Elevated Alanine Transaminase-to-Platelet Index (APRI) Is Associated with Obesity and Distinct Forms of Dyslipidemia: A Retrospective Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Collection
2.2. Data Collection
- Demographic and clinical data: Age, sex, and BMI were recorded. Patients were advised to remove shoes and heavy clothing during the weight assessment. Weight and height were measured using a weighing scale and a portable stadiometer (Marsden H226, Marsden Weighing Group, South Yorkshire, UK). To calculate BMI, body weight (in kilograms) was divided by body height (in square meters). Medical history and current medications were reviewed to ensure adherence to the inclusion criteria.
- Laboratory Data: Blood samples were collected routinely following established protocols and sent to a central laboratory. Regular quality assurance and control checks were performed on all laboratory equipment. Fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels were analyzed using a Cobas-8000 autoanalyzer (Roche Diagnostics, Rotkreuz, Switzerland). Hemoglobin A1c (HbA1c) levels were determined with a Cobas-513 autoanalyzer (Roche Diagnostics, Rotkreuz, Switzerland).
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Studied Population
3.2. APRI Score Is Significantly Elevated in Obese Subjects and Showed a Better Diagnostic Accuracy for Obesity
3.3. APRI Score Is Significantly Increased in Elevated TG and All Lipid Ratios
3.4. The Highest Tertile of APRI Score Exhibits All Forms of Dyslipidemia
3.5. APRI Score Is Differentially Correlated with Lipid Markers
3.6. High APRI Score Is a Marker of Lipid Abnormalities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Challenge of Obesity n.d. Available online: https://www.who.int/europe/news-room/fact-sheets/item/the-challenge-of-obesity (accessed on 1 July 2024).
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 May 2022).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Yang, M.; Liu, S.; Zhang, C. The Related Metabolic Diseases and Treatments of Obesity. Healthcare 2022, 10, 1616. [Google Scholar] [CrossRef]
- Cercato, C.; Fonseca, F.A.H. Cardiovascular risk and obesity. Diabetol. Metab. Syndr. 2019, 11, 74. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Yan, H.; Wang, Z.; Zhao, S.; Wang, B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: Evidence from a meta-analysis of 21 cohort studies. Obes. Rev. 2016, 17, 510–519. [Google Scholar] [CrossRef]
- Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.J.; Brown, W.V.; Gonzalez-Campoy, J.M.; Jones, S.R.; Kumar, R.; La Forge, R.; et al. Obesity, adiposity, and dyslipidemia: A consensus statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 304–383. [Google Scholar] [CrossRef]
- Xiao, C.; Dash, S.; Morgantini, C.; Hegele, R.A.; Lewis, G.F. Pharmacological targeting of the atherogenic dyslipidemia complex: The next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes 2016, 65, 1767–1778. [Google Scholar] [CrossRef]
- Vekic, J.; Stefanovic, A.; Zeljkovic, A. Obesity and Dyslipidemia: A Review of Current Evidence. Curr. Obes. Rep. 2023, 12, 207–222. [Google Scholar] [CrossRef]
- Thomas, A.L.; Alarcon, P.C.; Divanovic, S.; Chougnet, C.A.; Hildeman, D.A.; Moreno-Fernandez, M.E. Implications of Inflammatory States on Dysfunctional Immune Responses in Aging and Obesity. Front. Aging 2021, 2, 732414. [Google Scholar] [CrossRef]
- Björnson, E.; Adiels, M.; Taskinen, M.-R.; Borén, J. Kinetics of plasma triglycerides in abdominal obesity. Curr. Opin. Infect. Dis. 2017, 28, 11–18. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef]
- Tamura, S.; Shimomura, I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1139–1142. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Miyazaki, Y.; Pettiti, M.; Buzzigoli, E.; Mahankali, S.; Ferrannini, E.; DeFronzo, R.A. Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis. J. Clin. Endocrinol. Metab. 2004, 89, 3914–3921. [Google Scholar] [CrossRef]
- Canbay, A.; Bechmann, L.; Gerken, G. Lipid Metabolism in the Liver. Z. Fur Gastroenterol. 2007, 45, 35–41. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Pecere, S.; Gasbarrini, A.; Ojetti, V. Physiology and pathophysiology of liver lipid metabolism. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 1055–1067. [Google Scholar] [CrossRef]
- Godoy-Matos, A.F.; Júnior, W.S.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef]
- Nagarajan, S.R.; Cross, E.; Sanna, F.; Hodson, L. Dysregulation of hepatic metabolism with obesity: Factors influencing glucose and lipid metabolism. Proc. Nutr. Soc. 2021, 81, 1–11. [Google Scholar] [CrossRef]
- Boccatonda, A.; Andreetto, L.; D’aRdes, D.; Cocco, G.; Rossi, I.; Vicari, S.; Schiavone, C.; Cipollone, F.; Guagnano, M.T. From NAFLD to MAFLD: Definition, Pathophysiological Basis and Cardiovascular Implications. Biomedicines 2023, 11, 883. [Google Scholar] [CrossRef]
- Burns, C.J.; Boswell, J.M.; Olsen, G.W. Liver Enzyme Activity and Body Mass Index. J. Occup. Environ. Med. 1996, 38, 1248–1252. [Google Scholar] [CrossRef]
- Marchesini, G.; Avagnina, S.; Barantani, E.G.; Ciccarone, A.M.; Corica, F.; Dall’aGlio, E.; Grave, R.D.; Morpurgo, P.S.; Tomasi, F.; Vitacolonna, E. Aminotransferase and gamma-glutamyl transpeptidase levels in obesity are associated with insulin resistance and the metabolic syndrome. J. Endocrinol. Investig. 2005, 28, 333–339. [Google Scholar] [CrossRef]
- Hartman, C.; Rennert, H.S.; Rennert, G.; Elenberg, Y.; Zuckerman, E. Prevalence of elevated liver enzymes and comorbidities in children and adolescents with overweight and obesity. Acta Paediatr. 2021, 110, 985–992. [Google Scholar] [CrossRef]
- Huang, J.; Gao, T.; Zhang, H.; Wang, X. Association of obesity profiles and metabolic health status with liver injury among US adult population in NHANES 1999–2016. Sci. Rep. 2023, 13, 15958. [Google Scholar] [CrossRef]
- Elizondo-Montemayor, L.; Ugalde-Casas, P.A.; Lam-Franco, L.; Bustamante-Careaga, H.; Serrano-González, M.; Gutiérrez, N.G.; Martínez, U. Association of ALT and the metabolic syndrome among Mexican children. Obes. Res. Clin. Pract. 2014, 8, e79–e87. [Google Scholar] [CrossRef]
- Kelishadi, R.; Hemati, Z.; Qorbani, M.; Motlagh, M.E.; Djalalinia, S.; Ahadi, Z.; Shafiee, G.; Gorabi, A.M.; Rastad, H.; Ziaodini, H.; et al. Association of Alanine Aminotransferase with Different Metabolic Phenotypes of Obesity in Children and Adolescents: The CASPIAN-V Study. Front. Endocrinol. 2020, 11, 358. [Google Scholar] [CrossRef]
- Liu, Z.; Que, S.; Ning, H.; Wang, L.; Peng, T. Elevated alanine aminotransferase is strongly associated with incident metabolic syndrome: A meta-analysis of prospective studies. PLoS ONE 2013, 8, e80596. [Google Scholar] [CrossRef]
- Schindhelm, R.K.; Diamant, M.; Dekker, J.M.; Tushuizen, M.E.; Teerlink, T.; Heine, R.J. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes/Metab. Res. Rev. 2006, 22, 437–443. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Seddoh, D. Alanine aminotransferase and risk of the metabolic syndrome: A linear dose-response relationship. PLoS ONE 2014, 9, e96068. [Google Scholar] [CrossRef]
- Thanapirom, K.; Suksawatamnuay, S.; Tanpowpong, N.; Chaopathomkul, B.; Sriphoosanaphan, S.; Thaimai, P.; Srisoonthorn, N.; Treeprasertsuk, S.; Komolmit, P. Non-invasive tests for liver fibrosis assessment in patients with chronic liver diseases: A prospective study. Sci. Rep. 2022, 12, 4913. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Huang, Y.; Chen, L. The gamma-glutamyl transpeptidase-to-platelet ratio predicts liver fibrosis and cirrhosis in HBeAg-positive chronic HBV infection patients with high HBV DNA and normal or mildly elevated alanine transaminase levels in China. J. Viral Hepat. 2016, 23, 912–919. [Google Scholar] [CrossRef]
- Martinez, S.M.; Fernández-Varo, G.; González, P.; Sampson, E.; Bruguera, M.; Navasa, M.; Jiménez, W.; Sánchez-Tapias, J.M.; Forns, X. Assessment of liver fibrosis before and after antiviral therapy by different serum marker panels in patients with chronic hepatitis C. Aliment. Pharmacol. Ther. 2010, 33, 138–148. [Google Scholar] [CrossRef]
- Xiao, G.; Zhu, S.; Xiao, X.; Yan, L.; Yang, J.; Wu, G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017, 66, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Attallah, A.M.; El-Far, M.; Omran, M.M.; Farid, K.; Albannan, M.S.; El-Dosoky, I. Noninvasive Diagnosis of Liver Fibrosis and Cirrhosis in Chronic Hepatitis C Patients. J. Clin. Lab. Anal. 2013, 27, 121–129. [Google Scholar] [CrossRef]
- Gupta, N.; Dar, W.R.; Wani, A.; Saxena, R.R.; Khatri, S.; Tyagi, B.; Bansal, P.; Mir, I.A. Comparison of aspartate aminotransferase platelet ratio index score and insulin resistance in type 2 diabetes mellitus with non-alcoholic fatty liver disease. Endocr. Regul. 2023, 57, 106–113. [Google Scholar] [CrossRef]
- Şaşmaz, M.I.; Ayvaz, M.A.; Dülger, A.C.; Kaykısız, E.K.K.; Güven, R. Aspartate-aminotransferase to platelet ratio index score for predicting HELLP syndrome. Am. J. Emerg. Med. 2019, 38, 459–462. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Yamada, G.; Vuppalanchi, R.; Loomba, R.; Guy, C.; Brandman, D.; Tonascia, J.; Chalasani, N.; Sanyal, A.J.; Allende, D.; et al. Diagnostic Accuracy of Noninvasive Fibrosis Models to Detect Change in Fibrosis Stage. Clin. Gastroenterol. Hepatol. 2019, 17, 1877–1885.e5. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-Q.; Li, J.; Liao, Y.; Chen, Q.; Liao, W.-J.; Huang, J. The preoperative alkaline phosphatase-to-platelet ratio index is an independent prognostic factor for hepatocellular carcinoma after hepatic resection. Medicine 2016, 95, e5734. [Google Scholar] [CrossRef]
- Alshuweishi, Y.; Alfaifi, M.; Almoghrabi, Y.; Alfhili, M.A. AST and ALT APRI Scores and Dysglycemia in Saudi Arabia: A Retrospective Population Study. Life 2023, 13, 1881. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut off Points; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Lee, Y.; Siddiqui, W.J. Cholesterol Levels; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Primo, D.; Izaola, O.; de Luis, D.A. Triglyceride-Glucose Index Cutoff Point Is an Accurate Marker for Predicting the Prevalence of Metabolic Syndrome in Obese Caucasian Subjects. Ann. Nutr. Metab. 2022, 79, 238–245. [Google Scholar] [CrossRef]
- Ansari, S.; Haboubi, H.; Haboubi, N. Adult obesity complications: Challenges and clinical impact. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820934955. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Carrera-Bastos, P.; Castillo-García, A.; Lieberman, D.E.; Santos-Lozano, A.; Lucia, A. Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 2023, 20, 475–494. [Google Scholar] [CrossRef]
- De Matteis, C.; Cariello, M.; Graziano, G.; Battaglia, S.; Suppressa, P.; Piazzolla, G.; Sabbà, C.; Moschetta, A. AST to Platelet Ratio Index (APRI) is an easy-to-use predictor score for cardiovascular risk in metabolic subjects. Sci. Rep. 2021, 11, 14834. [Google Scholar] [CrossRef] [PubMed]
- van Beek, J.H.D.A.; de Moor, M.H.M.; de Geus, E.J.C.; Lubke, G.H.; Vink, J.M.; Willemsen, G.; Boomsma, D.I. The genetic architecture of liver enzyme levels: GGT, ALT and AST. Behav. Genet. 2013, 43, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2003, 124, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Trunk Fat Is Associated with Increased Serum Levels of Alanine Aminotransferase in the United States. Gastroenterology 2010, 138, 1346–1356.e3. [Google Scholar] [CrossRef]
- Bekkelund, S.I.; Jorde, R. Alanine aminotransferase and body composition in obese men and women. Dis. Markers 2019, 2019, 1695874. [Google Scholar] [CrossRef]
- Kim, J.; Jo, I. Relationship between body mass index and alanine aminotransferase concentration in non-diabetic Korean adults. Eur. J. Clin. Nutr. 2009, 64, 169–175. [Google Scholar] [CrossRef]
- Adams, L.A.; Knuiman, M.W.; Divitini, M.L.; Olynyk, J.K. Body mass index is a stronger predictor of alanine aminotransaminase levels than alcohol consumption. J. Gastroenterol. Hepatol. 2008, 23, 1089–1093. [Google Scholar] [CrossRef]
- Ali, N.; Sumon, A.H.; Fariha, K.A.; Asaduzzaman, M.; Kathak, R.R.; Molla, N.H.; Mou, A.D.; Barman, Z.; Hasan, M.; Miah, R.; et al. Assessment of the relationship of serum liver enzymes activity with general and abdominal obesity in an urban Bangladeshi population. Sci. Rep. 2021, 11, 6640. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Jiang, C.Q.; Schooling, C.M.; Zhang, W.S.; Cheng, K.K.; Lam, T.H. Liver enzymes as mediators of association between obesity and diabetes: The Guangzhou Biobank Cohort Study. Ann. Epidemiol. 2016, 27, 204–207. [Google Scholar] [CrossRef]
- Hanley, A.J.; Wagenknecht, L.E.; Festa, A.; D’AGostino, R.B.; Haffner, S.M. Alanine aminotransferase and directly measured insulin sensitivity in a multiethnic cohort. Diabetes Care 2007, 30, 1819–1827. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, R.; Xiong, Y.; Du, F.; Zhu, S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis. 2017, 16, 203. [Google Scholar] [CrossRef] [PubMed]
- Ziolkowska, S.; Binienda, A.; Jabłkowski, M.; Szemraj, J.; Czarny, P. The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2021, 22, 11128. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M. Non-alcoholic fatty liver disease in 2015. World J. Hepatol. 2015, 7, 1450–1459. [Google Scholar] [CrossRef]
- Ge, X.; Zheng, L.; Wang, M.; Du, Y.; Jiang, J. Prevalence trends in non-alcoholic fatty liver disease at the global, regional and national levels, 1990–2017: A population-based observational study. BMJ Open 2020, 10, e036663. [Google Scholar] [CrossRef] [PubMed]
- Divella, R.; Mazzocca, A.; Daniele, A.; Sabbà, C.; Paradiso, A. Obesity, Nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int. J. Biol. Sci. 2019, 15, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.L.; Hamilton, G.; Patel, N.; O’dWyer, R.; Doré, C.J.; Goldin, R.D.; Bell, J.D.; Taylor-Robinson, S.D. Hepatic triglyceride content and its relation to body adiposity: A magnetic resonance imaging and proton magnetic resonance spectroscopy study. Gut 2005, 54, 122–127. [Google Scholar] [CrossRef]
- Ore, A.; Akinloye, O.A. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina 2019, 55, 26. [Google Scholar] [CrossRef]
- Rauchbach, E.; Zeigerman, H.; Abu-Halaka, D.; Tirosh, O. Cholesterol Induces Oxidative Stress, Mitochondrial Damage and Death in Hepatic Stellate Cells to Mitigate Liver Fibrosis in Mice Model of NASH. Antioxidants 2022, 11, 536. [Google Scholar] [CrossRef]
- Deb, S.; Puthanveetil, P.; Sakharkar, P. A Population-Based Cross-Sectional Study of the Association between Liver Enzymes and Lipid Levels. Int. J. Hepatol. 2018, 2018, 1286170. [Google Scholar] [CrossRef]
- Cho, N.H.; Jang, H.C.; Choi, S.H.; Kim, H.R.; Lee, H.K.; Chan, J.C.; Lim, S. Abnormal Liver Function Test Predicts Type 2 Diabetes. Diabetes Care 2007, 30, 2566–2568. [Google Scholar] [CrossRef]
- Kappelle, P.J.W.H.; Gansevoort, R.T.; Hillege, J.L.; Wolffenbuttel, B.H.R.; Dullaart, R.P.F.; on behalf of the PREVEND Study Group. Apolipoprotein B/A-I and total cholesterol/high-density lipoprotein cholesterol ratios both predict cardiovascular events in the general population independently of nonlipid risk factors, albuminuria and C-reactive protein. J. Intern. Med. 2010, 269, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Calling, S.; Johansson, S.-E.; Wolff, M.; Sundquist, J.; Sundquist, K. The ratio of total cholesterol to high density lipoprotein cholesterol and myocardial infarction in Women’s health in the Lund area (WHILA): A 17-year follow-up cohort study. BMC Cardiovasc. Disord. 2019, 19, 239. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Cai, Y.; Qin, R.; Graffy, J.; Holman, D.; Zhao, Z.; Simmons, D. Total/high density lipoprotein cholesterol and cardiovascular disease (re)hospitalization nadir in type 2 diabetes. J. Lipid Res. 2018, 59, 1745–1750. [Google Scholar] [CrossRef]
- Lamprea-Montealegre, J.A.; Staplin, N.; Herrington, W.G.; Haynes, R.; Emberson, J.; Baigent, C.; de Boer, I.H.; on behalf of the SHARP Collaborative Group. Apolipoprotein B, triglyceride-rich lipoproteins, and risk of cardiovascular events in persons with CKD. Clin. J. Am. Soc. Nephrol. 2019, 15, 47–60. [Google Scholar] [CrossRef] [PubMed]
Control (n = 24) | Overweight (n = 43) | Obese (n = 98) | p Value | |
---|---|---|---|---|
RBCs (×1012/μL) | 4.6 (±4.3–5.1) | 4.7 (±4.4–5.1) | 4.9 (±4.5–5.4) | 0.0246 |
Hb (g/dL) | 12.95 (±12.0–14.0) | 13.10 (±12.2–14.5) | 13.25 (±12.1–14.7) | 0.2628 |
Hct L/L | 0.39 (±0.38–0.43) | 0.41 (±0.38–0.44) | 0.41 (±0.38–0.45) | 0.2311 |
MCV (fL) | 86 (±81–90) | 87 (±83–89) | 84 (±80–88) | 0.2255 |
MCH (g/dL) | 28.0 (±26.8–29.0) | 28.0 (±26.3–29.6) | 27.5 (±25.7–29.3) | 0.3937 |
WBCs (×109/μL) | 6.7 (±5.0–8.4) | 6.0 (±5.0–6.9) | 7.3 (±5.5–8.4) | 0.0269 |
Neutrophil (×109/μL) | 3.4 (±2.1–5.1) | 2.9 (±2.0–3.6) | 3.6 (±2.3–4.6) | 0.062 |
Lymphocyte (×109/μL) | 2.37 (±1.82–2.58) | 2.20 (±2.00–2.70) | 2.63 (±2.15–3.12) | 0.0082 |
Monocyte (×109/μL) | 0.54 (±0.42–0.63) | 0.45 (±0.35–0.53) | 0.54 (±0.41–0.65) | 0.0087 |
Eosinophile (×109/μL) | 0.14 (±0.10–0.23) | 0.15 (±0.09–0.21) | 0.18 (±0.11–0.25) | 0.3561 |
Basophile (×109/μL) | 0.05 (±0.03–0.06) | 0.04 (±0.03–0.06) | 0.04 (±0.03–0.06) | 0.8548 |
Platelet (×109/μL) | 273.0 (±244–333) | 293.0 (±232–338) | 299.0 (±254–362) | 0.2980 |
FBG mg/dL | 84.7 (±74.3–89.6) | 82.9 (±79.3–88.3) | 90.1 (±82.9–93.7) | 0.0159 |
HbA1c % | 5.5 (±5.2–5.6) | 5.4 (±5.2–5.6) | 5.7 (±5.5–5.9) | <0.0001 |
Creatinine µmol/L | 65 (±54–77) | 62 (±55–73) | 64 (±57–79) | 0.6393 |
Albumin g/L | 45 (±44–49) | 45 (±43–47) | 44 (±42–45) | 0.0002 |
Variables | Descriptive Statistics |
---|---|
Total number of patients | 165 |
Sex (Female), n (%) | 119 (72.1%) |
Age (y), median (IQR) | 37 (±28–45) |
BMI, median (IQR) | 33 (±27–37) |
Weight (kg), median (IQR) | 83 (±69–94) |
Smoking, n (%) | 20 (12.1%) |
Hypertension, n (%) | 11 (6.7%) |
Biliary atresia, n (%) | 8 (4.8%) |
PCOS, n (%) | 10 (6.1%) |
Hypothyroidism, n (%) | 23 (13.9%) |
IDA, n (%) | 16 (9.7%) |
Infertility, n (%) | 5 (3.0%) |
Iron supplementation, n (%) | 28 (17%) |
GLP-1 agonist, n (%) | 34 (20.6%) |
Metformin, n (%) | 15 (9.1%) |
Parameter | Prevalence (%) |
---|---|
Elevated TG | |
Normal APRI < 0.153 | 44.83 |
High APRI > 0.153 | 55.17 |
Elevated TC | |
Normal APRI < 0.153 | 57.89 |
High APRI > 0.153 | 42.11 |
Reduced HDL | |
Normal APRI < 0.153 | 33.33 |
High APRI > 0.153 | 66.67 |
Elevated LDL | |
Normal APRI < 0.153 | 52.94 |
High APRI > 0.153 | 47.06 |
Elevated TG/HDL | |
Normal APRI < 0.153 | 40.54 |
High APRI > 0.153 | 59.46 |
Elevated TC/HDL | |
Normal APRI < 0.153 | 28.00 |
High APRI > 0.153 | 72.00 |
Elevated LDL/HDL | |
Normal APRI < 0.153 | 36.11 |
High APRI > 0.153 | 63.89 |
Elevated TyG index | |
Normal APRI < 0.153 | 26.32 |
High APRI > 0.153 | 73.68 |
Parameter | PR | 95% CI | Z Statistic | p | OR | 95% CI | Z Statistic | p |
---|---|---|---|---|---|---|---|---|
TG | 1.60 | 1.05–2.42 | 2.20 | 0.0277 | 2.33 | 1.02–5.35 | 2.00 | 0.0457 |
TC | 1.15 | 0.76–1.75 | 0.66 | 0.509 | 1.26 | 0.63–2.51 | 0.66 | 0.512 |
HDL | 2.07 | 1.42–3.03 | 3.77 | 0.0002 | 4.22 | 1.73–10.31 | 3.16 | 0.0016 |
LDL | 1.36 | 0.91–2.06 | 1.48 | 0.1378 | 1.69 | 0.83–3.42 | 1.46 | 0.1454 |
TG/HDL | 1.94 | 1.30–2.88 | 3.26 | 0.0011 | 3.31 | 1.52–7.23 | 3.01 | 0.0026 |
TC/HDL | 2.30 | 1.60–3.31 | 4.48 | <0.0001 | 5.64 | 2.17–14.71 | 3.54 | 0.0004 |
LDL/HDL | 2.20 | 1.49–3.26 | 3.94 | 0.0001 | 4.33 | 1.94–9.69 | 3.81 | 0.0004 |
TyG index | 2.05 | 1.34–3.13 | 2.65 | 0.0079 | 4.99 | 1.59–15.63 | 2.76 | 0.0058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshuweishi, Y.; Alfayez, D.; Almufarrih, A.A.; Abudawood, A.; Alyami, H.; Alshuweishi, F.A.; Al-Sheikh, Y.A.; Alfhili, M.A. Elevated Alanine Transaminase-to-Platelet Index (APRI) Is Associated with Obesity and Distinct Forms of Dyslipidemia: A Retrospective Cross-Sectional Study. J. Clin. Med. 2024, 13, 5650. https://doi.org/10.3390/jcm13185650
Alshuweishi Y, Alfayez D, Almufarrih AA, Abudawood A, Alyami H, Alshuweishi FA, Al-Sheikh YA, Alfhili MA. Elevated Alanine Transaminase-to-Platelet Index (APRI) Is Associated with Obesity and Distinct Forms of Dyslipidemia: A Retrospective Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(18):5650. https://doi.org/10.3390/jcm13185650
Chicago/Turabian StyleAlshuweishi, Yazeed, Dalal Alfayez, Abdulmalik A. Almufarrih, Arwa Abudawood, Hanan Alyami, Faisal A. Alshuweishi, Yazeed A. Al-Sheikh, and Mohammad A. Alfhili. 2024. "Elevated Alanine Transaminase-to-Platelet Index (APRI) Is Associated with Obesity and Distinct Forms of Dyslipidemia: A Retrospective Cross-Sectional Study" Journal of Clinical Medicine 13, no. 18: 5650. https://doi.org/10.3390/jcm13185650
APA StyleAlshuweishi, Y., Alfayez, D., Almufarrih, A. A., Abudawood, A., Alyami, H., Alshuweishi, F. A., Al-Sheikh, Y. A., & Alfhili, M. A. (2024). Elevated Alanine Transaminase-to-Platelet Index (APRI) Is Associated with Obesity and Distinct Forms of Dyslipidemia: A Retrospective Cross-Sectional Study. Journal of Clinical Medicine, 13(18), 5650. https://doi.org/10.3390/jcm13185650