Acromegaly: The Relationship between Hemodynamic Profiles Assessed via Impedance Cardiography and Left Ventricular Systolic Function Assessed via Echocardiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Examination and Blood Chemistry
2.3. Study Population
2.4. Echocardiographic Assessment
2.5. Impedance Cardiography
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Relationship between Echocardiographic Parameters of LV Systolic Function and Hemodynamic Parameters Assessed with ICG
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleseriu, M.; Langlois, F.; Lim, D.S.T.; Varlamov, E.V.; Melmed, S. Acromegaly: Pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol. 2022, 10, 804–826. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Pivonello, R.; Galderisi, M.D.; Errico, A.; Spinelli, L.; Lupoli, G.; Lombardi, G.; Colao, A. Cardiovascular complications in acromegaly: Methods of assessment. Pituitary 2001, 4, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Pivonello, R.; Grasso, L.F.; Auriemma, R.S.; Galdiero, M.; Savastano, S.; Lombardi, G. Determinants of cardiac disease in newly diagnosed patients with acromegaly: Results of a 10 year survey study. Eur. J. Endocrinol. 2011, 165, 713–721. [Google Scholar] [CrossRef] [PubMed]
- López-Velasco, R.; Escobar-Morreale, H.F.; Vega, B.; Villa, E.; Sancho, J.M.; Moya-Mur, J.L.; García-Robles, R. Cardiac involvement in acromegaly: Specific myocardiopathy or consequence of systemic hypertension? J. Clin. Endocrinol. Metab. 1997, 82, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Koca, H.; Koc, M.; Sumbul, H.E.; Icen, Y.K.; Gulumsek, E.; Koca, F.; Ozturk, H.A.; Baykan, A.O.; Kaypakli, O. Subclinical Left Atrial and Ventricular Dysfunction in Acromegaly Patients: A Speckle Tracking Echocardiography Study. Arq. Bras. Cardiol. 2022, 118, 634–645. [Google Scholar] [CrossRef]
- Di Bello, V.; Bogazzi, F.; Di Cori, A.; Palagi, C.; Delle Donne, M.G.; Gavioli, S.; Talini, E.; Cosci, C.; Sardella, C.; Tonti, G.; et al. Myocardial systolic strain abnormalities in patients with acromegaly: A prospective color Doppler imaging study. J. Endocrinol. Investig. 2006, 29, 544–550. [Google Scholar] [CrossRef]
- Jurcut, R.; Găloiu, S.; Florian, A.; Vlădaia, A.; Ioniţă, O.R.; Amzulescu, M.S.; Baciu, I.; Popescu, B.A.; Coculescu, M.; Ginghina, C. Quantifying subtle changes in cardiovascular mechanics in acromegaly: A Doppler myocardial imaging study. J. Endocrinol. Investig. 2014, 37, 1081–1090. [Google Scholar] [CrossRef]
- Vitale, G.; Pivonello, R.; Lombardi, G.; Colao, A. Cardiac abnormalities in acromegaly. Pathophysiology and implications for management. Treat. Endocrinol. 2004, 3, 309–318. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Vadera, N.; Yandrapalli, S.; Frishman, W.H. Acromegalic Cardiomyopathy: An Overview of Risk Factors, Clinical Manifestations, and Therapeutic Options. Cardiol. Rev. 2018, 26, 307–311. [Google Scholar] [CrossRef]
- Popielarz-Grygalewicz, A.; Stelmachowska-Banaś, M.; Gąsior, J.S.; Grygalewicz, P.; Czubalska, M.; Zgliczyński, W.; Dąbrowski, M.; Kochman, W. Subclinical left ventricular systolic dysfunction in patients with naive acromegaly—Assessment with two-dimensional speckle-tracking echocardiography: Retrospective study. Endokrynol. Pol. 2020, 71, 227–234. [Google Scholar] [CrossRef]
- Uziȩbło-Życzkowska, B.; Jurek, A.; Witek, P.; Zieliński, G.; Gielerak, G.; Krzesiński, P. Left Heart Dysfunction in Acromegaly Revealed by Novel Echocardiographic Methods. Front. Endocrinol. 2020, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, T.; Kariya, T.; Yamada, K.P.; Miyashita, S.; Bikou, O.; Tharakan, S.; Fish, K.; Ishikawa, K. Impaired left ventricular global longitudinal strain is associated with elevated left ventricular filling pressure after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1474–H1481. [Google Scholar] [CrossRef] [PubMed]
- Jurek, A.; Krzesiński, P.; Gielerak, G.; Witek, P.; Zieliński, G.; Kazimierczak, A.; Wierzbowski, R.; Banak, M.; Uziębło-Życzkowska, B. Acromegaly: The Research and Practical Value of Noninvasive Hemodynamic Assessments via Impedance Cardiography. Front. Endocrinol. 2022, 12, 793280. [Google Scholar] [CrossRef] [PubMed]
- Silva Lopes, B.; Craveiro, N.; Firmino-Machado, J.; Ribeiro, P.; Castelo-Branco, M. Hemodynamic differences among hypertensive patients with and without heart failure using impedance cardiography. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719876517. [Google Scholar] [CrossRef]
- Bour, J.; Kellett, J. Impedance cardiography: A rapid and cost-effective screening tool for cardiac disease. Eur. J. Intern. Med. 2008, 19, 399–405. [Google Scholar] [CrossRef]
- Chen, S.J.; Gong, Z.; Duan, Q.L. Evaluation of heart function with impedance cardiography in acute myocardial infarction patients. Int. J. Clin. Exp. Med. 2014, 7, 719–727. [Google Scholar]
- Krzesiński, P.; Gielerak, G.; Kowal, J. Kardiografia impedancyjna—Nowoczesne narzedzie terapii monitorowanej chorób układu krazenia [Impedance cardiography—A modern tool for monitoring therapy of cardiovascular diseases]. Kardiol. Pol. 2009, 67, 65–71. (In Polish) [Google Scholar] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Katznelson, L.; Laws, E.R., Jr.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A. Endocrine Society. Acromegaly: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Voigt, J.U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, V.; Isakson, S.; Bhalla, M.A.; Lin, J.P.; Clopton, P.; Gardetto, N.; Maisel, A.S. Diagnostic Ability of B-Type Natriuretic Peptide and Impedance Cardiography: Testing to Identify Left Ventricular Dysfunction in Hypertensive Patients. Am. J. Hypertens. 2005, 18 Pt 2, 73S–81S. [Google Scholar] [CrossRef] [PubMed]
- Parrott, C.W.; Burnham, K.M.; Quale, C.; Lewis, D.L. Comparison of Changes in Ejection Fraction to Changes in Impedance Cardiography Cardiac Index and Systolic Time Ratio. Congest. Heart Fail. 2004, 10 (Suppl. 2), 11–13. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Abraham, W.T.; Mehra, M.R.; Yancy, C.W.; Lawless, C.E.; Mitchell, J.E.; Smart, F.W.; Bijou, R.; O’Connor, C.M.; Massie, B.M.; et al. Prospective Evaluation and Identification of Cardiac Decompensation by ICG Test (PREDICT) Study Investigators and Coordinators. Utility of Impedance Cardiography for the Identification of Short-Term Risk of Clinical Decompensation in Stable Patients With Chronic Heart Failure. J. Am. Coll. Cardiol. 2006, 47, 2245–2252. [Google Scholar] [CrossRef]
- Topaloglu, O.; Sayki Arslan, M.; Turak, O.; Ginis, Z.; Sahin, M.; Cebeci, M.; Ucan, B.; Cakir, E.; Karbek, B.; Ozbek, M.; et al. Three noninvasive methods in the evaluation of subclinical cardiovascular disease in patients with acromegaly: Epicardial fat thickness, aortic stiffness and serum cell adhesion molecules. Clin. Endocrinol. 2014, 80, 726–734. [Google Scholar] [CrossRef]
- Wolters, T.L.C.; Netea, M.G.; Riksen, N.P.; Hermus, A.R.M.M.; Netea-Maier, R.T. Acromegaly, inflammation and cardiovascular disease: A review. Rev. Endocr. Metab. Disord. 2020, 21, 547–568. [Google Scholar] [CrossRef]
- Giustina, A.; Barkan, A.; Beckers, A.; Biermasz, N.; Biller, B.M.K.; Boguszewski, C.; Bolanowski, M.; Bonert, V.; Bronstein, M.D.; Casanueva, F.F.; et al. A Consensus on the Diagnosis and Treatment of Acromegaly Comorbidities: An Update. J. Clin. Endocrinol. Metab. 2020, 105, dgz096. [Google Scholar] [CrossRef]
- Maffei, P.; Dassie, F.; Wennberg, A.; Parolin, M.; Vettor, R. The endothelium in acromegaly. Front. Endocrinol. 2019, 10, 437. [Google Scholar] [CrossRef]
- Spadaro, O.; Camell, C.D.; Bosurgi, L.; Nguyen, K.Y.; Youm, Y.H.; Rothlin, C.V.; Dixit, V.D. IGF1 shapes macrophage activation in response to Immunometabolic challenge. Cell Rep. 2017, 19, 225–234. [Google Scholar] [CrossRef]
- Tellatin, S.; Maffei, P.; Osto, E.; Dassie, F.; Famoso, G.; Montisci, R.; Martini, C.; Fallo, F.; Marra, M.P.; Mioni, R.; et al. Coronary microvascular dysfunction may be related to IGF-1 in acromegalic patients and can be restored by therapy. Atherosclerosis 2017, 269, 100–105. [Google Scholar] [CrossRef]
- Boero, L.; Manavela, M.; Merono, T.; Maidana, P.; Gomez Rosso, L.; Brites, F. GH levels and insulin sensitivity are differently associated with biomarkers of cardiovascular disease in active acromegaly. Clin. Endocrinol. 2012, 77, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Lie, J.T. Pathology of the heart in acromegaly: Anatomic findings in 27 autopsied patients. Am. Heart J. 1980, 100, 41–52. [Google Scholar] [CrossRef]
- Colao, A.; Grasso, L.F.S.; Di Somma, C.; Pivonello, R. Acromegaly and Heart Failure. Heart Fail. Clin. 2019, 15, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Pivonello, R.; Auriemma, R.S.; Grasso, L.F.; Pivonello, C.; Simeoli, C.; Patalano, R.; Galdiero, M.; Colao, A. Complications of acromegaly: Cardiovascular, respiratory and metabolic comorbidities. Pituitary 2017, 20, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Dandel, M.; Hetzer, R. Ventricular systolic dysfunction with and without altered myocardial contractility: Clinical value of echocardiography for diagnosis and therapeutic decision-making. Int. J. Cardiol. 2021, 327, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Gaasch, W.H.; Little, W.C. Assessment of left ventricular diastolic function and recognition of diastolic heart failure. Circulation 2007, 116, 591–593. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Korinek, J.; Belohlavek, M.; Narula, J.; Vannan, M.A.; Jahangir, A.; Khandheria, B.K. Left ventricular structure and function: Basic science for cardiac imaging. J. Am. Coll. Cardiol. 2006, 48, 1988–2001. [Google Scholar] [CrossRef]
- Ho, S.Y. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. Eur. J. Echocardiogr. 2009, 10, iii3–iii7. [Google Scholar] [CrossRef]
- Volschan, I.C.M.; Kasuki, L.; Silva, C.M.S.; Alcantara, M.L.; Saraiva, R.M.; Xavier, S.S.; Gadelha, M.R. Two-dimensional speckle tracking echocardiography demonstrates no effect of active acromegaly on left ventricular strain. Pituitary 2017, 20, 349–357. [Google Scholar] [CrossRef]
- Gadelha, P.; Santos, E.C.L.; Castillo, J.; Vilar, L. Subclinical Ventricular Dysfunction in Long-Term Acromegaly Assessed by Speckle-Tracking Echocardiography. Front. Endocrinol. 2022, 13, 812964. [Google Scholar] [CrossRef]
- Shin, S.M.; Shim, W.J.; Park, S.M. Early changes of left ventricular function in young adults with never-treated hypertension and no left ventricular hypertrophy: Relationships to ambulatory blood pressure monitoring. Clin. Exp. Hypertens. 2014, 36, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Ishizu, T.; Seo, Y.; Kameda, Y.; Kawamura, R.; Kimura, T.; Shimojo, N.; Xu, D.; Murakoshi, N.; Aonuma, K. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension 2014, 63, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Di Bello, V.; Talini, E.; Dell’Omo, G.; Giannini, C.; Delle Donne, M.G.; Canale, M.L.; Nardi, C.; Palagi, C.; Dini, F.L.; Penno, G.; et al. Early left ventricular mechanics abnormalities in prehypertension: A two-dimensional strain echocardiography study. Am. J. Hypertens. 2010, 23, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Krzesiński, P.; Uziębło-Życzkowska, B.; Gielerak, G.; Stańczyk, A.; Kurpaska, M.; Piotrowicz, K. Global longitudinal twodimensional systolic strain is associated with hemodynamic alterations in arterial hypertension. J. Am. Soc. Hypertens. 2015, 9, 680–689. [Google Scholar] [CrossRef]
- Nazario Leao, R.; Silva, P.M.D.; Pocinho, R.M.; Alves, M.; Virella, D.; Palma Reis, R. Good agreement between echocardiography and impedance cardiography in the assessment of left ventricular performance in hypertensive patients. Clin. Exp. Hypertens. 2018, 40, 461–467. [Google Scholar] [CrossRef]
- Ramirez, M.F.L.; Marinas, C.E.; Yamamoto, M.E.; Caguioa, E.V.S. Impedance Cardiography in heart failure patients in the intensive care unit: Its value in the detection of left ventricular systolic dysfunction and correlation with the echocardiogram. J. Am. Coll. Cardiol. 2004, 43 (5 Suppl. A), 207A. [Google Scholar] [CrossRef]
- Mirea, O.; Pagourelias, E.D.; Duchenne, J.; Bogaert, J.; Thomas, J.D.; Badano, L.P.; Voigt, J.U. EACVI-ASE-Industry Standardization Task Force: Intervendor Differences in the Accuracy of Detecting Regional Functional Abnormalities: A Report From the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc. Imaging 2018, 11, 25–34. [Google Scholar] [CrossRef]
- Negishi, T.; Negishi, K.; Thavendiranathan, P.; Cho, G.Y.; Popescu, B.A.; Vinereanu, D.; Kurosawa, K.; Penicka, M.; Marwick, T.H. SUCCOUR Investigators: Effect of Experience and Training on the Concordance and Precision of Strain Measurements. JACC Cardiovasc. Imaging 2017, 10, 518–522. [Google Scholar] [CrossRef]
- Rösner, A.; Barbosa, D.; Aarsæther, E.; Kjønås, D.; Schirmer, H.; D’hooge, J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: A study on silico-simulated models and images recorded in patients. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1137–1147. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Nicolosi, G.L.; Granato, A.; Bonanomi, A.; Rigamonti, E.; Lombardo, M. Influence of chest wall conformation on reproducibility of main echocardiographic indices of left ventricular systolic function. Minerva Cardiol. Angiol. 2024, 72, 111–124. [Google Scholar] [CrossRef]
Variable | Mean ± SD (Median; Interquartile Range) or n (%) |
---|---|
Patients with Acromegaly | |
Demographics | |
Age [years] | 47.0 ± 13.5 (47.0; 38.0–61.0) |
Male sex | 18 (54.5) |
BMI [kg/m2] | 27.8 ± 4.1 (27.7; 25.3–30.1) |
BMI ≥ 30 kg/m2 | 9 (27.3) |
Heart rate [bpm] | 75.6 ± 10.7 (77.0; 67.0–82.0) |
SBP [mmHg] | 121.0 ± 11.2 (123.0; 115.0–127.0) |
DBP [mmHg] | 77.0 ± 9.7 (77.0; 72.0–81.0) |
Clinical Characteristics | |
Hypertension | 18 (54.5) |
Prediabetes Diabetes mellitus | 10 (33.3) 6 (18.2) |
LVEF [%] | 62.8 |
Pharmacotherapy | |
RAAS blockers | 13 (40.6) |
ACEI | 12 (36.4) |
DIURETYK | 4 (12.1) |
ARB | 1 (3) |
BB | 6 (18.2) |
CCB | 8 (24.2) |
Laboratory Tests | |
Creatinine [mg/dL] | 0.76 ± 0.19 (0.8; 0.6–0.9) |
eGFR > 60 mL/min/1.73 m2 | 33 (100) |
TC [mg/dL] | 189.6 ± 32 (193.5; 172–214) |
TG [mg/dL] | 92.7 ± 29.7 (92; 65–123.5) |
HDL [mg/dL] | 61 ± 13 (58; 49–70.5) |
LDL [mg/dL] | 121.1 ± 29.9 (121; 103.5–140) |
Variable | Mean ± SD (Median; Interquartile Range) or n (%) |
---|---|
Impedance Cardiography | |
Data Basic | |
HR [bpm] | 73.0 ± 10.6 (71.0; 65.0–80.0) |
SBP [mmHg] | 119.3 ± 10.1 (122.0; 115.0–124.0) |
DBP [mmHg] | 76.3 ± 9.2 (76.0; 72.0–80.0) |
LV Pumping Function | |
SI [mL/m2] | 44.0 ± 9.4 (43.0; 37.0–51.0) |
SI < 35 mL/m2 | 6 (18.2) |
VI [1*1000−1*s−1] CI [mL*m−2*min−1] | 42.3 ± 11.5 (45.0; 35.0–50.0) 3.2 ± 0.7 (3.2; 2.7–3.6) |
ACI [1/100/s2] | 65.0 ± 22.5 (64.0; 50.0–79.0) |
HI [Ohm/s2] | 8.47 ± 3.20 (8.00; 6.70–11.60) |
Afterload | |
SVRI [dyn*s*cm−5*m2] | 2135 ± 578.3 (2004; 1761–2387) |
TACI [mL*mmHg−1] | 1.9 ± 0.7 (1.7; 1.6–2.1) |
Hydration Status | |
TFC [1/kOhm] | 38.5 ± 6.9 (38.7; 33.8–42.4) |
TFC > 35 1/kOhm | 23 (69.7) |
Correlations: R (p) | ||||
---|---|---|---|---|
Hemodynamic Parameters | Echocardiographic Parameters | |||
LVEF [%] | GLS [%] | |||
R | p-Value | R | p-Value | |
HR [bpm] | −0.07 | 0.69 | 0.19 | 0.29 |
SBP [mmHg] | −0.11 | 0.56 | −0.20 | 0.27 |
DBP [mmHg] | −0.37 | 0.04 | −0.29 | 0.11 |
MBP [mmHg] | −0.28 | 0.12 | −0.23 | 0.21 |
PP [mmHg] | 0.11 | 0.54 | 0.05 | 0.77 |
SI [mL/m2] | 0.38 | 0.03 | 0.43 | 0.02 |
CI [mL*m−2*min−1] | 0.28 | 0.12 | 0.62 | <0.001 |
SVRI [dyn*s*cm−5*m2] | −0.35 | 0.046 | −0.59 | <0.001 |
TACI [mL/mmHg*m2] | 0.22 | 0.25 | 0.50 | 0.007 |
VI [1*1000−1*s−1] | 0.34 | 0.053 | 0.59 | <0.001 |
ACI [1/100/s2] | 0.27 | 0.14 | 0.36 | 0.048 |
HI [Ohm/s2] | 0.19 | 0.28 | 0.59 | <0.001 |
TFC [1/kOhm] | −0.06 | 0.74 | −0.22 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włochacz, A.; Krzesiński, P.; Uziębło-Życzkowska, B.; Witek, P.; Zieliński, G.; Kazimierczak, A.; Wierzbowski, R.; Banak, M.; Gielerak, G. Acromegaly: The Relationship between Hemodynamic Profiles Assessed via Impedance Cardiography and Left Ventricular Systolic Function Assessed via Echocardiography. J. Clin. Med. 2024, 13, 5630. https://doi.org/10.3390/jcm13185630
Włochacz A, Krzesiński P, Uziębło-Życzkowska B, Witek P, Zieliński G, Kazimierczak A, Wierzbowski R, Banak M, Gielerak G. Acromegaly: The Relationship between Hemodynamic Profiles Assessed via Impedance Cardiography and Left Ventricular Systolic Function Assessed via Echocardiography. Journal of Clinical Medicine. 2024; 13(18):5630. https://doi.org/10.3390/jcm13185630
Chicago/Turabian StyleWłochacz, Agnieszka, Paweł Krzesiński, Beata Uziębło-Życzkowska, Przemysław Witek, Grzegorz Zieliński, Anna Kazimierczak, Robert Wierzbowski, Małgorzata Banak, and Grzegorz Gielerak. 2024. "Acromegaly: The Relationship between Hemodynamic Profiles Assessed via Impedance Cardiography and Left Ventricular Systolic Function Assessed via Echocardiography" Journal of Clinical Medicine 13, no. 18: 5630. https://doi.org/10.3390/jcm13185630
APA StyleWłochacz, A., Krzesiński, P., Uziębło-Życzkowska, B., Witek, P., Zieliński, G., Kazimierczak, A., Wierzbowski, R., Banak, M., & Gielerak, G. (2024). Acromegaly: The Relationship between Hemodynamic Profiles Assessed via Impedance Cardiography and Left Ventricular Systolic Function Assessed via Echocardiography. Journal of Clinical Medicine, 13(18), 5630. https://doi.org/10.3390/jcm13185630