Acupuncture Effect on Reaction-Time Changes in Parkinson’s Disease Patients—Case Study Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Procedures
2.4. Evaluation
3. Results
- -
- Inching Pace subtype (PD-I), with mild baseline severity and mild progression speed.
- -
- Moderate Pace subtype (PD-M), with mild baseline severity, but advancing at a moderate progression rate.
- -
- Rapid Pace subtype (PD-R), with the most rapid symptom-progression rate.
- (A)
- Outcome A assessed the immediate effects of a single acupuncture session, comparing results before and after the intervention (M1-M0, M3-M2, and M5-M4).
- (B)
- Outcome B investigated the accumulative effects of acupuncture pre-treatment, by comparing results obtained prior to two moments of treatments (M2-M0 and M4-M2).
- (C)
- Outcome C examined the accumulative effects of acupuncture post-treatment, by comparing values obtained after two moments of treatments (M3-M1 and M5-M3).
- (D)
- Outcome D permitted the analysis of the overall accumulative effects of the acupuncture protocol, by comparing the value obtained before the first treatment with the one obtained before the last evaluation moment (M4-M0).
3.1. Case Results
3.1.1. Patient 1
- -
- The acute effect (outcome A) of the treatment was more pronounced in the random component and on the right side (the more affected side).
- -
- The cumulative component without treatment interference (outcome B) showed a reduction in response time, with a greater emphasis on the right side.
- -
- The cumulative component with treatment interference (outcome C) had more expression on the left side.
- -
- After one month (outcome D), the acupuncture protocol had positive results on both components, random and rhythmic, with more emphasis on the right side.
- -
- Overall, the random responses showed a greater reduction in response time than rhythmic ones.
3.1.2. Patient 2
- -
- The random responses showed a greater reduction in response time than the rhythmic ones.
- -
- The cumulative effects of the acupuncture protocol (outcome B and D) seemed to be more relevant than the acute ones.
- -
- The response to the overall protocol tended to be more pronounced for random stimulus on the left side (the more affected side).
3.1.3. Patient 3
- -
- For rhythmic stimuli, we found a slightly greater reduction in response time when compared to random responses.
- -
- The accumulative effects of acupuncture post treatment showed a reduction in response time for all the parameters analyzed.
- -
- The overall response to the acupuncture protocol seemed to be more pronounced on the right side (the more affected side).
3.1.4. Patient 4
4. Discussion
- (a)
- Modulation of the Basal Ganglia: Acupuncture may influence the function of the basal ganglia, a brain region involved in motor control and directly affected in Parkinson’s disease. Stimulation of certain acupuncture points might help to regulate dopamine flow in this region, improving coordination and motor response.
- (b)
- Increased Release of Neurotransmitters: Acupuncture has been associated with the release of neurotransmitters such as dopamine, serotonin, and endorphins, which can enhance neuronal communication. In Parkinson’s patients, this could improve motor signal transmission, reducing reaction time [55].
- (c)
- (d)
- Neuroplasticity: Acupuncture might promote neuroplasticity, the brain’s ability to reorganize itself by forming new neural connections. This is particularly beneficial for patients with neurodegenerative diseases, helping to compensate for neuronal loss and improving motor reaction time.
- (e)
5. Conclusions
- (a)
- Our acupuncture protocol reduced the motor response time.
- (b)
- The improvements in response time were more pronounced on the most affected side.
- (c)
- Older patients or those at more advanced stages of the disease (III and IV) tended to present greater initial random-response values, compared to rhythmic values. On the other hand, in younger patients or patients at earlier stages of the disease, this difference is less noticeable. This can indicate that with the progression of the disease, there is a tendency for a decline in both rhythmic and random responses, with greater emphasis on the random one. However, the findings related to the differences between younger and older participants cannot be generalized, due to the small sample size.
- (d)
- The timing/intensity of therapy should be adjusted, according to the stage of disease progression. More studies are necessary to determine the intervention dosage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Afentou, N.; Jarl, J.; Gerdtham, U.; Saha, S. Economic Evaluation of Interventions in Parkinson’s Disease: A Systematic Literature Review. Mov. Disord. Clin. Pract. 2019, 6, 282–290. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; Luciano, M.S.; Tanner, C. The epidemiology of Parkinson’s disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef]
- Fukuda, S.; Egawa, M. Effect of acupuncture on gait in Parkinson’s disease: A case report. Acupunct. Med. 2015, 33, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Quattrone, A.; Morelli, M.; Bianco, M.G.; Buonocore, J.; Sarica, A.; Caligiuri, M.E.; Aracri, F.; Calomino, C.; De Maria, M.; Vaccaro, M.G.; et al. Magnetic Resonance Planimetry in the Differential Diagnosis between Parkinson’s Disease and Progressive Supranuclear Palsy. Brain Sci. 2022, 12, 949. [Google Scholar] [CrossRef]
- Alster, P.; Madetko-Alster, N. Significance of dysautonomia in Parkinson’s Disease and atypical parkinsonisms. Neurol. Neurochir. Pol. 2024, 58, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Greten, H.J. Understanding TCM—The Fundamentals of Chinese Medicine; Heidelberg School Editions: Heidelberg, Germany, 2017. [Google Scholar]
- Marinelli, L.; Perfetti, B.; Moisello, C.; Di Rocco, A.; Eidelberg, D.; Abbruzzese, G.; Ghilardi, M.F. Increased reaction time predicts visual learning deficits in Parkinson’s disease. Mov. Disord. 2010, 25, 1498–1501. [Google Scholar] [CrossRef] [PubMed]
- Gauntlett-Gilbert, J.; Brown, V.J. Reaction Time Deficits and Parkinson’s Disease. Neurosci. Biobehav. Rev. 1998, 22, 865–881. [Google Scholar] [CrossRef]
- Rodriguez-Raecke, R.; Schrader, C.; Tacik, P.; Dressler, D.; Lanfermann, H.; Wittfoth, M. Conflict adaptation and related neuronal processing in Parkinson’s disease. Brain Imaging Behav. 2021, 16, 455–463. [Google Scholar] [CrossRef]
- Campo-Prieto, P.; Cancela-Carral, J.M.; Rodríguez-Fuentes, G. Immersive Virtual Reality Reaction Time Test and Relationship with the Risk of Falling in Parkinson’s Disease. Sensors 2023, 23, 4529. [Google Scholar] [CrossRef]
- Jang, J.-H.; Park, S.; An, J.; Choi, J.-D.; Seol, I.C.; Park, G.; Lee, S.H.; Moon, Y.; Kang, W.; Jung, E.-S.; et al. Gait Disturbance Improvement and Cerebral Cortex Rearrangement by Acupuncture in Parkinson’s Disease: A Pilot Assessor-Blinded, Randomized, Controlled, Parallel-Group Trial. Neurorehabilit. Neural Repair. 2020, 34, 1111–1123. [Google Scholar] [CrossRef]
- Caetano, M.J.D.; Lord, S.R.; Allen, N.E.; Brodie, M.A.; Song, J.; Paul, S.S.; Canning, C.G.; Menant, J.C. Stepping reaction time and gait adaptability are significantly impaired in people with Parkinson’s disease: Implications for fall risk. Park. Relat. Disord. 2018, 47, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.M.; Van Scoy, L.J.; De Jesus, S.; Hakun, J.G.; Eslinger, P.J.; Fernandez-Mendoza, J.; Kong, L.; Yang, Y.; Snyder, B.L.; Loktionova, N.; et al. Dopamine D1 Agonists: First Potential Treatment for Late-Stage Parkinson’s Disease. Biomolecules 2023, 13, 829. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.; Patel, S.; Ives, N.; Rick, C.; Woolley, R.; Muzerengi, S.; Gray, A.; Jenkinson, C.; McIntosh, E.; Wheatley, K.; et al. Long-term Effectiveness of Adjuvant Treatment With Catechol-O-Methyltransferase or Monoamine Oxidase B Inhibitors Compared with Dopamine Agonists among Patients with Parkinson Disease Uncontrolled by Levodopa Therapy: The PD MED Randomized Clinical Trial. JAMA Neurol. 2021, 79, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Oh, J.-Y.; Park, H.-J. Potential role of acupuncture in the treatment of Parkinson’s disease: A narrative review. Integr. Med. Res. 2023, 12, 100954. [Google Scholar] [CrossRef]
- Oh, J.-Y.; Lee, Y.-S.; Hwang, T.-Y.; Cho, S.-J.; Jang, J.-H.; Ryu, Y.; Park, H.-J. Acupuncture Regulates Symptoms of Parkinson’s Disease via Brain Neural Activity and Functional Connectivity in Mice. Front. Aging Neurosci. 2022, 14, 885396. [Google Scholar] [CrossRef]
- Lei, S.; Fan, J.; Liu, X.; Xv, X.; Zhang, J.; Zhou, Z.; Zhuang, L. Qualitative and quantitative meta-analysis of acupuncture effects on the motor function of Parkinson’s disease patients. Front. Neurosci. 2023, 17, 1125626. [Google Scholar] [CrossRef]
- Kumar, A.; Tandon, O.P.; Dam, S.; Tyagi, K.K. Brainstem auditory evoked response changes following electro-acupuncture therapy in chronic pain patients. Anaesthesia 1994, 49, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.R.; Criado, M.B.; Machado, J.; Pereira, C.T.; Santos, M.J. Acute effects of acupuncture in balance and gait of Parkinson disease patients—A preliminary study. Complement. Ther. Clin. Pract. 2021, 45, 101479. [Google Scholar] [CrossRef]
- Sayre, J.W.; Toklu, H.Z.; Ye, F.; Mazza, J.; Yale, S. Case Reports, Case Series—From Clinical Practice to Evidence-Based Medicine in Graduate Medical Education. Cureus 2017, 9, e1546. [Google Scholar] [CrossRef]
- Lam, Y.C.; Kum, W.F.; Durairajan, S.S.K.; Lu, J.H.; Man, S.C.; Xu, M.; Zhang, X.F.; Huang, X.Z.; Li, M. Efficacy and Safety of Acupuncture for Idiopathic Parkinson’s Disease: A Systematic Review. J. Altern. Complement. Med. 2008, 14, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Shim, S.-R.; Rhee, H.Y.; Park, H.-J.; Jung, W.-S.; Moon, S.-K.; Park, J.-M.; Ko, C.-N.; Cho, K.-H.; Park, S.-U. Effectiveness of acupuncture and bee venom acupuncture in idiopathic Parkinson’s disease. Park. Relat. Disord. 2012, 18, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Kolesárová, M.; Franko, O.; Kolesár, D.; Gažová, A.; Kyselovič, J. New trends in advanced parkinson disease stage therapy. Ceska Slov. Farm. 2023, 72, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.H.; Ng, H.L.; Li, W.; Ng, D.W.; Tan, S.I.; Tay, K.Y.; Au, W.L.; Tan, L.C.S. Acupuncture in the treatment of fatigue in Parkinson’s disease: A pilot, randomized, controlled, study. Brain Behav. 2017, 8, e00897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Chen, J.; Cheng, J.; Huang, S.; Hu, Y.; Wu, Y.; Li, G.; Liu, B.; Liu, X.; Guo, W.; et al. Acupuncture Modulates the Cerebello-Thalamo-Cortical Circuit and Cognitive Brain Regions in Patients of Parkinson’s Disease With Tremor. Front. Aging Neurosci. 2018, 10, 206. [Google Scholar] [CrossRef]
- Sasada, S.; Tazoe, T.; Nakajima, T.; Omori, S.; Futatsubashi, G.; Komiyama, T. Arm cycling increases the short-latency reflex from ankle dorsiflexor afferents to knee extensor muscles. J. Neurophysiol. 2021, 125, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Leem, J. Acupuncture for motor symptom improvement in Parkinson’s disease and the potential identification of responders to acupuncture treatment. Integr. Med. Res. 2016, 5, 332–335. [Google Scholar] [CrossRef]
- Lee, M.S.; Shin, B.; Kong, J.C.; Ernst, E. Effectiveness of acupuncture for Parkinson’s disease: A systematic review. Mov. Disord. 2008, 23, 1505–1515. [Google Scholar] [CrossRef]
- Cao, L.; Li, X.; Li, M.; Yao, L.; Hou, L.; Zhang, W.; Wang, Y.; Niu, J.; Yang, K. The effectiveness of acupuncture for Parkinson’s disease: An overview of systematic reviews. Complement. Ther. Med. 2020, 50, 102383. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, Y.; Liu, Z.; Dong, S.; Su, Y. Efficacy and safety of abdominal acupuncture in Parkinson’s disease: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e31804. [Google Scholar] [CrossRef]
- Morais, N.; Greten, H.J.; Santos, M.J.; Machado, J.P. Immediate effects of acupuncture on the mechanosensitivity of the median nerve: An exploratory randomised trial. Acupunct. Med. 2018, 36, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Matos, L.C.; Machado, J.P.; Monteiro, F.J.; Greten, H.J. Can Traditional Chinese Medicine Diagnosis Be Parameterized and Standardized? A Narrative Review. Healthcare 2021, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Greten, H.J. Neurology. In Clinical Subjects; Heidelberg School Editions: Heidelberg, Germany, 2016. [Google Scholar]
- Su, C.; Hou, Y.; Xu, J.; Xu, Z.; Zhou, M.; Ke, A.; Li, H.; Xu, J.; Brendel, M.; Maasch, J.R.M.A.; et al. Identification of Parkinson’s disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data. NPJ Digit. Med. 2024, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.J.; Bauer, C.; Grimaldo, D.; Tabeling, S.; Weber, T.; Ehlert, A.; Mendes, A.H.; Lorenz, J.; Lampe, F. Sensor Positioning Influences the Accuracy of Knee Rom Data of an E-Rehabilitation System: A Preliminary Study with Healthy Subjects. Sensors 2020, 20, 2237. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Ferrer, A.; Andreo, J.; Periáñez, J.A.; Ríos-Lago, M.; Lubrini, G.; Herreros-Rodríguez, J.; García-Caldentey, J.; Romero, J.P. Computerized Simple Reaction Time and Balance in Nondemented Parkinson’s Patients. Neurodegener. Dis. 2020, 20, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Maia, P.D.; Kutz, J.N. Reaction time impairments in decision-making networks as a diagnostic marker for traumatic brain injuries and neurological diseases. J. Comput. Neurosci. 2017, 42, 323–347. [Google Scholar] [CrossRef]
- Kwon, D.-Y.; Park, B.K.; Kim, J.W.; Eom, G.-M.; Hong, J.; Koh, S.-B.; Park, K.-W. Quantitative electromyographic analysis of reaction time to external auditory stimuli in Drug-Naïve Parkinson’s disease. Park. Dis. 2014, 2014, 848035. [Google Scholar] [CrossRef]
- Fearon, C.; Butler, J.S.; Newman, L.; Lynch, T.; Reilly, R.B. Audiovisual Processing is Abnormal in Parkinson’s Disease and Correlates with Freezing of Gait and Disease Duration. J. Park. Dis. 2015, 5, 925–936. [Google Scholar] [CrossRef]
- Watanabe, T.; Saito, K.; Ishida, K.; Tanabe, S.; Horiba, M.; Itamoto, S.; Ueki, Y.; Wada, I.; Nojima, I. Effect of auditory stimulus on executive function and execution time during cognitively demanding stepping task in patients with Parkinson’s disease. Neurosci. Lett. 2018, 674, 101–105. [Google Scholar] [CrossRef]
- Lei, S.; Dai, F.; Xue, F.; Hu, G.; Zhang, Y.; Xu, X.; Wang, R.; Zhang, X.; Cong, D.B.; Wang, Y. Acupuncture for shoulder-hand syndrome after stroke: An overview of systematic reviews. Medicine 2022, 101, e31847. [Google Scholar] [CrossRef]
- Li, Y.-J.; Leong, I.-I.; Fan, J.-Q.; Yan, M.-Y.; Liu, X.; Lu, W.-J.; Chen, Y.-Y.; Tan, W.-Q.; Wang, Y.-T.; Zhuang, L.-X. Efficacy of acupuncture for the treatment of Parkinson’s disease-related constipation (PDC): A randomized controlled trial. Front. Neurosci. 2023, 17, 1126080. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Chen, C.; Feng, Q.; Huang, Z.B.; Chen, Y.B.; Chen, H. Acupuncture and sleep disorders in Parkinson’s disease: A systematic evaluation with meta-analysis. Medicine 2024, 103, e36286. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Wang, X.; Xie, Y.; Li, W. A systematic review and meta-analysis of acupuncture in Parkinson’s disease with dysphagia. Front. Neurol. 2023, 14, 1099012. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, L.-X.; Li, H.-R.; Gou, X.-Y.; Liu, X.-B.; Zhang, Y.; Zhong, D.-L.; Li, Y.-X.; Zheng, Z.; Li, J.; et al. The effects of acupuncture therapy in migraine: An activation likelihood estimation meta-analysis. Front. Neurosci. 2023, 16, 1097450. [Google Scholar] [CrossRef]
- Zeng, B.; Zhao, K. Effect of Acupuncture on the Motor and Nonmotor Symptoms in Parkinson’s Disease—A Review of Clinical Studies. CNS Neurosci. Ther. 2016, 22, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Ramires, C.C.; Balbinot, D.T.; Cidral-Filho, F.J.; Dias, D.V.; dos Santos, A.R.; da Silva, M.D. Acupuncture reduces peripheral and brainstem cytokines in rats subjected to lipopolysaccharide-induced inflammation. Acupunct. Med. 2020, 39, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Somato–Autonomic Reflexes of Acupuncture. Med. Acupunct. 2020, 32, 362–366. [Google Scholar] [CrossRef]
- Wang, M.; Liu, W.; Ge, J.; Liu, S. The immunomodulatory mechanisms for acupuncture practice. Front. Immunol. 2023, 14, 1147718. [Google Scholar] [CrossRef]
- Yang, F.-M.; Yao, L.; Wang, S.-J.; Guo, Y.; Xu, Z.-F.; Zhang, C.-H.; Zhang, K.; Fang, Y.-X.; Liu, Y.-Y. Current Tracking on Effectiveness and Mechanisms of Acupuncture Therapy: A Literature Review of High-Quality Studies. Chin. J. Integr. Med. 2019, 26, 310–320. [Google Scholar] [CrossRef]
- Sun, L.; Yong, Y.; Wei, P.; Wang, Y.; Li, H.; Zhou, Y.; Ruan, W.; Li, X.; Song, J. Electroacupuncture ameliorates postoperative cognitive dysfunction and associated neuroinflammation via NLRP3 signal inhibition in aged mice. CNS Neurosci. Ther. 2021, 28, 390–400. [Google Scholar] [CrossRef]
- Patel, R.; Kompoliti, K. Sex and Gender Differences in Parkinson’s Disease. Neurol. Clin. 2023, 41, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.; Jette, N.; Frolkis, A.; Steeves, T.; Pringsheim, T. The Incidence of Parkinson’s Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology 2016, 46, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, Y.; Li, X.-C.; Ma, X.; Mi, W.-L.; Chu, Y.-X.; Wang, Y.-Q.; Mao-Ying, Q.-L. Neuronal GRK2 regulates microglial activation and contributes to electroacupuncture analgesia on inflammatory pain in mice. Biol. Res. 2022, 55, 5. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, Y.; Chen, S.; Liang, F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis. 2023, 15, 1155–1175. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-J.; Wang, X.; Li, S.-L.; Zhang, T.-T.; Yang, Y.-C.; Wang, Y.-M.; Zhao, X.-Q.; Li, K.-Y.; Wang, Y.-Q.; Li, Y.; et al. Sanguinarine modulates microglial function via PPARγ activation and protects against CNS demyelination. Int. Immunopharmacol. 2024, 127, 111408. [Google Scholar] [CrossRef]
- Rahman, S.; Siddique, U.; Choudhury, S.; Islam, N.; Roy, A.; Basu, P.; Anand, S.S.; Islam, M.A.; Shahi, M.S.; Nayeem, A.; et al. Comparing Stop Signal Reaction Times in Alzheimer’s and Parkinson’s Disease. Can. J. Neurol. Sci. 2021, 49, 662–671. [Google Scholar] [CrossRef]
Variables | Age | Gender | Disease Degree | Affected Side | Subtype | Major Symptoms | |
---|---|---|---|---|---|---|---|
Patients | |||||||
ID 01 | 72 | Female | 4 | Right | PD-M | Gait and balance | |
ID 02 | 63 | Male | 3 | Left | PD-I | Muscular Stiffness | |
ID 03 | 48 | Male | 2 | Right | PD-I | Muscular Stiffness and Gait and Balance | |
ID 04 | 48 | Male | 1 | Right | PD-I | Tremor |
Time | Random Right (RaR) Time t (s) | Random Left (RaL) Time t (s) | Rhythmic Right (RhR) Time t (s) | Rhythmic Left (RhL) Time t (s) | ||
---|---|---|---|---|---|---|
Patients | ||||||
P 1 | M0 | 0.365 | 0.291 | 0.261 | 0.318 | |
M1 | 0.324 | 0.322 | 0.271 | 0.333 | ||
M2 | 0.314 | 0.320 | 0.213 | 0.243 | ||
M3 | 0.353 | 0.342 | 0.295 | 0.286 | ||
M4 | 0.298 | 0.323 | 0.260 | 0.264 | ||
M5 | 0.374 | 0.284 | 0.307 | 0.356 | ||
P 2 | M0 | 0.369 | 0.458 | 0.306 | 0.322 | |
M1 | 0.392 | 0.455 | 0.343 | 0.440 | ||
M2 | 0.510 | 0.393 | 0.302 | 0.318 | ||
M3 | 0.405 | 0.419 | 0.317 | 0.328 | ||
M4 | 0.410 | 0.434 | 0.415 | 0.414 | ||
M5 | 0.399 | 0.513 | 0.415 | 0.363 | ||
P 3 | M0 | 0.246 | 0.213 | 0.195 | 0.187 | |
M1 | 0.295 | 0.292 | 0.232 | 0.232 | ||
M2 | 0.222 | 0.220 | 0.227 | 0.222 | ||
M3 | 0.220 | 0.232 | 0.215 | 0.181 | ||
M4 | 0.193 | 0.225 | 0.162 | 0.179 | ||
M5 | 0.206 | 0.205 | 0.200 | 0.175 | ||
P 4 | M0 | 0.286 | 0.244 | 0.233 | 0.218 | |
M1 | 0.291 | 0.295 | 0.261 | 0.294 | ||
M2 | 0.257 | 0.228 | 0.229 | 0.183 | ||
M3 | 0.303 | 0.219 | 0.233 | 0.209 | ||
M4 | * | * | * | * | ||
M5 | * | * | * | * |
Outcomes | Random Right (RaR) Time t (s) | Random Left (RaL) Time t (s) | Rhythmic Right (RhR) Time t (s) | Rhythmic Left (RhL) Time t (s) | |
---|---|---|---|---|---|
Evaluation Moments | |||||
M1-M0 | −0.041 | 0.031 | 0.010 | 0.015 | |
M3-M2 | 0.039 | 0.022 | 0.082 | 0.043 | |
M5-M4 | 0.076 | −0.039 | 0.047 | 0.092 | |
M2-M0 | −0.051 | 0.029 | −0.048 | −0.075 | |
M4-M2 | −0.016 | 0.003 | 0.047 | 0.021 | |
M3-M1 | 0.029 | 0.020 | 0.024 | −0.047 | |
M5-M3 | 0.021 | −0.058 | 0.012 | 0.070 | |
M4-M0 | −0.067 | 0.032 | −0.001 | −0.054 |
Outcomes | Random Right (RaR) Time t (s) | Random Left (RaL) Time t (s) | Rhythmic Right (RhR) Time t (s) | Rhythmic Left (RhL) Time t (s) | |
---|---|---|---|---|---|
Evaluation Moments | |||||
M1-M0 | 0.023 | −0.003 | 0.037 | 0.118 | |
M3-M2 | −0.105 | 0.026 | 0.015 | 0.010 | |
M5-M4 | −0.011 | 0.079 | 0.000 | −0.051 | |
M2-M0 | 0.141 | −0.065 | −0.004 | −0.004 | |
M4-M2 | −0.100 | 0.041 | 0.113 | 0.096 | |
M3-M1 | 0.013 | −0.036 | −0.026 | −0.112 | |
M5-M3 | −0.006 | 0.094 | 0.098 | 0.035 | |
M4-M0 | 0.041 | −0.024 | 0.109 | 0.092 |
Outcomes | Random Right (RaR) Time t (s) | Random Left (RaL) Time t (s) | Rhythmic Right (RhR) Time t (s) | Rhythmic Left (RhL) Time t (s) | |
---|---|---|---|---|---|
Evaluation Moments | |||||
M1-M0 | 0.049 | 0.079 | 0.037 | 0.045 | |
M3-M2 | −0.002 | 0.012 | −0.012 | −0.041 | |
M5-M4 | 0.013 | −0.020 | 0.038 | −0.004 | |
M2-M0 | −0.024 | 0.007 | 0.032 | 0.035 | |
M4-M2 | −0.029 | 0.005 | −0.065 | −0.043 | |
M3-M1 | −0.075 | −0.060 | −0.017 | −0.051 | |
M5-M3 | −0.014 | −0.027 | −0.015 | −0.006 | |
M4-M0 | −0.053 | 0.012 | −0.033 | −0.008 |
Outcomes | Random Right (RaR) Time t (s) | Random Left (RaL) Time t (s) | Rhythmic Right (RhR) Time t (s) | Rhythmic Left (RhL) Time t (s) | |
---|---|---|---|---|---|
Evaluation Moments | |||||
M1-M0 | 0.005 | 0.051 | 0.028 | 0.076 | |
M3-M2 | 0.046 | −0.009 | 0.004 | 0.026 | |
M5-M4 | * | * | * | * | |
M2-M0 | −0.029 | −0.016 | −0.004 | −0.035 | |
M4-M2 | * | * | * | * | |
M3-M1 | 0.012 | −0.076 | −0.028 | −0.085 | |
M5-M3 | * | * | * | * | |
M4-M0 | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, C.R.; Greten, H.J.; Santos, R.; Reis, A.M.; Ramos, B.; Santos, M.J.; Machado, J.; Criado, M.B. Acupuncture Effect on Reaction-Time Changes in Parkinson’s Disease Patients—Case Study Series. J. Clin. Med. 2024, 13, 5642. https://doi.org/10.3390/jcm13185642
Pereira CR, Greten HJ, Santos R, Reis AM, Ramos B, Santos MJ, Machado J, Criado MB. Acupuncture Effect on Reaction-Time Changes in Parkinson’s Disease Patients—Case Study Series. Journal of Clinical Medicine. 2024; 13(18):5642. https://doi.org/10.3390/jcm13185642
Chicago/Turabian StylePereira, Catarina Ramos, Henry J. Greten, Rubim Santos, Ana Mafalda Reis, Bruno Ramos, Maria João Santos, Jorge Machado, and Maria Begoña Criado. 2024. "Acupuncture Effect on Reaction-Time Changes in Parkinson’s Disease Patients—Case Study Series" Journal of Clinical Medicine 13, no. 18: 5642. https://doi.org/10.3390/jcm13185642
APA StylePereira, C. R., Greten, H. J., Santos, R., Reis, A. M., Ramos, B., Santos, M. J., Machado, J., & Criado, M. B. (2024). Acupuncture Effect on Reaction-Time Changes in Parkinson’s Disease Patients—Case Study Series. Journal of Clinical Medicine, 13(18), 5642. https://doi.org/10.3390/jcm13185642