Pericholecystic Fat Stranding as a Predictive Factor of Length of Stays of Patients with Acute Cholecystitis: A Novel Scoring Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Design
2.2. Data Collection
2.3. MSCT Imaging
2.4. Classification of Fat Stranding
2.5. Statistical Analysis
3. Results
3.1. Univariate Analysis
3.2. Multivariable Analysis
3.3. Area under the Receiver Operating Characteristics Curve Analysis
3.4. Development of New Scoring System Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shea, J.A.; Berlin, J.A.; Escarce, J.J.; Clarke, J.R.; Kinosian, B.P.; Cabana, M.D.; Tsai, W.W.; Horangic, N.; Malet, P.F.; Schwartz, J.S.; et al. Revised estimates of diagnostic test sensitivity and specificity in suspected biliary tract disease. Arch. Intern. Med. 1994, 154, 2573–2581. [Google Scholar] [CrossRef]
- Kiewiet, J.J.; Leeuwenburgh, M.M.; Bipat, S.; Bossuyt, P.M.; Stoker, J.; Boermeester, M.A. A systematic review and meta-analysis of diagnostic performance of imaging in acute cholecystitis. Radiology 2012, 264, 708–720. [Google Scholar] [CrossRef]
- Wertz, J.R.; Lopez, J.M.; Olson, D.; Thompson, W.M. Comparing the Diagnostic Accuracy of Ultrasound and CT in Evaluating Acute Cholecystitis. AJR Am. J. Roentgenol. 2018, 211, W92–W97. [Google Scholar] [CrossRef] [PubMed]
- Sandomenico, F.; Sanduzzi, L.; La Verde, E.; Vicenzo, E.; Pirolo, L.; Maione, S.; Setola, F.R.; Macchia, V.; Dello Iacono, U.; Barbato, D.; et al. Multidetector Computed Tomography (MDCT) Findings of Complications of Acute Cholecystitis. A Pictorial Essay. Tomography 2022, 8, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Yokoe, M.; Hata, J.; Takada, T.; Strasberg, S.M.; Asbun, H.J.; Wakabayashi, G.; Kozaka, K.; Endo, I.; Deziel, D.J.; Miura, F.; et al. Tokyo Guidelines 2018: Diagnostic criteria and severity grading of acute cholecystitis (with videos). J. Hepatobiliary Pancreat. Sci. 2018, 25, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Yokoe, M.; Takada, T.; Strasberg, S.M.; Solomkin, J.S.; Mayumi, T.; Gomi, H.; Pitt, H.A.; Gouma, D.J.; Garden, O.J.; Büchler, M.W.; et al. New diagnostic criteria and severity assessment of acute cholecystitis in revised Tokyo Guidelines. J. Hepatobiliary Pancreat. Sci. 2012, 19, 578–585. [Google Scholar] [CrossRef]
- Shakespear, J.S.; Shaaban, A.M.; Rezvani, M. CT findings of acute cholecystitis and its complications. AJR Am. J. Roentgenol. 2010, 194, 1523–1529. [Google Scholar] [CrossRef]
- Charalel, R.A.; Jeffrey, R.B.; Shin, L.K. Complicated cholecystitis: The complementary roles of sonography and computed tomography. Ultrasound Q. 2011, 27, 161–170. [Google Scholar] [CrossRef]
- Asiltürk Lülleci, Z.; Başyiğit, S.; Pirinççi Sapmaz, F.; Uzman, M.; Kefeli, A.; Yeniova, A.; Nazlıgül, Y. Comparison of ultrasonographic and laboratory findings of acute cholecystitis between elderly and nonelderly patients. Turk. J. Med. Sci. 2016, 46, 1428–1433. [Google Scholar] [CrossRef]
- McGillicuddy, E.A.; Schuster, K.M.; Brown, E.; Maxfield, M.W.; Davis, K.A.; Longo, W.E. Acute cholecystitis in the elderly: Use of computed tomography and correlation with ultrasonography. Am. J. Surg. 2011, 202, 524–527. [Google Scholar] [CrossRef]
- Riall, T.S.; Zhang, D.; Townsend, C.M., Jr.; Kuo, Y.F.; Goodwin, J.S. Failure to perform cholecystectomy for acute cholecystitis in elderly patients is associated with increased morbidity, mortality, and cost. J. Am. Coll. Surg. 2010, 210, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Yuzbasioglu, Y.; Ucoz, D.; Icme, F.; Haydar, G.; Uzunosmanoglu, H.; Pekcici, R. The role of C-reactive protein in the evaluation of the severity of acute cholecystitis. Acta Medica Mediterr. 2020, 2017, 475. [Google Scholar] [CrossRef]
- Kabul Gurbulak, E.; Gurbulak, B.; Akgun, I.E.; Duzkoylu, Y.; Battal, M.; Celayir, M.F.; Demir, U. Prediction of the grade of acute cholecystitis by plasma level of C-reactive protein. Iran. Red. Crescent Med. J. 2015, 17, e28091. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.N.; Wu, Y.T.; Fu, C.Y.; Liao, C.H.; Cheng, C.T.; Wang, S.Y.; Lin, B.C.; Hsu, Y.P.; Kang, S.C.; Liu, E.H.; et al. Evaluating the advantages of treating acute cholecystitis by following the Tokyo Guidelines 2018 (TG18): A study emphasizing clinical outcomes and medical expenditures. Surg. Endosc. 2021, 35, 6623–6632. [Google Scholar] [CrossRef] [PubMed]
- Paul Wright, G.; Stilwell, K.; Johnson, J.; Hefty, M.T.; Chung, M.H. Predicting length of stay and conversion to open cholecystectomy for acute cholecystitis using the 2013 Tokyo Guidelines in a US population. J. Hepatobiliary Pancreat. Sci. 2015, 22, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Sert, İ.; İpekci, F.; Engin, Ö.; Karaoğlan, M.; Çetindağ, Ö. Outcomes of early cholecystectomy (within 7 days of admission) for acute cholecystitis according to diagnosis and severity grading by Tokyo 2013 Guideline. Turk. J. Surg. 2017, 33, 80–86. [Google Scholar] [CrossRef]
- Yuksekdag, S.; Bas, G.; Okan, I.; Karakelleoglu, A.; Alimoglu, O.; Akcakaya, A.; Sahin, M. Timing of laparoscopic cholecystectomy in acute cholecystitis. Niger. J. Clin. Pract. 2021, 24, 156–160. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, S.J.; Lee, S.C.; Lee, S.K. Risk assessment scales and predictors for simple versus severe cholecystitis in performing laparoscopic cholecystectomy. Asian J. Surg. 2017, 40, 367–374. [Google Scholar] [CrossRef]
- Chawla, A.; Bosco, J.I.; Lim, T.C.; Srinivasan, S.; Teh, H.S.; Shenoy, J.N. Imaging of acute cholecystitis and cholecystitis-associated complications in the emergency setting. Singap. Med. J. 2015, 56, 438–443, quiz 444. [Google Scholar] [CrossRef]
- Woo, S.H.; Lee, W.J.; Seol, S.H.; Kim, D.H.; Choi, S.P. The accuracies of abdominal computed tomography and the neutrophil-to-lymphocyte ratio used to predict the development of clinically severe acute cholecystitis in elderly patients visiting an emergency department. Niger. J. Clin. Pract. 2018, 21, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Thornton, E.; Mendiratta-Lala, M.; Siewert, B.; Eisenberg, R.L. Patterns of fat stranding. AJR Am. J. Roentgenol. 2011, 197, W1–W14. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.M.; Sirlin, C.B.; Pinto, P.S.; Jeffrey, R.B.; Stella, D.L.; Casola, G. Disproportionate fat stranding: A helpful CT sign in patients with acute abdominal pain. Radiographics 2004, 24, 703–715. [Google Scholar] [CrossRef]
- Pak, M.; Lindseth, G. Risk Factors for Cholelithiasis. Gastroenterol. Nurs. 2016, 39, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.O.; Yim, S.K. Management of Acute Cholecystitis. Korean J. Gastroenterol. 2018, 71, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Rice, C.P.; Vaishnavi, K.B.; Chao, C.; Jupiter, D.; Schaeffer, A.B.; Jenson, W.R.; Griffin, L.W.; Mileski, W.J. Operative complications and economic outcomes of cholecystectomy for acute cholecystitis. World J. Gastroenterol. 2019, 25, 6916–6927. [Google Scholar] [CrossRef]
- Choi, J.W.; Park, S.H.; Choi, S.Y.; Kim, H.S.; Kim, T.H. Comparison of clinical result between early laparoscopic cholecystectomy and delayed laparoscopic cholecystectomy after percutaneous transhepatic gallbladder drainage for patients with complicated acute cholecystitis. Korean J. Hepatobiliary Pancreat. Surg. 2012, 16, 147–153. [Google Scholar] [CrossRef]
- Loozen, C.S.; van Santvoort, H.C.; van Duijvendijk, P.; Besselink, M.G.; Gouma, D.J.; Nieuwenhuijzen, G.A.; Kelder, J.C.; Donkervoort, S.C.; van Geloven, A.A.; Kruyt, P.M.; et al. Laparoscopic cholecystectomy versus percutaneous catheter drainage for acute cholecystitis in high risk patients (CHOCOLATE): Multicentre randomised clinical trial. Bmj 2018, 363, k3965. [Google Scholar] [CrossRef]
- Tur-Martínez, J.; Escartín, A.; Muriel, P.; González, M.; Cuello, E.; Pinillos, A.; Salvador, H.; Olsina, J.J. Days of symptoms and days of hospital admission before surgery do not influence the results of cholecystectomy in moderate acute calculous cholecystitis-Cholecystectomy remains the best treatment. Rev. Esp. Enferm. Dig. 2022, 114, 213–218. [Google Scholar] [CrossRef]
- Prakash, G.; Hasan, M. The Accuracy of Neutrophil-to-Lymphocyte Ratio and Abdominal Computed Tomography to Predict the Severity of Acute Cholecystitis. Cureus 2022, 14, e32243. [Google Scholar] [CrossRef]
Characteristics | LOS < 7 Days | LOS ≥ 7 Days | p Value |
---|---|---|---|
Number (N) | 236 (60.5%) | 154 (39.5%) | |
Age (years) | 54.5 (43.3–66.8) | 70.0 (58.0–80.3) | <0.0001 * |
Age subgroups | <0.0001 * | ||
20–29 years (N) | 10/236 (4.2%) | 1/154 (0.7%) | |
30–39 years (N) | 28/236 (11.9%) | 5/154 (3.3%) | |
40–49 years (N) | 55/236 (23.3%) | 15/154 (9.7%) | |
50–59 years (N) | 51/236 (21.6%) | 24/154 (15.6%) | |
60–69 years (N) | 43/236 (18.2%) | 30/154 (19.5%) | |
70–79 years (N) | 32/236 (13.6%) | 40/154 (26.0%) | |
≥80 years (N) | 17/236 (7.2%) | 39/154 (25.3%) | |
Body mass index (kg/m2) | 24.6 (22.6–27.3) | 24.9 (22.0–27.6) | 0.7548 |
Onset of symptoms to ED (days) | 1.0 (1.0–3.0) | 1.0 (1.0–3.0) | 0.8720 |
Onset of symptoms to ED > 72 h | 30/236 (12.7%) | 27/154 (17.5%) | 0.1877 |
ICU admission | 8/236 (3.4%) | 35/154 (22.7%) | <0.0001 |
Procedures | |||
Laparoscopic cholecystectomy | 138/236 (58.5%) | 34/154 (22.1%) | <0.0001 * |
PTGBD | 33/236 (14.0%) | 68/154 (44.2%) | <0.0001 * |
ERCP | 30/236 (12.7%) | 42/154 (27.3%) | 0.0003 * |
Imaging findings | |||
Gallbladder length (cm) | 6.9 (5.2–8.1) | 7.3 (5.6–9.0) | 0.0079 * |
Gallbladder width (cm) | 3.9 (3.2–4.4) | 4.1 (3.5–4.7) | 0.0083 * |
Gallbladder size (cm2) | 26.0 (18.0–33.9) | 30.4 (21.3–41.3) | 0.0020 * |
Gallbladder volume (mL) | 186.4 (129.9–269.3) | 209.1 (135.5–305.0) | 0.0863 |
Gallbladder wall thickness | 0.4 (0.3–0.7) | 0.5 (0.3–0.7) | 0.3118 |
Calculus cholecystitis | 133/236 (56.4%) | 82/154 (53.2%) | 0.5467 |
Multiple Gallbladder stone (N) | 75/236 (31.8%) | 52/154 (33.8%) | 0.6824 |
Abscess (N) | 8/236 (3.4%) | 10/154 (6.5%) | 0.1533 |
Grades of pericholecystic fat stranding | 0.0518 | ||
Grade 0 | 55/236 (23.3%) | 32/154 (20.8%) | |
Grade 1 | 94/236 (39.8%) | 45/154 (29.2%) | |
Grade 2 | 44/236 (18.6%) | 34/154 (22.1%) | |
Grade 3 | 43/236 (18.2%) | 43/154 (27.9%) | |
Tokyo guideline grading | <0.0001 * | ||
Grade I | 117/236 (49.6%) | 38/154 (24.7%) | |
Grade II | 94/236 (39.8%) | 47/154 (30.5%) | |
Grade III | 25/236 (10.6%) | 69/154 (44.8%) |
Characteristics | Univariate Analysis | ||
---|---|---|---|
OR (95% CI) | p Value | AUC | |
Age | 1.05 (1.04–1.07) | <0.001 * | 0.716 |
Gallbladder width | 1.38 (1.10–1.72) | 0.005 * | 0.581 |
Gallbladder size | 1.03 (1.01–1.04) | 0.001 * | 0.596 |
Gallbladder volume | 1.00 (1.00–1.00) | 0.034 * | 0.555 |
Gallbladder stone | 0.88 (0.59–1.33) | 0.546 | 0.482 |
Gallbladder wall | 1.15 (0.66–2.00) | 0.628 | 0.532 |
Gallbladder wall HU | 1.01 (1.00–1.02) | 0.064 | 0.544 |
CBD diameter | 2.47 (1.26–4.88) | 0.009 * | 0.589 |
TG18 grade | 2.79 (2.09–3.73) | <0.001 * | 0.695 |
Fat stranding | 1.25 (1.03–1.52) | 0.022 * | 0.563 |
Fat stranding (0 vs. 1–3) | 1.16 (0.71–1.90) | 0.558 | 0.512 |
Fat stranding (0–1 vs. 2–3) | 1.71 (1.13–2.59) | 0.010 * | 0.563 |
Fat stranding (0–2 vs. 3) | 1.74 (1.07–2.82) | 0.025 * | 0.549 |
Abscess | 1.98 (0.76–5.13) | 0.160 | 0.516 |
Gangrene change | 1.45 (0.96–2.19) | 0.077 | 0.546 |
Symptom duration (0–7 and >7) | 1.04 (0.92–1.16) | 0.561 | 0.507 |
Symptom duration (0–7 vs. >7) | 0.65 (0.17–2.55) | 0.537 | 0.495 |
Symptom duration (0–3 vs. >3) | 1.46 (0.83–2.57) | 0.189 | 0.524 |
CRP (normal range <0.5 mg/dL) | 1.05 (1.02–1.07) | <0.001 * | 0.631 |
CRP ≥ 0.5 mg/dL | 2.26 (1.48–3.46) | <0.001 * | 0.598 |
CRP ≥ 0.8 mg/dL | 2.41 (1.59–3.66) | <0.001 * | 0.608 |
CRP ≥ 2 mg/dL | 2.46 (1.62–3.74) | <0.001 * | 0.608 |
g-GT (normal range 5–40 U/L) | 1.00 (1.00–1.00) | 0.007 * | 0.556 |
g-GT ≥ 60 U/L | 2.53 (1.53–4.18) | <0.001 * | 0.575 |
g-GT ≥ 40 U/L | 2.57 (1.60–4.14) | <0.001 * | 0.585 |
Characteristics | OR (95% CI) | p Value | Score |
---|---|---|---|
TG18 grade (per grade) | 2.89 (2.04–4.10) | <0.001 * | 1–3 † |
Fat stranding grade > 2 | 2.14 (1.18–3.86) | 0.012 * | 1 |
CRP level ≥ 2 mg/dL | 1.97 (1.15–3.35) | 0.013 * | 1 |
g-GT level ≥ 40 U/L | 2.46 (1.44–4.22) | 0.001 * | 1 |
Age ≥ 65 years | 2.56 (1.59–4.12) | <0.001 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-W.; Tsai, C.-H.; Lin, H.-A.; Chen, Y.; Hou, S.-K.; Lin, S.-F. Pericholecystic Fat Stranding as a Predictive Factor of Length of Stays of Patients with Acute Cholecystitis: A Novel Scoring Model. J. Clin. Med. 2024, 13, 5734. https://doi.org/10.3390/jcm13195734
Lee S-W, Tsai C-H, Lin H-A, Chen Y, Hou S-K, Lin S-F. Pericholecystic Fat Stranding as a Predictive Factor of Length of Stays of Patients with Acute Cholecystitis: A Novel Scoring Model. Journal of Clinical Medicine. 2024; 13(19):5734. https://doi.org/10.3390/jcm13195734
Chicago/Turabian StyleLee, Suh-Won, Cheng-Han Tsai, Hui-An Lin, Yu Chen, Sen-Kuang Hou, and Sheng-Feng Lin. 2024. "Pericholecystic Fat Stranding as a Predictive Factor of Length of Stays of Patients with Acute Cholecystitis: A Novel Scoring Model" Journal of Clinical Medicine 13, no. 19: 5734. https://doi.org/10.3390/jcm13195734
APA StyleLee, S. -W., Tsai, C. -H., Lin, H. -A., Chen, Y., Hou, S. -K., & Lin, S. -F. (2024). Pericholecystic Fat Stranding as a Predictive Factor of Length of Stays of Patients with Acute Cholecystitis: A Novel Scoring Model. Journal of Clinical Medicine, 13(19), 5734. https://doi.org/10.3390/jcm13195734