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Abstract: Background/Objectives: Routine postoperative ICU admission following brain tumor
surgery may not benefit selected patients. The objective of this study was to develop a risk prediction
instrument for early (within 24 h) postoperative adverse events using machine learning techniques.
Methods: Retrospective cohort of 1000 consecutive adult patients undergoing elective brain tumor
resection. Nine events/interventions (CPR, reintubation, return to OR, mechanical ventilation,
vasopressors, impaired consciousness, intracranial hypertension, swallowing disorders, and death)
were chosen as target variables. Potential prognostic features (n = 27) from five categories were chosen
and a gradient boosting algorithm (XGBoost) was trained and cross-validated in a 5 × 5 fashion.
Prognostic performance, potential clinical impact, and relative feature importance were analyzed.
Results: Adverse events requiring ICU intervention occurred in 9.2% of cases. Other events not
requiring ICU treatment were more frequent (35% of cases). The boosted decision trees yielded a
cross-validated ROC-AUC of 0.81 ± 0.02 (mean ± CI95) when using pre- and post-op data. Using
only pre-op data (scheduling decisions), ROC-AUC was 0.76 ± 0.02. PR-AUC was 0.38 ± 0.04 and
0.27 ± 0.03 for pre- and post-op data, respectively, compared to a baseline value (random classifier)
of 0.092. Targeting a NPV of at least 95% would require ICU admission in just 15% (pre- and post-op
data) or 30% (only pre-op data) of cases when using the prediction algorithm. Conclusions: Adoption
of a risk prediction instrument based on boosted trees can support decision-makers to optimize ICU
resource utilization while maintaining adequate patient safety. This may lead to a relevant reduction
in ICU admissions for surveillance purposes.

Keywords: craniotomy; complications; postoperative surveillance; ICU; machine learning

1. Introduction

Historically, routine admission to an intensive care unit (ICU) following brain tumor
surgery has been carried out in many institutions, although the indication and effectiveness
remained unclear [1–8]. Continuous advances in neurosurgery and anesthesiology have
resulted in reduced invasiveness, reduction of time spent under general anesthesia, and
consequently, faster postoperative neurologic recovery. It has been demonstrated in various
studies that the complication rate of brain tumor resection is low nowadays, even for the
elderly [9,10]. Consequently, the necessity of ICU admission as a routine measure has been
questioned by many authors in recent years.

Systematic reviews of the available literature concluded that routine postoperative ad-
mission of post-craniotomy patients to the ICU “may not benefit carefully selected patients” [8]
and that “non-ICU care pathways [. . .] represent a meaningful opportunity to improve care
value” [11]. Both authors advised caution when considering and implementing non-ICU
pathways and stressed the importance of proper patient selection.

Additionally, the COVID-19 pandemic has demonstrated the competition of various
medical specialties for limited ICU resources and has underlined the need for an objective
and fair risk assessment for ICU admission following brain tumor surgery. Motivated by
these opportunities to improve patient care and resource utilization, risk prediction scores
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have been derived and non-ICU postoperative pathways have been evaluated in smaller
cohorts [12–19].

When considering the implementation of an alternative pathway, it must be kept in
mind that equipment and staffing of various non-ICU treatment units like intermediate-care
(IMC) or postoperative-care (PACU) units vary considerably between healthcare systems
and individual institutions. Consequently, any non-ICU postoperative protocol must be
tailored to the individual situation, and an objective risk assessment remains the essential
factor for the efficacy and safety of non-ICU pathways.

Finding a tailored solution for the problem at hand, we recently conducted and
published an external validation and critical appraisal of the two most promising risk
prediction scores [20]. Our analysis demonstrated rather disappointing performance and
limited practical clinical use of these scores in our setting. Major limiting factors were
narrow scope (only supratentorial tumors), specific postoperative ICU-like surveillance
protocols, and the mandatory use of intraoperative data. Scores relying on data only
available after surgery is concluded cannot be used for preoperative scheduling decisions
and consequently are of limited use in a clinical setting.

From our assessment of the available literature, we had to conclude that the methods
used so far to deduce a risk prediction instrument (uni- or multivariate logistic regression
from a small set of independent variables) are insufficient to attain satisfactory results in
this complex and non-linear problem. It has been shown that machine learning techniques
might be more suitable to recognize patterns of features in craniotomy patients at risk of
early complications [21].

As a consequence, we decided to develop a risk prediction instrument that meets
the following requirements: it should be applicable to most brain tumor resection cases
(supra- and infratentorial), it should be narrow in scope to predict only early (within 24 h)
postoperative adverse events requiring ICU treatment, and it should be suitable for pre-
and postoperative ICU-admission decisions.

In order to pursue this objective, we trained a state-of-the-art implementation of
boosted decision trees on a cohort of brain tumor cases undergoing elective resection at
our institution.

2. Materials and Methods

The patient cohort consists of 1000 consecutive cases of elective brain tumor resection
in adults performed at our institution between January 2019 and July 2020. Cases with
craniotomy for cerebral aneurysms, microvascular decompression, and pituitary adenomas
were excluded.

The decision for admission to the ICU was made prior to surgery by the joint judgment
of the neurosurgeon and the anesthesiologist. In the cohort, 917 (92%) patients were
admitted to the ICU, and 83 (8%) individuals were scheduled for direct transfer to the
neurosurgical floor after short surveillance in the PACU.

After a careful review of the available literature, we selected 27 candidate features from
five categories (demographics, preoperative conditions, past medical history, tumor characteristics
on MRI, and intraoperative data) that were of potential prognostic value for the prediction
of adverse events. The majority (23) of these features were available before the start of
the procedure.

After consideration of the literature and the work done by other authors, we selected
and defined nine events and/or interventions by expert opinion (CPR, reintubation, return
to OR, mechanical ventilation, vasopressors, impaired consciousness, intracranial hypertension,
swallowing disorders, and death, Table 1) that require treatment on an ICU. The goal of the
prediction instrument was to assess the likelihood of any of these events within 24 h after
surgery using only the prognostic features given above.

Other noteworthy events that might require specific actions or an elevated level of staff
attention (any cranial nerve deficit, hemiparesis ≤ 3/5, administration of mannitol, postop-



J. Clin. Med. 2024, 13, 5747 3 of 12

erative CT scan, any seizure or intravenous blood pressure medication) were recorded but
not considered to require mandatory ICU treatment/surveillance.

All data were retrospectively extracted from clinical records. Preoperative MR images
were reviewed. Furthermore, the anesthesia and subsequent ICU and/or neurosurgical
floor reports were searched for any intra- or postoperative adverse events following our
definitions given in Table 1. A routine postoperative CT scan was not performed at our
institution. There was no missing data with respect to our study.

Table 1. Definition of postoperative ICU events.

ICU Event Definition

CPR Any CPR delivered
Reintubation Reintubation for any reason other than revision surgery
Return to OR Any surgery due to complications within 24 h

Mechanical ventilation Any postoperative ventilation > 4 h

Vasopressors Continuous application of more than 0.4 mg/h
norepinephrine

Impaired consciousness GCS < 13

Intracranial hypertension CSF drainage or administration of mannitol due to ICP >
20 mmHg

Swallowing Disorder Impaired swallowing requiring a gastral tube or
parenteral nutrition

Death in the perioperative period Any death within 48 h post-surgery

For the classification and risk stratification task, a supervised gradient boosting technique
was used. Gradient boosting uses an ensemble of decision trees that are iteratively optimized
to minimize the loss function. The XGBoost [22] framework (version 1.7.6, https://xgboost.ai,
accessed on 13 January 2024) was used (cf. Appendix A for technical details).

According to clinical experience and the literature [8,9,12,13], a skewed distribution
towards cases without postoperative adverse events was expected. As the exact rate would
depend on the breadth of the definition of adverse events, an initial retrospective pilot
survey of 100 cases with our definition was performed that yielded an estimated rate of 10%
postoperative adverse events. Given the variety of features and their possible combinations,
we concluded that each split during training and validation should contain 10 to 20 positive
cases to ensure that proper boosting and validation of the trees is feasible. Therefore, we
chose a large sample size of 1000 patients resulting in approximately 20 positive cases
within each split (5-fold cross-validation).

The prognostic performance of the score was assessed by calculating the area under
the curve of the receiver operating characteristic (AUC-ROC) and the area under the curve
of the precision-recall curve (AUC-PR). Calibration of the final models was estimated with
reliability plots and calculation of the Brier score.

All confidence intervals were calculated using a t-distribution with an α < 5% (CI95).
Statistical analyses were conducted with the SciPy [23] package (version 1.11.2).

3. Results
3.1. Summary of Prognostic Features

The study included 552 female (55%) and 448 male (45%) patients aged 18 to 88
(mean 57 ± 15 SD) years. The overwhelming majority (94%) were assigned to ASA-PS
(American Society of Anesthesiologists Performance Score) classes II and III. Arterial
hypertension (41%) and diabetes mellitus (11%) were the two most common comorbidities.
Twenty-six percent of patients had a history of prior craniotomy while 23% had a history of
epileptic seizures.

Craniotomy for removal of meningiomas (36%), cerebral metastases (19%), or glioblas-
toma (16%) made up almost three-quarters of all procedures. The tumor location was
supratentorial in 78% of cases and infratentorial in 22%. Intraventricular tumors accounted
for 25 (3%) cases.

https://xgboost.ai
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Table 2 gives a summary of the prognostic features in the cohort.

Table 2. Prognostic features.

Prognostic Features (27 Total) Values

Demographics (3)
Age 18–88 years (57 ± 15) 1

Sex 55% female, 45% male
BMI 13–46 (26 ± 5) *

Preoperative conditions (4)

ASA

I (6%)
II (58%)
III (36%)
IV (1%)
V (0%)

mNIHSS 0–11, median 0, IQR 0–1
GCS 11–15, median 15, IQR 15–15
Any neurologic deficit 63%

Past medical history (10)
Diabetes mellitus 11%
Arterial Hypertension 41%
Clotting disorder 2%
Thromboembolism 4%
Seizures 26%
Prior neurosurgery 23%
Antiplatelet or anticoagulation meds 14%
Cardiovascular disease 14%
Lung disease 1 56%
Other chronic diseases 14%

Tumor characteristics (5)
Hydrocephalus on MRI 6%

Location of tumor 78% supratentorial
22% infratentorial

Midline shift (>3 mm) on MRI 19%

Suspected entity
36% meningioma,
19% metastasis,

16% glioblastoma, 28% other
Tumor volume 2 1–272 mL (22 ± 31)

Intra- and postoperative data (4 + 1)

Positioning

supine 67%
prone 13%,
lateral 7%

sitting 13%
Duration of surgery (min) 20–740 min (236 ± 102)
Maximum systolic blood pressure (mmHg) 90–180 (135 ± 16)
Minimum systolic blood pressure (mmHg) 50–140 (100 ± 10)
Transfusion of red blood cells, platelets or plasma 2%

* Mean + SD; Abbreviations: BMI: Body Mass Index; ASA: American Society of Anesthesiologists Performance
Score; mNIHSS: modified National Institute of Health Stroke Scale; GCS: Glasgow Coma Scale; MRI: Magnetic
Resonance Imaging. 1 relevant (as noted by the premedication anesthesiologist) restriction or obstruction, lung
tumors, or pneumonia. 2 as given in the radiology report (measurement in the preoperative MRI).

3.2. Postoperative Events

During postoperative surveillance on the ICU (92%, n = 917) or PACU/neurosurgical
floor (8%, n = 83), adverse events requiring ICU intervention (or readmission) occurred in
92 cases (9.2%) (Table 3). The total number of events was 149.
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Table 3. Postoperative events (within 24 h).

Postoperative Events No. of Cases (n = 1000)

ICU events 149
Cases with events 92 (9.2%)
CPR 4 (0.4%)
Return to OR 12 (1.2%)
Continued mechanical ventilation 25 (2.5%)
Vasopressors 22 (2.2%)
Impaired consciousness 34 (3.4%)
Intracranial hypertension 22 (2.2%)
Swallowing Disorder 17 (1.7%)
Death in the perioperative period 0 (0.0%)

Other events 540
Cases with events 351 (35.1%)
Any cranial nerve deficit 72 (7.2%)
Hemiparesis (≤3/5) 46 (4.6%)
Administration of mannitol 47 (4.7%)
Postoperative CT scan 99 (9.9%)
Seizure 42 (4.2%)
I.V. blood pressure medication 47 (4.7%)

Two postoperative adverse events occurred after the patient had already been trans-
ferred from the PACU to the neurosurgical floor: one case of arterial hypotension requiring
vasopressor therapy and one case of neurological deterioration with hemiparesis and re-
duced vigilance. A subsequent CT scan revealed an intracerebral hematoma requiring
operative revision. Other noteworthy events or conditions not requiring ICU intervention
were more frequent and occurred in about one-third of the cases (351 cases, 540 total events).
A postoperative CT scan was the most common event (99) in this group.

3.3. Classification Performance

The trained ensemble of boosted decision trees yielded an area under the curve (AUC)
of the receiver operating characteristic (ROC) of 0.81 ± 0.02 (mean ± CI95) when using
pre- and post-op data. In the case of using only pre-op data (operating room scheduling
decisions), ROC-AUC was lower at 0.76 ± 0.02 (Figure 1A) as expected.

As the underlying class distribution was clearly skewed towards the negative class
(1:9), the area under the curve of the precision-recall curve (AUC-PR) was unsurprisingly
lower than AUC-ROC which was distribution-agnostic. In the case of pre- and post-op
data, AUC-PR was 0.38 ± 0.04, while for pre-op data only, it was 0.27 ± 0.03 (Figure 1B).
Compared to the baseline value (random decision) of 0.09, these numbers show a 3-fold
increase to the baseline and represent a good classification performance.

When considering only supratentorial cases (n = 777), the models reached an AUC-
ROC of 0.75 ± 0.03 (pre- and post-op) and 0.74 ± 0.02 (pre-op only). AUC-PR was scored
at 0.31 ± 0.04 for pre- and post-op, and 0.29 ± 0.04 for pre-op only with a baseline value of
0.11 (Figure S1).

3.4. Calibration and Admission Rate/Safety Tradeoff

Boosted trees usually do not produce well-calibrated posterior probabilities. They
tend to predict probabilities very conservatively, i.e., they are biased towards the center and
avoid the extremes. The reliability plot of the raw model output (Supplemental Figure S2,
black curve) shows a distribution of predicted probabilities that is displaced towards
the right (systematic overestimation, Brier score 0.09 ± 0.01 in 5 × 5 cross-validation).
This phenomenon is well-known when training with an unbalanced dataset with very
few positives. Fitting an isotonic regressor that maps the output of the classifier to a
calibrated probability in [0, 1] has been recommended to improve calibration of decision tree
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models [24]. Supplemental Figure S2 (gray, interrupted curve) shows a clear improvement
of predicted probabilities after calibration in this manner (Brier score 0.07 ± 0.01).
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Figure 1. Prognostic performance. Pre- and post-op features yield a ROC-AUC 0.81 ± 0.02
(mean ± CI95) in 5-times repeated 5-fold cross-validation (p < 0.01). Using only pre-op features,
ROC-AUC still scores at 0.76 ± 0.02 (p < 0.001, (A)). As the underlying class distribution is clearly
skewed towards the negative class (1:9), the AUC of the precision-recall curve was expected to
be lower than AUC-ROC. In the case of pre- and post-op data, AUC-PR was 0.38 ± 0.04, and
0.27 ± 0.03 for pre-op data only (both p < 0.001, (B)). Compared to the baseline value of a random
classifier (0.09), these numbers represent a 3-fold increase in the baseline value and represent a good
classification performance.

Choosing an ICU-event probability threshold for an actual planned ICU admission
requires a tradeoff between admission rate (ICU resource utilization) and patient safety.
Figure 2 demonstrates the relationship between negative predictive value (NPV) and ICU
admission rate as a function of the selected threshold. With pre- and post-op data, targeting
a NPV of at least 95% requires ICU admission in 15% of cases. Using only preoperative
data, approximately 30% of cases were selected for surveillance at the ICU. Higher target
NPVs lead to continuously rising ICU admission rates. As a matter of fact, almost perfect
safety (i.e., approaching 100% NPV) is only attainable by prohibitive ICU admission rates
of more than 90%.

3.5. Relative Importance of Prognostic Features

SHAP (SHapley Additive exPlanations) is a method to explain individual predictions
of tree-based models and are based on Shapley values used in game theory. SHAP values
have been shown to be a way to consistently attribute feature importance in tree-based
machine learning models [25]. The XGBoost implementation used in this study is capable of
directly providing SHAP values for the trained models. The magnitude of the mean SHAP
values for a given feature is indicative that a given feature is more important for generating
a prediction than features with lower values (feature importance, Figure 3). The features
found with high SHAP values correspond well with known risk factors for postoperative
complications (top five: operating time, tumor volume, age, BMI, and ASA class) from
clinical experience and previous studies. A more detailed analysis of the interactions
between individual features has been performed and is shown in Figures S3 and S4.
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4. Discussion

In our retrospective investigation, we used a fast and robust machine learning method
(gradient boosted trees) to identify patients at elevated risk of postoperative events requir-
ing ICU intervention following elective brain tumor surgery.

We were able to score a ROC-AUC of 0.81 ± 0.02 (pre- and post-op data) and
0.76 ± 0.02 (pre-op data only). In the case of pre- and post-op data, AUC-PR was 0.38 ± 0.04,
and 0.27 ± 0.03 for pre-op data only (Figure 1B). Compared to the random baseline value
of 0.092, these numbers show a 3-fold increase to the baseline and represent a good classifi-
cation performance.

Considering that perfect prediction of future events is not within reach, a tradeoff
between negative predictive value and ICU admission rate is necessary. The choice of the
minimum acceptable negative predictive value is of ethical, socio-economic, and medico-
legal nature and might vary between individual institutions and healthcare systems.

Since a false-negative decision (i.e., not admitting a patient to ICU) puts a patient at
risk but not necessarily causes irreversible harm, we would choose an NPV of 95%. The
minimum goal of 95% NPV would lead to a planned ICU-admission of approximately
30% of patients when using only preoperative data. At the end of surgery, when more
data is available, a more informed decision could be made that would consider only 15%
of patients in need of ICU admission for further surveillance. The goal of our endeavor
is to help decision-makers to optimize ICU resource utilization, increase fairness among
individual patients and medical (sub-)specialties while maintaining adequate patient safety.

The clinical relevance of finding an objective risk prediction instrument for postoper-
ative ICU admission following brain tumor surgery is supported by the fact that several
authors have already proposed solutions for this problem [12–16].

Franko et al. [16] derived a simple score with logistic regression of only three features,
but scoring is limited to supratentorial tumors and considers only early complications
within 4 h of surgery as independent variable, effectively relocating postoperative surveil-
lance from the ICU to the PACU. Furthermore, training and validation cohorts were too
small (300 patients in total) when taking the low incidence of postoperative complications
into account. Another scoring system very similar in scope and sample size (n = 400)
was put forward by Munari et al. [13] in 2022, again relying on prolonged postoperative
surveillance for 6–8 h in the PACU.

Rozeboom et al. [14] published a multivariable prediction model for postoperative
intensive care unit stay in a broad surgical population. It included 2616 neurosurgical
cases of all kinds including spinal cases. The sample included outpatient and emergency
surgery cases. The authors admitted that ICU referral in the neurosurgical subgroup
(72% no ICU use, 28% ICU use) was based mostly on surgeon’s request rather than an
objective assessment of the need for it. Schipmann et al. [15] took a heterogenous (including
biopsies, pituitary, and spinal tumors) cohort of 811 cases and derived the “SOS”-score
by multivariate logistic regression and stratified patients in low, medium, and high risk
groups based on number of secondary diagnoses, BMI, and operating time.

The CranioScore derived by Cinotti et al. [12] represents the most substantial and
rigorous attempt to derive a risk score for ICU-worthy events using logistic regression
from a retrospective single-center database of 1094 patients. Validation in a prospective,
multi-center cohort (n = 830) found a ROC-AUC of 0.70 ± 0.06 and a rather disappointing
ROC-AUC of 0.65 when tested in a retrospective 1000 patient cohort from our hospital for
evaluation purposes [20].

Other groups followed a ‘protocol-driven’ approach for the problem at hand and
defined clinical, non-ICU pathways for managing selected patients classified as ‘low-risk’.
The definition of ‘low-risk’ and the measures taken for non-ICU-admitted patients were
based on expert opinion and vary considerably between published protocols.

The “Non-Intensive CarE (NICE)” protocol is based on nine preoperative and six
postoperative ICU/non-ICU criteria and limited to extra-axial tumors or patients and
procedures ‘deemed (. . .) to be low-risk and suitable for non-ICU postoperative care’ by the
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attending neurosurgeon [26]. In a 3-year assessment after adoption of the protocol, 534 out
of 2535 (21%) craniotomies were eligible for the non-ICU pathway and ICU admission rate
subsequently dropped from 57% to 42% compared to a historic control of 2302 patients [6].

The “No ICU—Unless (NIU)” protocol reversed the tradition of routine ICU admission
to tentative management of supratentorial, elective tumor surgeries on the neurosurgical
floor unless neurosurgeon or anesthesiologist decided otherwise [27]. After adoption of
the protocol, a decline in ICU admission rate from 64% to 24% was noted in a cohort study
of 109 patients with equivalent complication rates as in the historical controls (n = 107).
Qasem et al. [28] reported similar results of the NIU protocol in a matched-pair analysis of
171 patients.

Hoffman et al. [19] recently demonstrated a reduced length of stay in a control study
of a subset of patients undergoing supratentorial craniotomy that were directly transferred
from the PACU to the floor.

Both approaches—whether protocol-driven or data-driven—ultimately still require an
individual decision by a responsible physician. To minimize the risk of irreversible harm,
this decision will also depend on the neurosurgical expertise and staffing of any ‘alternative’
postoperative care unit, whether this would be the PACU, a step-down (IMC) unit or the
neurosurgical floor. In our opinion, the quality and staffing of these units are very important
and should receive proper consideration in any scientific and clinical discussions.

At the current stage, our first approach to risk stratification and patient selection using
machine learning still carries important limitations that must be addressed.

The prediction model is derived from a retrospective cohort and has not been validated
in independent cohorts and different clinical settings. Nevertheless, cross-validation (5-fold,
5-times repeated) has shown small confidence intervals in the performance parameters of
the hold-out data, suggesting good performance in yet unseen data

Additionally, our selection and definition of ICU- and non-ICU worthy events, al-
though very similar to the decisions in the studies discussed above, remains subjective and
is based on the clinical experience and reasoning of the authors of this study. We have tried
to give a reasonable distinction between ICU-worthy and other noteworthy events (those
events that we consider to be salvageable in a non-ICU setting), but the labeling of the cases
should be further operationalized in future studies.

Taking the great variance of quality, staffing, and individual experiences into account,
a broad discussion between clinicians can be expected here and it seems unlikely that a
consensus can be found easily. As an example, the intravenous administration of antihyper-
tensive drugs might require invasive blood pressure monitoring in some institutions while
other clinicians would feel that this can be done safely with frequent but non-invasive
blood pressure monitoring.

Finally, it has to be kept in mind that there might be an underreporting of adverse
events for those patients that went to the neurosurgical floor. This is true not only for
our study, but for the whole class of studies mentioned above. In our sample, reflecting
our more traditional approach, 92% of the patients were monitored on the ICU, not on a
neurosurgical floor. Comparing the actual event rates between patients going to the ICU
and the floor, we found no significant differences.

This work is based on a large cohort of 1000 cases, only second in size to the 1094 cases
in the training cohort of Cinotti et al. [12], but uses boosted trees rather than logistic regres-
sion. Boosted trees represent a well-established and robust machine learning technique
that is designed to work well with categorical and even missing data found in a clinical
setting. Niftrik et al. [21] have already shown that boosted trees are superior to conventional
statistical methods in their analysis of 688 craniotomy patients.

It has to be stressed that the preliminary work presented here is not ready for clinical
use yet. Starting from that point, once more data and models come available, confidence
in AI applications in these complex clinical settings will improve and could also provide
further insights (e.g., feature importance) to adapt future clinical guidelines. If machine
learning methods such as the one presented here are properly embedded in a clinical
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protocol for the managing of non-ICU cases, the utilization of the ICU for postoperative
surveillance of tumor resection patients could be reduced while maintaining adequate
patient safety. In the future, these models can be modified and extended to further differen-
tiate between different levels of postoperative surveillance levels such as ICU, IMC, and
neurosurgical floor.

5. Conclusions

We suggest that the development of a risk prediction instrument based on boosted
decision trees can support decision-makers to optimize ICU resource utilization, and
increase fairness among individual patients and medical (sub-)specialties while maintaining
adequate patient safety. If properly validated in prospective studies and embedded in a
clinical protocol, this may lead to a relevant reduction in ICU admissions for surveillance
purposes and could also provide insights for adapted clinical guidelines.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/jcm13195747/s1, Figure S1: Prognostic performance for supra-
tentorial cases; Figure S2: Reliability and calibration; Figure S3: Summary plot of SHAP values;
Figure S4: SHAP values for selected features.
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Appendix A

The boosted trees were trained, optimized, and validated using 5-times repeated
(randomly reshuffled), 5-fold cross-validation for a total of 25 runs.

In each cycle, the data was split in an 80% training/optimization and 20% hold-out
validation set. The trees were trained and hyperparameters optimized using another 5-
fold cross-validation on each training set (800 cases) using the Optuna [29] framework
(version 3.3.0, https://optuna.org, accessed on 13 January 2024, tree-structured Parzen
estimator, 5000 iterations per run). Diagnostic performance was validated in the hold-out
set (200 cases) and confidence intervals for the metrics were calculated for the 25 runs.
Additional machine learning tasks were performed with the scikit-learn [30] package
(version 1.2.2).
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