization of volu-
metric assessments [7]. On the other hand, DiMascio et al. stated in their systematic review
that fetal brain charts suffer substantially from poor methodologies and are at high risk
of biases, especially when focusing on relevant neurosonographic issues [8]. In addition,
another publication demonstrated that the fetal cortical brain’s development in fetuses
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conceived by assisted reproductive technology seems to be different from those conceived
spontaneously, as expressed by a reduced sulci depth [9]. This underpins the complexity
of an all-encompassing thorough assessment of the fetal brain. Beyond any doubt, pre-
natal US is capable of providing precise information regarding fetal anatomical integrity
and the severity of abnormal conditions derived from high-quality images with increased
diagnostic accuracy and reliability. The transabdominal route remains the technique of
choice for a comprehensive anatomic evaluation of specific organs like the fetal brain. This
clearly demonstrates that the currently available data source of images has to deal with a
combination of maternal, fetal, technical, environmental, and acoustic factors hampering
image clarity and data acquisition to eventually establish precise antenatal diagnoses.

Current research approaches regarding the clinical applicability of artificial intelligence
(AI)-assisted methods in the context of fetal neurosonography (beyond the first trimester)
are heterogeneous and, with a few exceptions, software solutions that are of use in clinical
routine are rather rare. However, several promising research topics in this field have
emerged. These mainly include (among others) the optimized (automated) acquisition of
standard 2D planes with the correct orientation and localization within a 3DUS volume,
a simplified workflow, the automated recognition of crucial CNS and bony structures (as
landmarks) and the subsequent detection of anomalies, the evaluation of image quality
and the assessment of GA by evaluating neurodevelopmental maturation [10–14].

This review aims to summarize our current knowledge about the potential diagnostic
targets for AI algorithms in the assessment of the fetal brain in a clinical context and high-
lights why AI applications are increasingly being integrated into prenatal US interrogations
and their practical added value.

2. AI in Prenatal Diagnosis

In the very recent past, we witnessed a tidal wave of artificial intelligence and its
computational applications in healthcare in general and in medical image analyses in
particular. In 2022, Dhombres et al. published a systematic review regarding the actual
contributions of AI reported in obstetrics and gynecology (OB/GYN) journals. In detail,
most articles covered method/algorithm development (53%, 35/66), hypothesis generation
(42%, 28/66), or software development (3%, 2/66). Validation was performed on one
dataset (86%, 57/66), while no external validation was reported [15].

Machine learning (ML) is a powerful set of computational tools that learn from large
(structured) datasets and train models on descriptive patterns, which subsequently apply
the knowledge acquired to solve the same task in new situations. Although ML algorithms
are presently being widely deployed in medicine, expanding diagnostic and clinical tools
to augment iterative, time-consuming, and resource-intensive processes and streamline
workflows, considerable human supervision is needed. AI models that use deep learning
architectures (DL; a subdomain of ML), which predominantly leverage large-scale neural
networks mimicking silicon circuit synapses, tend to outperform traditional machine
learning methods in complex tasks and constitute the most suitable methodology for image
analysis. Based on a detailed scoping review dealing with the most-cited papers using DL
in the literature from 2015 to 2021, the number of surveyed publications on segmentation,
detection, classification, registration, and characterization tasks comprised 30, 20, 30, 10,
and 10 percent, respectively [16]. It is of note that the quality of obstetric US screening
images is crucial for clinical downstream tasks, including the assessment of fetal growth
and development, in utero compromising, the prediction of preterm birth, and the detection
of fetal anomalies. It is now widely recognized, by leading US equipment manufacturers
and most of the experts in this field, that there are clear benefits to utilizing AI technologies
for US imaging in prenatal diagnostics. A multitude of convolutional neural network
(CNN)-based AI applications in US imaging have showcased that AI models can achieve a
comparable performance to clinicians in obtaining the appropriate diagnostic image planes,
applying appropriate fetal biometric measurements, and accurately assessing abnormal
fetal conditions [10–13,17,18].
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As accurate head measurements are of crucial importance in prenatal and obstetrical
ultrasound surveillance, a plethora of automatic methods for fetal head analyses have been
proposed. Most studies have focused preferentially on the size and shape of the bony
skull—excluding its internal structures—while solely applying head detection methods
(e.g., object (skull) detection using bounding boxes, segmentation methods ± ellipse fit-
ting, and edge-based and contour-based methods). Torres et al. published an excellent
comprehensive state-of-the-art review tabulating more than 100 published papers on com-
putational methods for fetal head, brain, and standard plane analyses using US images [13].
Moreover, their survey also summarized the image enhancement protocols of US images,
including methods that find the fetal head aligned to a coordinate system, compounding
approaches, and US and multimodal registration methods. The authors provided an ex-
haustive analysis of each method based on its clinical application and theoretical approach
and in their concluding remarks they stated—despite the fact that a multitude of distinct
image processing methods have been developed in the recent past (which mainly comprise
deep learning approaches)—that there is a need for new architectures to boost the perfor-
mance of these methods. A strong database is seen as an indispensable prerequisite, which
reinforces the need for public US benchmarks and for the development of approaches that
deal with limited data (e.g., transfer learning approaches). On the other hand, more effort
should be made in AI research to develop methods to segment the head in 3D images, as
well as methods that can reliably detect abnormalities or (even subtle) lesions within the
fetal brain. Accordingly, Ramirez Zegarra and Ghi suggested an ideal AI setting which
clearly addresses the urgent need for more multitasking DL models that are trained for the
detection of fetal standard planes, the identification of fetal anatomical structures, and the
performance of automatic measurements that in turn will consequently be able to generate
alarm messages in the event of malformations [19].

In fact, in the last decade, several AI-related scientific studies have been conducted to
improve the quality of prenatal diagnoses by focusing on three major issues: (I) the detection of
anomalies, fetal measurements, scanning planes, and the heartbeat; (II) the segmentation of fetal
anatomic structures in still US frames and videos; and (III) the classification of standard fetal
diagnostic planes, congenital anomalies, biometric measures, and fetal facial expressions [20].

Various researchers were able to develop algorithms that were able to reproducibly
quantify biometric parameters with high accuracy. Some of them will be discussed critically
below. On the other hand, quite a number of AI models were trained with inadequate
and/or insufficiently labeled samples, which led to overfitting problems and performance
degradation [14]. ‘All models are wrong, but some are useful’, is an aphorism on the subject
of statistics coined by George E.P. Box more than 50 years ago, and one that describes the
general dilemma in the targeted application of computational modeling approaches and AI
solutions (and not only in the past) [21].

3. AI in Fetal Neurosonography

By adopting experience from the use of automated techniques in fetal cardiac as-
sessments, further refinements in AI algorithms or the development of anomaly specific
learning algorithms could help achieve more granular detections of unique CNS lesions [22].
This has the potential to risk stratifying certain fetal populations. But, as a matter of fact, it
has to be acknowledged that algorithms developed for fetal imaging recognition require a
larger database compared to other AI algorithms, due to the similar appearance of different
US planes [19]. However, it should be noted that the currently available and clinically
approved approaches for the extensive processing of three-dimensional datasets of the fetal
CNS only sparsely exploit the diagnostic potential of volume US. In fact, it is currently
not feasible to perform both simple and more complex tasks simultaneously, such as an
assessment of the total brain volume, rendering the brain surface and slicing and displaying
all diagnostic sectional planes (in accordance with the ISUOG guidelines), in addition to a
multiplanar image display using the same 3D volume (in a vendor-independent manner).
This applies to both conventional tools and AI frameworks and does not appear to be
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readily explainable in the light of the existing scientific literature, with its generally highly
complex AI pipelines. In this regard, developers and engineers, on the one hand, and
clinicians, on the other, should work together more intensively to find relevant integrative
volume-based solutions for clinical routine as quickly as possible.

In 2023, an international research group developed a normative digital atlas of fe-
tal brain maturation based on a prospective international cohort (INTERGROWTH-21st
Project) and using more than 2500 serially acquired 3D fetal brain volumes [23]. In the
preparation of this fully functional digital brain atlas, the authors proposed an end-to-end,
multi-task CNN that both extracts and aligns the fetal brain from original 3D US scans
with a high degree of accuracy and reliability (Brain Extraction and Alignment Network;
BEAN) [24–26]. These steps were necessary (as in most neuroimage analysis pipelines) to
enhance the visibility of the brain structures within the 3D US templates and significantly
reduce the amount of extra-cranial volume information processed and, lastly, overcome
the positional variation of the brain inside the scan volume. From the authors’ perspective,
there is no doubt that the introduction of computerized human body atlases either based
on US or MRI image data (as published earlier by Gholinpour et al. [27]) will contribute to
our understanding of fetal developmental processes in general and brain maturation in
particular by providing rich contextual information of our inherently 3D (CNS) anatomy.

The clinical applicability of semiautomatic volumetric approaches, in terms of a de-
tailed reconstruction of the diagnostic planes of the fetal brain, has been validated in
previous studies [28–30]. Very recently, a 3D UNet-based network for the 3D segmentation
of the entire CNS, using intelligent navigation to locate CNS planes within the 3D volume,
was introduced (fully automated 5DCNS+™). While applying this tool, our group was able
to show that CNS volume datasets (whose acquisition was from an axial transthalamic
plane) could readily be reconstructed into a nine-view template in less than 12 s on average,
facilitating the generation of a complete neurosonogram with high accuracy, efficiency, and
reduced operator-dependency, confirming previous findings.

Lu et al. reported on an automated software (Smart ICV™) that was able to calculate
the entire fetal brain volume retrieved from 3DUS volume data. This novel technique
showed a high intra- and inter-observer intra-class coefficient (0.996 and 0.995, respec-
tively) and high degree of reliability compared to a manual approach using Virtual Organ
Computer-aided AnaLysis (VOCAL™) [31]. An overview of the current AI-driven algo-
rithms with either a clinical or pre-clinical context is given in Table 1.

DL algorithms have become the methodology of choice for imaging analyses [16,18,32,33].
DL models are capable of overcoming US-image-related challenges including inhomo-
geneities, (shadowing) artifacts, poor contrast, intra- and inter-clinician data acquisition,
and measurement variability. Fiorentino and co-workers categorized published work in
the field of fetal US image analysis that used a plethora of different DL algorithms. Their
review surveyed more than 150 research papers to elaborate the most investigated tasks
addressed using DL in this field [18]. The authors could demonstrate that fetal standard
plane (SP) detection (19.6%) and fetal biometry estimations (20.9%) were among the most
prevalent tasks. The fetal CNS and heart were the most explored structures in standard
plane detection, while the fetal head circumference was the most frequently investigated
measurement in biometry estimations. In 49% of papers, researchers trained DL pipelines
for anatomical structure analyses. The most studied anatomical structures were the heart
and brain, contributing to 26.7% and 20.0% of the surveyed papers, respectively. In case
of the latter, the analysis is performed on both 2D and, more recently, 3D images to assess
the brain’s development and localization, structure segmentation, and GA estimation. The
challenges to be addressed regarding AI in image analyses, in general, comprise the limited
availability of (multi-expert) image annotation; the limited robustness of DL algorithms due
to the lack of large training datasets (interestingly, only a minority of DL studies use data
from routine clinical care); the inconsistent use of both performance metrics and testing
datasets, hampering a fair comparison between different algorithms; and the scarcity of
research proposing semi-, weakly, or self-supervised approaches [10,18,32].
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Table 1. Neurosonographic studies related to artificial intelligence.

Reference, Year Country GA (wks) Study Size (n) * Data
Source

Type of
Method

Purpose
/Target Task Description of AI Clinical

Value ***
Rizzo et al.,
2016 [34] I 21 (mean) 120 3D n. s. SFHP (axial)

biometry
automated recognition of

axial planes from 3D volumes 5D CNS software ++

Rizzo et al.,
2016 [35] ** I 18–24 183 3D n. s.

SFHP (axial/
sagittal/coronal)

biometry

evaluation of efficacy in
reconstructing CNS planes in
healthy and abnormal fetuses

5D CNS+ software +++

Ambroise-
Grandjean et al.,
2018 [36]

F 17–30 30 3D n. s. SFHP (axial)
biometry (TT, TC)

automated identification of
axial from 3DUS and

measurement BPD and HC
SmartPlanes CNS ++

Welp et al.,
2020 [30] ** D 15–36 1110 3D n. s.

SFHP (axial/
sagittal/coronal)

biometry

validating of a volumetric
approach for the detailed

assessment of the fetal brain
5D CNS+ software +++

Pluym et al.,
2021 [37] USA 18–22 143 3D n. s. SFHP (axial)

biometry

evaluation of accuracy of
automated 3DUS for fetal
intracranial measurements

SonoCNS software ++

Welp et al.,
2022 [29] ** D 16–35 91 3D n. s. SFHP/anomalies

biometry

evaluation of accuracy and
reliability of a volumetric

approach in abnormal CNSs
5D CNS+ software +++

Gembicki et al.,
2023 [28] ** D 18–36 129 3D n. s.

SFHP (axial/
sagittal/coronal)

biometry

evaluation of accuracy and
efficacy of AI-assisted

biometric measurements of
the fetal CNS

5D CNS+ software,
SonoCNS software ++

Han et al.,
2024 [38] CHN 18–42 642 2D DL

Biometry
(incl. HC, BPD,

FOD, CER, CM, Vp)

automated measurement and
quality assessment of nine

biometric parameters
CUPID software ++

Yaqub et al.,
2012 [39] UK 19–24 30 3D ML multi-structure

detection

localization of four local
brain structures in 3D

US images

Random Forest
Classifier ++

Cuingnet et al.,
2013 [40] UK 19–24 78 volumes 3D ML SFHP

fully automatic method to
detect and align fetal heads

in 3DUS

Random Forest
Classifier,

Template deformation
++

Sofka et al.,
2014 [41] CZ 16–35 2089 volumes 3D ML SFHP

automatic detection and
measurement of structures in

CNS volumes

Integrated Detection
Network (IDN)/FNN +
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Table 1. Cont.

Reference, Year Country GA (wks) Study Size (n) * Data
Source

Type of
Method

Purpose
/Target Task Description of AI Clinical

Value ***

Namburete et al.,
2015 [42] UK 18–34 187 3D ML sulcation/gyration GA prediction Regression Forest

Classifier ++

Yaqub et al.,
2015 [43] UK 19–24 40 3D ML SFHP extraction and categorization

of unlabeled fetal US images
Random Forest

Classifier +

Baumgartner
et al., 2016 [44] UK 18–22 201 2D DL SFHP (TT, TC)

retrieval of standard planes,
creation of saliency maps to
extract bounding boxes of

CNS anatomy

CNN +++

Sridar et al.,
2016 [45] IND 18–20 85 2D DL structure detection

image classification and
structure localization in

US images
CNN +

Yaqub et al.,
2017 [46] UK 19–24 40 3D DL SFHP,

CNS anomalies
localization of CNS, structure

detection, pattern learning
Random Forest

Classifier +

Qu et al., 2017 [47] CHN 16–34 155 2D DL SFHP automated recognition of six
standard CNS planes

CNN,
Domain Transfer

Learning
++

Namburete et al.,
2018 [25] UK 18–34 739 images 2D/3D DL structure detection

3D brain localization,
structural segmentation

and alignment
multi-task CNN ++

Huang et al.,
2018 [48] CHN 20–29 285 3D DL multi-structure

detection

detection of CNS structures
in 3DUS and measurements

of CER/CM
VP-Net ++

Huang et al.,
2018 [49] UK 20–30 339 images 2D DL structure detection

(CC/CP)
standardize intracranial

anatomy and measurements
Region descriptor,
Boosting classifier ++

van den Heuvel
et al., 2018 [50] NL 10–40 1334 images 2D ML biometry (HC) automated measurement of

fetal head circumference

Random Forest
Classifier

Hough transform
+

Dou et al.,
2019 [51] CHN 19–31 430 volumes 3D ML SFHP/structure

detection

automated localization of
fetal brain standard planes

in 3DUS

Reinforcement
learning ++
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Table 1. Cont.

Reference, Year Country GA (wks) Study Size (n) * Data
Source

Type of
Method

Purpose
/Target Task Description of AI Clinical

Value ***

Sahli et al.,
2019 [52] TUN n/a 86 2D ML SFHP

automated extraction of
biometric measurements and

classification of
normal/abnormal

SVM Classifier ++

Alansary et al.,
2019 [53] UK n/a 72 3D ML/DL SFHP/structure

detection
localization of target

landmarks in medical scans

Reinforcement
learning

deep Q-Net
+

Lin et al., 2019 [54] CHN 14–28 1771 images 2D DL SFHP/structure
detection

automated localization of six
landmarks and quality

assessments
MF R-CNN +

Bastiaansen et al.,
2020 [55] NL 1st trimester 30 2D/3D DL SFHP (TT)

fully automated spatial
alignment and segmentation
of embryonic brains in 3D US

CNN +

Xu et al., 2020 [56] CHN 2nd/3rd
trimester 3000 images 2D DL SFHP simulation of realistic 3rd-

from 2nd-trimester images Cycle-GAN ++

Ramos et al.,
2020 [57] MEX n/a 78 images 2D DL

SFHP
biometry (TC)
GA prediction

detection and localization of
cerebellum in US images,

biometry for GA prediction
YOLO +

Maraci et al.,
2020 [58] UK 2nd trim 8736 images 2D DL biometry (TC)

GA prediction

estimation of GA through
automatic detection and
measurement of the TCD

CNN +

Chen et al.,
2020 [59] CHN n/a 2900 images 2D DL SFHP

biometry (TV)

demonstrate the superior
performance of DL pipeline
over manual measurements

Mask R-CNN
ResNet50 +

Xie et al., 2020 [60] CHN 18–32 92,748 2D DL SFHP (TV, TC)
CNS anomalies

image classification as
normal or abnormal,

segmentation of
craniocerebral regions

U-Net
VGG-Net ++
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Table 1. Cont.

Reference, Year Country GA (wks) Study Size (n) * Data
Source

Type of
Method

Purpose
/Target Task Description of AI Clinical

Value ***

Xie et al., 2020 [61] CHN 22–26 12,780 2D DL SFHP,
CNS anomalies

binary image classification as
normal or abnormal in
standard axial planes

CNN ++

Zeng et al.,
2021 [62] CHN n/a 1354 images 2D DL biometry image segmentation for

automatic HC biometry DAG V-Net +

Burgos Artizzu
et al., 2021 [63] ESP 16–42 12,400 images

(6041 CNS) 2D DL/ML SFHP

evaluation of the maturity of
current DL classifications

tested in a real
clinical environment

19 different CNNs
MC Boosting

algorithm
HOG classifier

++

Gofer et al.,
2021 [64] IL 12–14 80 images 2D ML SFHP/structure

detection (CP)

classification of 1st trimester
CNS US images and earlier

diagnosis of fetal
brain abnormalities

Statistical Region
Merging

Trainable Weka
Segmentation

+

Skelton et al.,
2021 [65] UK 20–32 48 2D/3D DL SFHP

assessment of image quality
of CNS planes automatically
extracted from 3D volumes

Iterative
Transformation
Network (ITN)

++

Fiorentino et al.,
2021 [66] I 10–40 1334 images 2D DL biometry (HC) head localization

and centering multi-task CNN ++

Yeung et al.,
2021 [67] UK 18–22 65 volumes 2D/3D DL SFHP/structure

detection

mapping 2D US images into
3D space with

minimal annotation
CNN

Montero et al.,
2021 [68] ESP 18–40 8747 images 2D DL SFHP

generation of synthetic US
images via GANs and

improvement of
SFHP classification

Style-GAN ++

Moccia et al.,
2021 [69] I 10–40 1334 images 2D DL biometry (HC) fully automated method for

HC delineation Mask-R2CNN +

Wyburd et al.,
2021 [70] UK 19–30 811 images 3D DL structure detection/

GA prediction
automated method to predict
GA by cortical development

VGG-Net
ResNet-18
ResNet-10

++
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Table 1. Cont.

Reference, Year Country GA (wks) Study Size (n) * Data
Source

Type of
Method

Purpose
/Target Task Description of AI Clinical

Value ***

Shu et al.,
2022 [71] CHN 18–26 959 images 2D DL SFHP (TC)

automated segmentation of
the cerebellum, comparison

with other algorithms
ECAU-Net +

Hesse et al.,
2022 [72] UK 18–26 278 images 3D DL structure detection automated segmentation of

four CNS landmarks CNN +++

Di Vece et al.,
2022 [73] UK 20–25 6 volumes 2D DL SFHP/structure

detection
estimation of the 6D pose of

arbitrarily oriented US planes ResNet-18 ++

Lin et al., 2022 [74] CHN 18–40 16,297/166 2D DL structure detection
detection of different patterns

of CNS anomalies in
standard planes

PAICS
YOLOv3 +++

Sreelakshmy et al.,
2022 [75] ‡ IND 18–20 740 images 2D DL biometry (TC) cerebellum segmentation

from fetal brain images ResU-Net -

Yu et al., 2022 [56] CHN n/a 3200 images 2D/3D DL SFHP

automated generation of
coronal and sagittal SPs from

axial planes derived
from 3DVol

RL-Net ++

Alzubaidi et al.,
2022 [76] QTAR 18–40 551 2D DL biometry (HC) GA and EFW prediction

based on fetal head images
CNN, Ensemble

Transfer Learning ++

Coronado-
Gutiérrez et al.,
2023 [77]

ESP 18–24 12,400 images 2D DL
SFHP,

multi-structure
delineation

automated measurement of
brain structures DeepLab CNNs ++

Ghabri et al.,
2023 [20] TN n/a 896 2D DL SFHP classify fetal planes/accurate

fetal organ classification CNN: DenseNet169 ++

Lin et al., 2023 [78] CHN n/a 558 (709 (im-
ages/videos) 2D DL SFHP

improved detection efficacy
of fetal intracranial

malformations

PAICS
YOLO +++
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Table 1. Cont.

Reference, Year Country GA (wks) Study Size (n) * Data
Source

Type of
Method

Purpose
/Target Task Description of AI Clinical

Value ***

Rauf et al.,
2023 [79] PK n.s. n.s. 2D DL SFHP

Bayesian optimization for the
classification of brain and

common maternal fetal
ultrasound planes

Bottleneck residual
CNN +

Alzubaidi et al.,
2023 [80] QTAR 18–40 3832 images 2D DL SFHP

evaluation of a large-scale
annotation dataset for head

biometry in US images
multi-task CNN +

Alzubaidi et al.,
2024 [81] QTAR 18–40 3832 images

(20,692 images) 2D DL biometry

advanced segmentation
techniques for

head biometrics
in US imagery

FetSAM
Prompt-based

Learning
+

Di Vece et al.,
2024 [82] UK 20–25 6 volumes 2D/3D DL SFHP (TV)

detection and segmentation
of the brain; plane pose

regression; measurement of
proximity to target SP

ResNet-18 ++

Yeung et al.,
2024 [83] UK 19–21 128,256 images 2D DL SFHP

reconstruction of brain
volumes from freehand 2D

US sequences

PlaneInVol
ImplicitVol ++

Dubey et al.,
2024 [84] IND 10–40 1334 images 2D DL biometry (HC)

automated head
segmentation and
HC measurement

DR-ASPnet,
Robust Ellipse Fitting ++

Clinically validated (and commercially available) software in gray shaded rows. Abbreviations: 2D, two dimensional; 3D, three dimensional; BPD, biparietal diameter; CER, cerebellum;
CNN, convolutional neural network; CNS, central nervous system; CP, choroid plexus; CSP, cavum septum pellucidum; DL, deep learning; FOD, fronto-occipital diameter; GA,
gestational age; GAN, generative adversarial network; HC, head circumference; LV, lateral ventricles; n/a, not applicable; n.s., not specified; PAICS, prenatal ultrasound diagnosis
artificial intelligence conduct system; ResNet, residual neural network; SFHP, standard fetal head plane; SVM, support vector machine; TC, transcerebellar plane; TV, transventricular
plane; TT, transthalamic plane; US, ultrasound; Vp, width of the posterior horn of the lateral ventricle; YOLO, You Only Look Once algorithm; * if not otherwise specified: number of
patients; ** fully automated AI-driven software update has been released; *** potential clinical impact; ‡ withdrawn article.
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3.1. AI in GA Prediction

Reliable methods for accurate GA estimations in the second and third trimester of
pregnancy remain an unsolved challenge in obstetrics. This might be due to late booking,
infrequent access to prenatal care, the unavailability of early US examinations, and other
reasons [63]. Namburete et al. introduced a model which was able to characterize neu-
roanatomical appearance, both spatially and temporally, while identifying relevant brain
regions, such as the Sylvian fissure and the cingulate and callosal sulci, as important image
regions in the GA discrimination task [42]. The authors additionally extended this to clini-
cally relevant metadata like the head circumference’s canonical feature set (e.g., Haar-like
features) to capture structural changes within the fetal brain. The algorithm improved
the confidence of age predictions provided by the clinical HC method by ±0.64 days and
±4.57 days in the second and third trimesters, respectively. A similar approach estimates
GA from standard transthalamic axial plane images using a supervised DL model (quan-
tusGA) that automatically detects the position and orientation of the fetal brain by detecting
the skull and five internal key points (it is necessary to crop and rotate the brain, resulting in
a horizontally aligned brain image). The model then extracts textural and size information
from the brain pixels and uses this information to generate an estimate of the respective
GA, with a similar or even lower error compared to fetal biometric parameters, especially
in the third trimester [63]. AI models are capable of the estimation of GA with an accuracy
comparable to that of trained sonographers conducting a standard fetal biometry (e.g., the
fetal head), as the results of a recent study suggest. The authors trained a DL algorithm to
estimate GA from blind US sweeps and showed that the model’s performance appears to
extend to blind sweeps collected by untrained providers in low-resource settings [84]. Simi-
lar results were demonstrated by two groups, where ML-based algorithms outperformed
current ultrasound-based clinical biometry in GA prediction, with a mean absolute error of
3.0 and 4.3 days [85] or 1.51 days (using an ensemble model of both unlabeled images and
video data) in second- and third-trimester fetuses [86].

3.2. AI Used for Augmenting Fetal Pose Estimations and CNS Anomaly Assessments

In the recent past, CNNs and other deep learning architectures were trained to rec-
ognize and predict fetal poses from imaging data [25,66,87,88]. In contrast to already
established methods, which were mainly designed for standard plane identification, as-
suming that a good US image quality had already been achieved with the fetus in a proper
position, and, therefore, only used to assist in prenatal image analyses, a study group from
the UK recently emphasized the utility of recognizing the probe’s proximity to diagnostic
CNS planes, facilitating earlier and more precise adjustments during 2D US scanning. This
semi-supervised segmentation and classification model used an 18-layer residual CNN
(ResNet-18) that was trained on both labeled standard planes and unlabeled 3D US volume
slices to filter out frames lacking the brain and to generate masks for those containing it,
enhancing the relevance of plane pose regression in a clinical setting [81]. In a previous
study, the authors applied a similar 18-layer residual CNN as the backbone for feature
extraction (with pre-trained ImageNet weights) and 6D pose prediction (which refers to the
task of determining the sixth degree-of-freedom pose of an object in 3D space) of arbitrarily
oriented planes, slicing the fetal brain’s US volume without the need for ground truth data
in real time or 3D volume scans of the fetus beforehand [72].

Yeung and colleagues proposed an algorithm for the more general task of predicting
the location of any arbitrary 2D US plane of the fetal brain in a pre-defined 3D space [66]. In
their work, they demonstrated that, based on extensive data augmentation and complemen-
tary information from training volumes acquired at different orientations, the prediction
made by a novel CNN model was generalizable to real 2D US acquisitions and videos,
despite the model having only been trained with artificially sampled 2D slices. Considering
that 3D volumes provide more effective spatial information and exhibit higher degrees
of freedom (DoF), increased variations in fetal poses make the proper education of these
algorithms challenging. In fact, 6D fetal pose estimation refers to the process of determining
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the six degrees of freedom (6DoF) position including three translational (position) and
three rotational (orientation) parameters, allowing for a comprehensive understanding
of the fetus’s spatial position in a coordinate system and movement in utero. The study
conducted by Chen and co-workers dealt with a similar topic—fetal pose estimations in
3D US. The authors introduced a novel 3D fetal pose estimation framework (FetusMapV2)
which was able to identify a set of 22 anatomical landmarks for first- and early second-
trimester fetuses, and their specific connections, to provide a comprehensive and systematic
representation of the fetal pose in 3D space and to overcome challenging issues such as
poor image quality, limited GPU memory for tackling high-dimensional data, symmetrical
or ambiguous anatomical structures, and considerable variations in fetal poses [87].

Xu and co-workers trained a DL algorithm (a cycle-consistent adversarial network
(Cycle-GAN)) to simulate realistic fetal neurosonography images and specifically to gen-
erate third-trimester US images from second-trimester images that were qualitatively
evaluated by experienced sonographers [56]. The vast majority (84.2%) of the simulated
third-trimester images could not be distinguished from real third-trimester images in this
study. These generative adversarial networks (GANs), first introduced by Goodfellow et al.
in 2014, are algorithmic architectures that use two neural networks, which compete against
each other and learn to generate new, synthetic instances of data, with a probabilistic model,
that can pass for real data/images, augmenting existing datasets for training DL mod-
els [89,90]. Generative approaches can better handle missing data in multi-modal datasets
by generating the missing image information and preserving the sample size, thereby
boosting downstream classification performances [91,92]. GANs might also assist in ana-
lyzing abnormal fetal anatomical structures (e.g., CNS anomalies) while also considering
the corresponding GA information (there are a wide range of physiological changes among
trimesters leading to marked inter- and intra-organ variability) [18]. A recent research
paper introduced a state-of-the-art framework (FetalBrainAwareNet) that leverages an
image-to-image translation algorithm and utilizes class activation maps (CAMs) as prior
information in its conditional adversarial training process, making it capable of producing
more realistic synthetic images, resulting, according to the authors, in a greater clinical
relevance than similar experimental approaches [56,67,93,94]. The uniqueness of this ap-
proach was the incorporation of anatomy-aware regularization terms—one ensuring the
generation of elliptical fetal skulls, while another was crucial for refining and distinctly
differentiating key anatomical landmarks (e.g., cerebellum, thalami, cavum septi pellucida,
lateral ventricles)—in each particular fetal head standard plane (FHSP).

In US imaging, the presence of speckle noise degrades the signal-to-noise of US im-
ages; traditional image denoising algorithms often fail to fully reduce speckle noise and
retain the image’s features. A recently proposed GAN based on U-Net with residual dense
connectivity (GAN-RW) achieved the most advanced despeckling performance on US
images (e.g., of the fetal head) in terms of its peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and subjective visual effect [95]. Yeung et al. proposed a novel framework
(ImplicitVol), a sensor-free approach to reconstructing 3D US volumes from a sparse set
of 2D images with deep implicit representation. The authors stated that their algorithm
outperformed conventional approaches in terms of the image quality of the reconstructed
template, as well as the refinement of its spatial 3D localization, which underscored its ad-
ditional potential in slice-to-volume registration [82]. The latter refers to the vital technique
in medical imaging that transforms 2D slices into a cohesive 3D volume, thereby enhancing
our ability to visualize and analyze complex anatomical structures, leading to optimized
diagnostic (and therapeutic) outcomes. The same group introduced a multilayer perceptron
network (RapidVol) to speed up slice-to-volume ultrasound reconstruction following a
tri-planar decomposition of original 3D brain volumes and were able to demonstrate a
threefold quicker and 46% more accurate complete 3D reconstruction of the fetal brain
(collected as part of the INTERGROWTH-21st study) compared to the aforementioned
implicit approach [96].
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Lin et al. developed a real-time artificial intelligence-aided image recognition system
based on the YOLO (You Only Look Once) algorithm (prenatal ultrasound diagnosis
artificial intelligence conduct system; PAICS) which was capable of detecting a set of fetal
intracranial malformations. The algorithm was trained on 44,000 images and 169 videos
and achieved an excellent performance upon both internal and external validation, with
an accuracy comparable to that of expert sonologists [73]. The same group conducted a
randomized control trial that assessed the efficacy of a deep learning system (PAICS) in
assisting in fetal intracranial malformation detection. More than 700 images/videos were
interactively assessed by 36 operators with different levels of expertise. With the use of
PAICS (prior or after individual interpretation) an increase in the detection rates of fetal
intracranial malformations from neurosonographic data could be noticed [77].

3.3. Other Current AI Applications Related to Fetal Neurosonography

The recent and rapidly emerging subfield of AI that concerns the interaction between
computers and human language is known as natural language processing (NLP). The
launch of the chatbot ChatGPT-3, a large language model (LLM), in 2022, which is based
on an NLP model known as the Generative Pretrained Transformer (GPT), has generated a
wide range of possible applications for AI in healthcare [97–99]. Therefore, beyond the field
of (often cited) scientific writing, identifying suitable areas of its application in obstetrics
and gynecology, including fetal neurosonography, is obvious. It is crucial to understand
that ChatGPT, which is trained on massive amounts of text data, mimics statistical patterns
of human language and generates outputs based on probabilities, thus emulating the dy-
namics of human conversation [97,98,100,101]. Before addressing the potential applications
of ChatGPT in the context of fetal neurosonography, two fundamental, capability-limiting
aspects must be kept in mind and must never be ignored in the interpretation of the subse-
quent discussion: Although ChatGPT should increasingly become capable of generating
meaning-semblant behavior, its technology currently lacks semantic understanding [102].
Be aware of hallucinations and fabricated facts [98]. Furthermore, its generated content
suffers from an absence of verifiable references [99–101].

Most recently, the latest version of ChatGPT (GPT-4) has been evaluated for its ability
to facilitate referrals for fetal echocardiography to improve the early detection of and
outcomes related to congenital heart defects (CHDs) [103]. Kopylov et al. found moderate
agreement between ChatGPT and experts. Comparing AI referrals to experts indicated an
agreement of around 80% (p < 0.001). For minor CHD cases, the AI referral rate was 65%
compared to 47% for experts. In future, AI could presumably support clinicians in this area.

A similar approach would be conceivable for fetal neurosonography, as would the
implementation of language-based AI to support in summarizing the findings and opti-
mizing the wording of complex medical reports, or even in the classification of various
sonographic CNS abnormalities into corresponding disease entities with differential di-
agnoses. In summary, ChatGPT cannot be used independently of experts in the field of
fetal neurosonography and certainly will not replace them [100,104]. We agree with other
authors that it is unlikely that ChatGPT, even in improved versions, will ever be able
to provide reliable data at the standard required by evidence-based medicine [100,105].
However, repetitive, time-consuming tasks and conclusions made in clinical routine will
soon be left to this chatbot.

4. Perspectives

AI-based applications, on whose algorithms prenatal diagnostics will increasingly
depend, are fundamentally changing the way clinicians use US. Even if the development
of AI-based applications in obstetric US is still in its infancy and automation has not yet
reached the required level of clinical application, sometime soon the use of AI in fetal
neurosonography will exceed the capabilities of human experts, as in other fields of fetal
US [11,14].
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A recently published paper introduced a novel approach that parameterizes 3D vol-
ume data using a deep neural network, which jointly refines the 2D-to-3D registrations and
generates a full 3D reconstruction based on only a set of non-sensor-tracked freehand 2D
scans [82].

Unfortunately, the black box nature of most machine learning models remains unre-
solved, and many decisions intelligent systems make still lack interpretable explanations.
Explainable AI (XAI) is considered to provide methods, equations, and tools that make
the results generated by an AI algorithm comprehensible for the user. By providing visual
and feature-based explanations, XAI enhances the transparency and trustworthiness of AI
predictions and could thus pave the way for the initial uptake of an AI model into clinical
routine [106]. In this regard, a recent study analyzed the performance of several CNNs
trained on 12,400 images of fetal (CNS) plane detection, after input (image) enhancement, by
adopting a Histogram Equalization and Fuzzy Logic-based contrast enhancement. The re-
sults achieved an accuracy between 83.4 and 90% (depending on the classifier analyzed) and
were subsequently evaluated by applying the LIME (Local Interpretable Model-Agnostic
Explanations) and GradCAM (Gradient-weighted Class Activation Mapping) algorithms
to examine the decision-making process of the classifiers, providing explainability for their
outputs [107]. These XAI models visually depict the region of the image contributing to a
particular class, thereby justifying why the model predicted that class [108]. Very recently,
Pegios and co-workers used iterative counterfactual explanations to generate realistic
high-quality CNS standard planes from low-quality non-standard ones. Using their experi-
mental approach (Diff-ICE), they demonstrated its superior value in the challenging task of
fetal ultrasound quality assessments, as well as its potential for future applications [109].
To alleviate the risks of incomprehensibility and—more crucially—clinical irrelevance in
forthcoming research, two publications proposed directive guidelines for transparent ML
systems in medical image analyses (INTRPRT/Clinical XAI Guidelines) [110,111]. Inter-
estingly, all sixteen commonly used heatmap XAI techniques evaluated by Jin et al. were
found to be insufficient for clinical use due to their failure in the criteria of ‘truthfulness’
and ‘plausibility’ [111].

Acknowledging the recent achievements of AI in medical image analyses, Sendra-
Balcells and co-workers addressed the paradox that is that the development of AI in rural
areas in the world, like in Sub-Saharan Africa, is at its lowest level, while, on the other hand,
current AI advancements include deep learning implementations in prenatal US diagnoses,
which can facilitate improved antenatal screening. In this regard, they investigated the
generalizability of fetal US deep learning models to low-resource imaging settings [112].
The authors pre-trained a DL framework for standard plane detection (e.g., the fetal brain)
in centers with greater access to large clinical imaging datasets and subsequently applied
this model to African settings. The results gained from transfer learning exemplify that
domain adaptation might be a solution that supports prenatal care in low-income countries.

As a recent commentary given by Tonni and Grisolia correctly stated, we will inevitably
have to face that the incorporation of AI solutions into the US apparatus will start to surge
exponentially in the near future, producing beneficial effects not only in terms of diagnostic
accuracy but also in the quality of fetal examination in its entirety, including the appropriate
surveying of complex anatomical structures (e.g., the fetal CNS and heart), the reporting
of these exams, and improving medical–legal issues for physicians involved in both fetal
imaging and fetomaternal care [113].

5. Discussion

Our focusing review provides insights into both the current research topics and clinical
applications of AI-based algorithms related to the field of fetal neurosonography and sheds
light on how recent advancements in AI, and particularly cutting-edge technologies like
GANs, segmentation-based approaches, XAI tools, and others, could further enhance the
US image analysis of the fetal CNS. The strength of our review is the exclusive inclusion of
publications addressing the state of the art of AI-driven methods for the US assessment
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of the fetal brain to enable clinicians to contextualize these applications in their clinical
workup, illustrate potential pitfalls, and outline future avenues of fetal neurosonography
to pursue. In fact, AI-driven models showcased how the accuracy, workflow efficiency,
and interpretability of US imaging can be improved, which in turn might contribute to
an earlier and more precise detection of fetal brain anomalies in utero. Prospectively,
DL frameworks could be trained to detect structural abnormalities of the fetal brain, to
label the type of malformation observed in diagnostic standard planes, and to generate
alerts to prompt prenatal diagnoses. While 2D US remains the primary diagnostic tool
for fetal neurosonography and (sequences of) 2D cross-sectional views of inherently 3D
neuroanatomic structures are used to train AI algorithms, one must acknowledge a con-
siderable loss of conceptional image information. The image data retrieved from 3D US
with multiplanar reconstruction can complement conventional 2D US and overcome the
limitations of the latter. Due to the well-described barriers (e.g., a lack of familiarity with
volume postprocessing and skilled manual navigation) to the routine use of 3D US in
prenatal diagnoses, recent advances in 3D imaging have focused on the implementation
of intelligent algorithms for the automated extraction of data from 3D volume datasets.
Several publications demonstrated the superior value of AI tools in facilitating a rapid,
easier, and less operator-dependent 3D volume analysis of fetal CNS anatomy. Alterna-
tively, it has been shown that 3D volumes can be effectively constructed from 2D scans
by applying ML/DL approaches. The inherent advantages of DL-based slice-to-volume
(or 2D/3D) registration techniques comprise a fully automated alignment and transfer
of spatial information between subjects and imaging modalities and the ability to correct
for motion and misaligned slices when reconstructing the volume of a certain modality.
In this regard, an interesting approach for the fetal 6D pose estimation of cutting planes
(relative to the fetal brain center) or the recently released normative brain atlas, which
apply comparable AI pipelines to enhance the visibility of the fetal CNS in 3D US images,
must be mentioned, as these underscore the tremendous educational potential of these
algorithms. Our capability to make AI-augmented assessments of fetal brain maturation
also allows for GA estimations using CNS image data with high accuracy, exemplifying its
clinical value in low-resource obstetrical settings.

However, there are several limitations to this review article. The selection of the
included studies was based on the authors’ subjective assessment of the methodology,
diagnostic relevance, and potential of the innovative AI algorithms described therein to
be integrated into (future) clinical workflows. Although we were able to address the
advantages of particular promising AI approaches and their added value, an in-depth
comparison was not possible due to the heterogeneity of these models and would go
beyond the scope of this review.

6. Conclusions

AI has increasingly been accepted as a fundamental component of a multitude of
healthcare applications, such as medical image analyses. In light of this inevitable and
intriguing flooding of intelligent algorithms into modern US diagnostics, nothing less than
the beginning of a new era of 5D ultrasound has been proclaimed. However, there are
several challenges to AI’s deployment, particularly in fetal neurosonography, that must be
solved: the need for large and diverse training datasets (2D/3D) in general; the difficulty
of training accurate models for diagnosing evolving fetal brain abnormalities; the potential
for algorithmic biases; the urgent need to address the troubling lack of transparency and
interpretability of current AI algorithms to achieve their further translation into clinical
diagnostic circuits and to avoid a reluctance to use AI models which seemingly only
demonstrate a benefit on the optimal patient; and the seamless integration of AI models into
diagnostic workflows, which requires careful consideration of ethical and legal implications,
as well as the need for rigorous validation studies to ensure the safety and efficacy of
AI applications.
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However, it remains to be seen how fast and in what manner promising techniques like
6D fetal pose estimation, slice-to-volume registration tools, and the real-time recognition of
normal and abnormal CNS anatomy, to name a few, will be integrated into clinical practice
and medical education, alongside the continued advancement of the current, already
commercialized AI frameworks.
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